JPH0499255A - Production of zirconium alloy clad tube having superior resistance to stress corrosion cracking - Google Patents

Production of zirconium alloy clad tube having superior resistance to stress corrosion cracking

Info

Publication number
JPH0499255A
JPH0499255A JP2212641A JP21264190A JPH0499255A JP H0499255 A JPH0499255 A JP H0499255A JP 2212641 A JP2212641 A JP 2212641A JP 21264190 A JP21264190 A JP 21264190A JP H0499255 A JPH0499255 A JP H0499255A
Authority
JP
Japan
Prior art keywords
tube
pilger rolling
corrosion cracking
stress corrosion
recrystallization annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2212641A
Other languages
Japanese (ja)
Inventor
Yoshiharu Mae
前 義治
Takeshi Isobe
毅 磯部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2212641A priority Critical patent/JPH0499255A/en
Publication of JPH0499255A publication Critical patent/JPH0499255A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B21/00Pilgrim-step tube-rolling, i.e. pilger mills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Metal Extraction Processes (AREA)

Abstract

PURPOSE:To improve resistance to stress corrosion cracking by carrying out tension working at a prescribed reduction of outside diameter and recrystallization annealing after Pilger rolling when a tube is produced by repeating Pilger rolling and annealing. CONSTITUTION:A blank Zr alloy tube is subjected once or plural times to Pilger rolling and recrystallization annealing, and then final Pilger rolling and strain relief annealing are carried out. At this time, tension working at 1-15% reduction of outside diameter and recrystallization annealing are carried out once or more after the Pilger rolling. A tube having improved resistance to stress corrosion cracking is obtd. When this tube is used in a nuclear power plant, operation over a long period of time is enabled.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、原子炉燃料の被覆管として用いた場合に、
優れた耐応力腐食割れ性を示すジルコニウム(以下、Z
rで示す。)合金被覆管の製造法に関するものである。
[Detailed Description of the Invention] [Industrial Field of Application] When used as a cladding tube for nuclear reactor fuel, the present invention provides
Zirconium (hereinafter referred to as Z) exhibits excellent stress corrosion cracking resistance.
Indicated by r. ) relates to a method for manufacturing alloy clad tubes.

〔従来の技術〕[Conventional technology]

一般に、原子炉燃料の被覆管としてZr合金被覆管が用
いられることはよく知られている。上記Zr合金被覆管
を製造するためのZr合金は、JIS規格のH4751
に規定されているジルカロイ2またはジルカロイ4が用
いられ、そのなかでも加圧水型原子炉の燃料用Zr合金
被覆管としては特にジルカロイ4が用いられている。
It is generally well known that Zr alloy cladding tubes are used as cladding tubes for nuclear reactor fuel. The Zr alloy for manufacturing the above Zr alloy clad tube is H4751 of JIS standard.
Zircaloy 2 or Zircaloy 4 defined in the above is used, and among these, Zircaloy 4 is particularly used as a Zr alloy cladding tube for fuel of a pressurized water reactor.

上記Zr合金被覆管は、押出し成形して得られた肉厚の
Zr合金素管をピルガ−圧延および再結晶焼鈍をそれぞ
れ1回または複数回繰返し施したのち、最終ピルガ−圧
延および歪取り焼鈍することにより製造され、上記ピル
ガ−圧延は冷間圧延で行われ、上記再結晶焼鈍は真空雰
囲気中、温度530〜760℃で行われ、最後の歪取り
焼鈍は430〜490℃で行われる。
The above Zr alloy clad tube is produced by subjecting a thick Zr alloy tube obtained by extrusion to repeated pilger rolling and recrystallization annealing one or more times, and then final pilger rolling and strain relief annealing. The pilger rolling is performed by cold rolling, the recrystallization annealing is performed in a vacuum atmosphere at a temperature of 530 to 760°C, and the final strain relief annealing is performed at a temperature of 430 to 490°C.

二のようにして得られたZ「合金被覆管には、原子炉燃
料ベレットが充填され、原子炉燃料集合体に組立てられ
、炉心に挿入されて使用される〔これらの点については
、社団法人1日本金属学会編「改訂5版 金属便覧」平
成2年3月31日。
The Z alloy cladding tube obtained as described in step 2 is filled with reactor fuel pellets, assembled into a reactor fuel assembly, and inserted into the reactor core for use. 1 Edited by the Japan Institute of Metals, “Revised 5th Edition Metals Handbook” March 31, 1990.

丸善株式会社発行、812〜815参照〕。Published by Maruzen Co., Ltd., 812-815].

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、最近、電力供給源として原子力発電の比重が高
まるにつれて原子力発電の高効率化が求められ、原子炉
燃料集合体の炉内滞在時間の長期化、原子炉燃料の高燃
焼度化、および原子炉の負荷追従運転等が実施され、そ
れに伴って、原子炉燃料ペレットとZr合金被覆管との
相互作用による被覆管の応力腐食割れを起す可能性が高
くなるなどの課題があった。
However, recently, as the importance of nuclear power generation as a power supply source has increased, there has been a demand for higher efficiency in nuclear power generation. Load follow-up operation of the reactor was carried out, and as a result, there were problems such as an increased possibility of stress corrosion cracking of the cladding tube due to interaction between the reactor fuel pellets and the Zr alloy cladding tube.

〔課題を解決するための手段〕[Means to solve the problem]

そこで、本発明者らは、かかる課題を解決し、従来より
もさらに耐応力腐食割れ性に優れたZr合金被覆管を製
造すべく研究を行った結果、上記ピルガ−圧延および再
結晶焼鈍をそれぞれ1回または複数回繰返すZ「合金被
覆管の製造工程において、上記ピルガ−圧延に続いて外
径減少率:1〜l596の引張り加工を施したのち再結
晶焼鈍する工程を少なくとも1回含むことにより従来よ
りもさらに耐応力腐食割れ性に優れたZr合金被覆管を
得ることができるという知見を得たのである。
Therefore, the present inventors conducted research to solve this problem and manufacture a Zr alloy clad tube with even better stress corrosion cracking resistance than conventional ones. By including at least one step of recrystallization annealing after performing tensile processing with an outer diameter reduction rate of 1 to 1596 following the above-mentioned pilger rolling in the Z "alloy clad tube manufacturing process that is repeated once or multiple times. It was discovered that it is possible to obtain a Zr alloy clad tube with even better stress corrosion cracking resistance than conventional ones.

この発明は、かかる知見に基づいて成されたものであっ
て、 Zr合金素管に、ピルガ−圧延および再結晶焼鈍をそれ
ぞれ1回または複数回繰返し施したのち、最終ピルガ−
圧延および歪取り焼鈍することによりZr合金被覆管を
製造する工程において、上記ピルガ−圧延に続いて外径
減少率:1〜15%の引張り加工を施したのち再結晶焼
鈍する工程を少なくとも1回含む、耐応力腐食割れ性に
優れたZr合金被覆管の製造法に特徴を有するものであ
る。
The present invention was made based on this knowledge, and after subjecting a Zr alloy raw tube to repeated pilger rolling and recrystallization annealing one or more times, the final pilger
In the process of manufacturing a Zr alloy cladding tube by rolling and strain relief annealing, the process of performing recrystallization annealing after performing tensile processing with an outer diameter reduction rate of 1 to 15% following the pilger rolling is performed at least once. The present invention is characterized by a method for manufacturing a Zr alloy clad tube with excellent stress corrosion cracking resistance.

この発明の耐応力腐食割れ性に優れたZr合金被覆管の
製造法において、上記引張り加工による外径減少率を1
〜15%に限定した理由は、外径減少率が1%未満では
耐応力腐食割れ性向上に効果がなく、一方、外径減少率
が15%を越えると局部変形を起こすので好ましくない
ことによるものである。
In the method of manufacturing a Zr alloy cladding tube with excellent stress corrosion cracking resistance according to the present invention, the outer diameter reduction rate due to the above-mentioned tensile processing is reduced to 1.
The reason why it is limited to ~15% is that if the outer diameter reduction rate is less than 1%, it will not be effective in improving stress corrosion cracking resistance, whereas if the outer diameter reduction rate exceeds 15%, local deformation will occur, which is undesirable. It is something.

〔実 施 例〕〔Example〕

つぎに、この発明を、実施例にもとづいて具体的に説明
する。
Next, the present invention will be specifically explained based on examples.

外径=3.4インチ(86,4關)、肉厚1096イン
チ(15,2+am)の寸法を有し、 Sn:1.5重量%、  Fe:0.2重量%、Cr:
O,1重量%、 を含有し、残りがZrおよび不可避不純物からなる組成
のZr合金押出し素管を用意した。
It has dimensions of outer diameter = 3.4 inches (86.4 inches), wall thickness 1096 inches (15.2 + am), Sn: 1.5 weight%, Fe: 0.2 weight%, Cr:
An extruded Zr alloy tube containing 1% by weight of O and the remainder consisting of Zr and unavoidable impurities was prepared.

実施例1〜4および比較例1〜2 上記押出し素管を第1ピルガ−圧延し、続いて第1表に
示される外径減少率となるように引張り加工したのち、
真空雰囲気中で第1再結晶焼鈍を施し、ついで、第2ピ
ルガ−圧延および真空雰囲気中で第2再結晶焼鈍、並び
に第3ピルガ−圧延および真空雰囲気中で第3再結晶焼
鈍を施したのち、最終ピルガ−圧延および真空雰囲気中
で歪取り焼鈍を施すことにより外径:0.374インチ
(9,5關)、肉厚:0.022インチ((1,57m
m)の寸法を有する実施例1〜4および比較例1〜2の
Zr合金被覆管を製造した。
Examples 1 to 4 and Comparative Examples 1 to 2 The above-mentioned extruded raw pipe was first pilger rolled, and then tensile processed to achieve the outer diameter reduction rate shown in Table 1.
After performing a first recrystallization annealing in a vacuum atmosphere, then a second pilger rolling and a second recrystallization annealing in a vacuum atmosphere, and a third pilger rolling and a third recrystallization annealing in a vacuum atmosphere. , by final pilger rolling and strain relief annealing in a vacuum atmosphere, the outer diameter: 0.374 inch (9.5 mm), wall thickness: 0.022 inch ((1,57 m)
Zr alloy clad tubes of Examples 1 to 4 and Comparative Examples 1 to 2 having dimensions of m) were manufactured.

実施例5〜8および比較例3〜4 上記押出し素管を第1ピルガ−圧延したのち、真空雰囲
気中で第1再結晶焼鈍して外径、2.5インチ(63,
5mm) 、肉厚: 0.43インチ(10,9關)の
寸法を有する中間素管を製造し、この中間素管を第2ピ
ルガ−圧延し、続いて第2表に示される外径減少率とな
るように引張り加工したのち、真空雰囲気中で第2再結
晶焼鈍し、さらに第3ピルガ−圧延および真空雰囲気中
で第3再結晶焼鈍を施したのち、最終ピルガ−圧延およ
び真空雰囲気中で歪取り焼鈍することにより外径+[1
,374インチ(9,5mm)、肉厚:(1,022イ
ンチ(0,57im)の寸法を有する実施例5〜8およ
び比較例3〜4のZr合金被覆管を製造した。
Examples 5 to 8 and Comparative Examples 3 to 4 After first pilger rolling the above-mentioned extruded raw tube, the first recrystallization annealing was performed in a vacuum atmosphere to give an outer diameter of 2.5 inches (63,
5 mm), wall thickness: 0.43 inch (10.9 mm), this intermediate blank tube was subjected to a second pilger rolling, and then the outer diameter was reduced as shown in Table 2. After tensile processing to obtain the desired ratio, a second recrystallization annealing is performed in a vacuum atmosphere, a third pilger rolling and a third recrystallization annealing in a vacuum atmosphere, and a final pilger rolling and a vacuum atmosphere. By performing strain relief annealing at
, 374 inches (9.5 mm), wall thickness: (1,022 inches (0.57 mm)) Zr alloy clad tubes of Examples 5 to 8 and Comparative Examples 3 to 4 were manufactured.

従来例 上記押出し素管を、先ず第1ピルガ−圧延したのち真空
雰囲気中の第1再結晶焼鈍を施し、さらにピルガ−圧延
および真空雰囲気中で再結晶焼鈍をそれぞれ2回づつ施
したのち、最終ピルガ−圧延および真空雰囲気中で歪取
り焼鈍することにより、外径+0.374インチ(9,
5mm) 、肉厚:0.022インチ(0,57mm)
の寸法を有する従来例のZr合金被覆管を製造した。
Conventional Example The above extruded raw tube is first pilger rolled, then subjected to first recrystallization annealing in a vacuum atmosphere, and then subjected to pilger rolling and recrystallization annealing twice in a vacuum atmosphere, and then final By pilger rolling and strain relief annealing in a vacuum atmosphere, the outer diameter is +0.374 inch (9,
5mm), wall thickness: 0.022 inch (0.57mm)
A conventional Zr alloy cladding tube having dimensions of .

上記実施例1〜8、比較例1〜4および従来例の製造工
程を第1表に示す。第1表に示された上記実施例1〜8
、比較例1〜4および従来例の製造方法で作製されたZ
r合金被覆管を360℃に保持し、腐食性ガスとしてヨ
ウ素ガスを濃度二6.0g / cdとなるように充填
し、さらにアルゴンガスにより内側から応カニ 28.
1ki/−で加圧した状態に保持し、破損に至るまでの
時間を測定する耐応力腐食割れ試験を実施し、それらの
測定結果をそれぞれ第1表に示した。
Table 1 shows the manufacturing processes of Examples 1 to 8, Comparative Examples 1 to 4, and the conventional example. Examples 1 to 8 above as shown in Table 1
, Z produced by the manufacturing method of Comparative Examples 1 to 4 and conventional example
The r-alloy clad tube was maintained at 360°C, filled with iodine gas as a corrosive gas to a concentration of 26.0 g/cd, and further oxidized from the inside with argon gas. 28.
A stress corrosion cracking test was carried out in which the specimens were kept under pressure of 1 ki/- and the time until failure was measured, and the measurement results are shown in Table 1.

第1表に示される結果から、実施例1〜8の製造方法で
作製されたZ「合金被覆管は、いずれも従来例の製造方
法で作製されたZ「合金被覆管と比べて、耐応力腐食割
れ性が優れており、またこの発明の条件から外れた条件
で行われる比較例1〜4の製造方法で製造されたZr合
金被覆管(第1表において、この発明の条件から外れた
条件には、※印を付して示した。)は、耐応力腐食割れ
性が劣ることがわかる。
From the results shown in Table 1, it can be seen that the Z-alloy clad tubes manufactured by the manufacturing methods of Examples 1 to 8 have higher stress resistance than the Z-alloy clad tubes manufactured by the conventional manufacturing method. Zr alloy clad tubes manufactured by the manufacturing methods of Comparative Examples 1 to 4, which have excellent corrosion cracking resistance and are conducted under conditions outside the conditions of this invention (in Table 1, It can be seen that the specimens (marked with *) have poor stress corrosion cracking resistance.

〔発明の効果〕〔Effect of the invention〕

上述のように、この発明によると、最近の原子力発電の
効率化による原子炉燃料集合体の炉内滞在時間の長期化
、原子炉燃料の高燃焼度化、および原子炉の負荷追従運
転等に対して、応力腐食割れを起す可能性が少なく、長
期にわたって続けて運転操業できることができるZ「合
金被覆管を提供することができる。
As described above, the present invention is applicable to the recent improvements in the efficiency of nuclear power generation, such as the lengthening of the stay time of nuclear reactor fuel assemblies in the reactor, the increase in burnup of reactor fuel, and the load following operation of nuclear reactors. On the other hand, it is possible to provide a Z-alloy clad pipe that is less likely to cause stress corrosion cracking and can be operated continuously for a long period of time.

Claims (1)

【特許請求の範囲】[Claims] (1)ジルコニウム合金素管に、ピルガー圧延および再
結晶焼鈍をそれぞれ1回または複数回繰返し施したのち
、最終ピルガー圧延および歪取り焼鈍することによりジ
ルコニウム合金被覆管を製造する工程において、 上記ピルガー圧延に続いて外径減少率:1〜15%の引
張り加工を施したのち再結晶焼鈍する工程を少なくとも
1回含む ことを特徴とする耐応力腐食割れ性に優れたジルコニウ
ム合金被覆管の製造法。
(1) In the process of manufacturing a zirconium alloy clad tube by repeatedly subjecting a zirconium alloy tube to Pilger rolling and recrystallization annealing once or multiple times, and then subjecting it to final Pilger rolling and strain relief annealing, the above-mentioned Pilger rolling A method for producing a zirconium alloy cladding tube having excellent stress corrosion cracking resistance, comprising the steps of: followed by tensile processing with an outer diameter reduction rate of 1 to 15%, and recrystallization annealing at least once.
JP2212641A 1990-08-10 1990-08-10 Production of zirconium alloy clad tube having superior resistance to stress corrosion cracking Pending JPH0499255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2212641A JPH0499255A (en) 1990-08-10 1990-08-10 Production of zirconium alloy clad tube having superior resistance to stress corrosion cracking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2212641A JPH0499255A (en) 1990-08-10 1990-08-10 Production of zirconium alloy clad tube having superior resistance to stress corrosion cracking

Publications (1)

Publication Number Publication Date
JPH0499255A true JPH0499255A (en) 1992-03-31

Family

ID=16626007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2212641A Pending JPH0499255A (en) 1990-08-10 1990-08-10 Production of zirconium alloy clad tube having superior resistance to stress corrosion cracking

Country Status (1)

Country Link
JP (1) JPH0499255A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8257518B2 (en) 2003-01-08 2012-09-04 Westinghouse Electric Sweden Ab Method, use and device relating to nuclear light water reactors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8257518B2 (en) 2003-01-08 2012-09-04 Westinghouse Electric Sweden Ab Method, use and device relating to nuclear light water reactors

Similar Documents

Publication Publication Date Title
JP2548773B2 (en) Zirconium-based alloy and method for producing the same
KR100441979B1 (en) Tube for a nuclear fuel assembly and method for making same
US5838753A (en) Method of manufacturing zirconium niobium tin alloys for nuclear fuel rods and structural parts for high burnup
KR100364093B1 (en) A method of manufacturing a tube for a nuclear fuel assembly, and tubes obtained thereby
JPH0197897A (en) Zirconium base alloy pipe for covering reactor fuel element cover and making thereof
JPH04358048A (en) Method of treatment of zirconium alloy material
JP2731414B2 (en) Tubes, bars, sheets or strips resistant to homogeneous and nodular corrosion, and methods of making the same
US5844959A (en) Zirconium niobium tin alloys for nuclear fuel rods and structural parts for high burnup
JP2941796B2 (en) Corrosion resistant reactor components, nuclear fuel rod cladding, zirconium alloys for use in aqueous environments, and structural components for reactor fuel assemblies
US5835550A (en) Method of manufacturing zirconium tin iron alloys for nuclear fuel rods and structural parts for high burnup
KR20010111259A (en) Method for making thin zirconium alloy elements and wafers obtained
JP2010501850A (en) Water reactor fuel clad tube
US7763132B2 (en) Method of producing a zirconium alloy semi-finished product for the production of elongated product and use thereof
JPH07305153A (en) Covering pipe for nuclear fuel rod
JPH0499255A (en) Production of zirconium alloy clad tube having superior resistance to stress corrosion cracking
JP2830420B2 (en) Manufacturing method of zirconium alloy cladding tube excellent in stress corrosion cracking resistance
JPH04154944A (en) Manufacture of zirconium alloy clad tube excellent in stress corrosion cracking resistance
JPH0499256A (en) Production of zirconium alloy clad tube having superior resistance to stress corrosion cracking
JPH0867954A (en) Production of high corrosion resistant zirconium alloy
CN86101123A (en) Vessel of water reactor fuel
JPH07173587A (en) Production of zirconium alloy welded member
JP3208832B2 (en) Manufacturing method of texture adjusted zirconium alloy tube by pilger rolling
JPS6067648A (en) Nuclear fuel covering pipe and its preparation
JPH04148893A (en) Manufacture of zirconium alloy clad tube superior in mechanical strength and resistance against stress, corrosion and cracking
JPH0649608A (en) Production of high corrosion resistant zirconium-based alloy material