JP2830420B2 - Manufacturing method of zirconium alloy cladding tube excellent in stress corrosion cracking resistance - Google Patents

Manufacturing method of zirconium alloy cladding tube excellent in stress corrosion cracking resistance

Info

Publication number
JP2830420B2
JP2830420B2 JP2212640A JP21264090A JP2830420B2 JP 2830420 B2 JP2830420 B2 JP 2830420B2 JP 2212640 A JP2212640 A JP 2212640A JP 21264090 A JP21264090 A JP 21264090A JP 2830420 B2 JP2830420 B2 JP 2830420B2
Authority
JP
Japan
Prior art keywords
corrosion cracking
stress corrosion
tube
cladding tube
zirconium alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2212640A
Other languages
Japanese (ja)
Other versions
JPH0499254A (en
Inventor
義治 前
毅 磯部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2212640A priority Critical patent/JP2830420B2/en
Publication of JPH0499254A publication Critical patent/JPH0499254A/en
Application granted granted Critical
Publication of JP2830420B2 publication Critical patent/JP2830420B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B21/00Pilgrim-step tube-rolling, i.e. pilger mills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、原子炉燃料の被覆管として用いた場合
に、優れた耐応力腐食割れ性を示すジルコニウム(以
下、Zrで示す。)合金被覆管の製造法に関するものであ
る。
The present invention relates to a zirconium (hereinafter, referred to as Zr) alloy coating that exhibits excellent resistance to stress corrosion cracking when used as a cladding tube for a nuclear reactor fuel. The present invention relates to a method for manufacturing a tube.

〔従来の技術〕[Conventional technology]

一般に、原子炉燃料の被覆管としてZr合金被覆管が用
いられることはよく知られている。上記Zr合金被覆管を
製造するためのZr合金は、JIS規格のH4751に規定されて
いるジルカロイ2またはジルカロイ4が用いられ、その
なかでも加圧水型原子炉の燃料用Zr合金被覆管としては
特にジルカロイ4が用いられている。
It is well known that a Zr alloy cladding tube is generally used as a cladding tube for a reactor fuel. As the Zr alloy for manufacturing the Zr alloy cladding tube, Zircaloy 2 or Zircaloy 4 specified in JIS standard H4751 is used. Among them, Zircaloy tube for fuel of a pressurized water reactor is particularly preferable. 4 is used.

上記Zr合金被覆管は、押出し成形して得られたZr合金
素管にピルガー圧延および再結晶焼鈍をそれぞれ1回ま
たは複数回繰返し施したのち、最終ピルガー圧延および
歪取り焼鈍することにより製造される。上記ピルガー圧
延は冷間圧延で行われ、上記再結晶焼鈍は真空雰囲気
中、温度530〜760℃で行われ、最後の歪取り焼鈍は430
〜490℃で行われる。
The Zr alloy cladding tube is manufactured by repeatedly subjecting a Zr alloy tube obtained by extrusion molding to Pilger rolling and recrystallization annealing once or a plurality of times, followed by final Pilger rolling and strain relief annealing. . The Pilger rolling is performed by cold rolling, the recrystallization annealing is performed in a vacuum atmosphere at a temperature of 530 to 760 ° C., and the final strain relief annealing is 430.
Performed at ~ 490 ° C.

このようにして得られたZr合金被覆管には、原子炉燃
料ペレットが充填され、原子炉燃料集合体に組立てら
れ、炉心に挿入されて使用される〔これらの点について
は、社団法人,日本金属学会編「改訂5版 金属便覧」
平成2年3月31日,丸善株式会社発行,812〜815参
照〕。
The thus-obtained Zr alloy cladding tube is filled with reactor fuel pellets, assembled into a reactor fuel assembly, and inserted into the reactor core for use. The Japan Institute of Metals “Revised 5th edition Metal Handbook”
March 31, 1990, see Maruzen Co., Ltd., 812-815).

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかし、最近、電力供給源として原子力発電の比重が
高まるにつれて原子力発電の高効率化が求められ、原子
炉燃料集合体の炉内滞在時間の長期化、原子炉燃料の高
燃焼度化、および原子炉の負荷追従運転等が実施され、
それに伴って、原子炉燃料ペレットとZr合金被覆管との
相互作用による被覆管の応力腐食割れを起す可能性が高
くなるなどの課題があった。
However, recently, as the specific gravity of nuclear power as a power supply source has increased, higher efficiency of nuclear power generation has been required, and the residence time of the reactor fuel assemblies in the reactor, the higher burnup of reactor fuel, and Furnace load following operation, etc.
Accordingly, there was a problem that the possibility of causing stress corrosion cracking of the cladding tube due to the interaction between the reactor fuel pellet and the Zr alloy cladding tube was increased.

〔課題を解決するための手段〕[Means for solving the problem]

そこで、本発明者らは、かかる課題を解決し、従来よ
りもさらに耐応力腐食割れ性に優れたZr合金被覆管を製
造すべく研究を行った結果、 上記ピルガー圧延および再結晶焼鈍をそれぞれ1回ま
たは複数回繰返すZr合金被覆管の製造工程において、上
記ピルガー圧延のうち少なくとも1回を、外径減少率:1
〜30%の引張り加工で置換することにより従来よりもさ
らに耐応力腐食割れ性に優れたZr合金被覆管を得ること
ができるという知見を得たのである。
Therefore, the present inventors have solved this problem and conducted research to produce a Zr alloy clad tube having more excellent resistance to stress corrosion cracking than before. As a result, the above-mentioned Pilger rolling and recrystallization annealing were performed for 1 hour each. In the manufacturing process of the Zr alloy cladding tube which is repeated one or more times, at least one of the above-mentioned pilger rolling is performed with an outer diameter reduction rate of 1: 1.
It has been found that a Zr alloy clad tube having more excellent resistance to stress corrosion cracking can be obtained by substituting with a tensile processing of up to 30%.

この発明は、かかる知見に基づいて成されたものであ
って、 Zr合金素管に、ピルガー圧延および再結晶焼鈍をそれ
ぞれ1回または複数回繰返し施したのち、最終ピルガー
圧延および歪取り焼鈍することによりZr合金被覆管を製
造する工程において、上記ピルガー圧延のうち少なくと
も1回を外径減少率:1〜30%の引張り加工で置換する、
耐応力腐食割れ性に優れたZr合金被覆管の製造法に特徴
を有するものである。
The present invention has been made on the basis of such knowledge, and comprises subjecting a Zr alloy tube to repeated Pilger rolling and recrystallization annealing once or more times, respectively, followed by final Pilger rolling and strain relief annealing. In the step of manufacturing a Zr alloy cladding tube, at least one of the above-mentioned Pilger rolling is replaced by a tensile process of an outer diameter reduction rate of 1 to 30%,
The present invention is characterized by a method for producing a Zr alloy clad tube having excellent resistance to stress corrosion cracking.

この発明の耐応力腐食割れ性に優れたZr合金被覆管の
製造法において、上記引張り加工による外径減少率を1
〜30%に限定した理由は、外径減少率が1%未満では耐
応力腐食割れ性向上に効果がなく、一方、外径減少率が
30%を越えると局部変形を起こすので好ましくないこと
によるものである。
In the method for producing a Zr alloy clad tube having excellent resistance to stress corrosion cracking according to the present invention, the rate of reduction in outer diameter due to the above-mentioned tensile working is 1%.
The reason for limiting the outer diameter to 30% is that if the outer diameter reduction rate is less than 1%, there is no effect on the improvement of the stress corrosion cracking resistance.
If it exceeds 30%, local deformation occurs, which is not preferable.

〔実 施 例〕〔Example〕

つぎに、この発明を、実施例にもとづいて具体的に説
明する。
Next, the present invention will be specifically described based on examples.

外径:3.4インチ(86.4mm)、肉厚:0.6インチ(15.2m
m)の寸法を有し、 Sn:1.5重量%、Fe:0.2重量%、 Cr:0.1重量%、 を含有し、残りがZrおよび不可避不純物からなる組成の
Zr合金押出し素管を用意した。
Outside diameter: 3.4 inches (86.4 mm), wall thickness: 0.6 inches (15.2 m)
m), containing Sn: 1.5% by weight, Fe: 0.2% by weight, Cr: 0.1% by weight, with the balance being Zr and unavoidable impurities.
A Zr alloy extrusion tube was prepared.

実施例1〜10および比較例1〜2 上記押出し素管を第1表に示される外径減少率となる
ように引張り加工したのち、真空雰囲気中で再結晶焼鈍
し、 ついで、ピルガー圧延および真空雰囲気中で再結晶焼
鈍をそれぞれ3回づつ繰返し施したのち、最終ピルガー
圧延および真空雰囲気中で歪取り焼鈍することにより外
径:0.374インチ(9.5mm)、肉厚:0.022インチ(0.57m
m)の寸法を有する実施例1〜10および比較例1〜2のZ
r合金被覆管を製造した。この製造工程をわかりやすく
第1表に示す。
Examples 1 to 10 and Comparative Examples 1 and 2 After the above extruded raw tube was subjected to a tensile working so as to have the outer diameter reduction rate shown in Table 1, recrystallization annealing was carried out in a vacuum atmosphere. After repeating recrystallization annealing three times each in an atmosphere, final pilger rolling and strain relief annealing in a vacuum atmosphere to obtain an outer diameter of 0.374 inch (9.5 mm) and a wall thickness of 0.022 inch (0.57 m)
m) of Examples 1 to 10 and Comparative Examples 1 and 2
An alloy clad tube was manufactured. This manufacturing process is shown in Table 1 for easy understanding.

実施例11〜20および比較例3〜4 上記押出し素管をピルガー圧延したのち、真空雰囲気
中で再結晶焼鈍することにより、外径:2.5インチ(63.5
mm)、肉厚:0.43インチ(10.9mm)の寸法を有する中間
素管を製造し、 この中間素管を第2表に示される外径減少率となるよ
うに引張り加工したのち、真空雰囲気中で再結晶焼鈍
し、 ついで、ピルガー圧延および真空雰囲気中で再結晶焼
鈍をそれぞれ2回づつ繰返し施したのち、最終ピルガー
圧延および真空雰囲気中で歪取り焼鈍することにより外
径:0.374インチ(9.5mm)、肉厚:0.022インチ(0.57m
m)の寸法を有する実施例11〜20および比較例3〜4のZ
r合金被覆管を製造した。この製造工程をわかりやすく
第2表に示す。
Examples 11 to 20 and Comparative Examples 3 to 4 After the above extruded raw tube was subjected to Pilger rolling and then recrystallized and annealed in a vacuum atmosphere, the outer diameter was 2.5 inches (63.5 inches).
mm) and a wall thickness of 0.43 inch (10.9 mm). An intermediate tube was manufactured, and the intermediate tube was subjected to a tensioning process to reduce the outer diameter as shown in Table 2 and then processed in a vacuum atmosphere. Then, recrystallization annealing is repeatedly performed twice each in a Pilger rolling and a vacuum atmosphere, and then final pilger rolling and a strain relief annealing in a vacuum atmosphere to obtain an outer diameter of 0.374 inches (9.5 mm). ), Wall thickness: 0.022 inch (0.57m
m) of Examples 11-20 and Comparative Examples 3-4 with dimensions of m)
An alloy clad tube was manufactured. This manufacturing process is shown in Table 2 for easy understanding.

実施例21〜34および比較例5〜8 上記押出し素管を第3表に示される外径減少率となる
ように第1引張り加工したのち、再結晶焼鈍し、続い
て、ピルガー圧延および真空雰囲気中再結晶焼鈍を施し
たのち、さらに第3表に示される外径減少率となるよう
に第2引張り加工したのち再結晶焼鈍し、 ついで、ピルガー圧延および真空雰囲気中で再結晶焼
鈍をそれぞれ1回づつ施したのち、最終ピルガー圧延お
よび真空雰囲気中で歪取り焼鈍することにより外径:.0.
374インチ(9.5mm)、肉厚:0.022インチ(0.57mm)の寸
法を有する実施例21〜34および比較例5〜8のZr合金被
覆管を製造した。この製造工程をわかりやすく第3表に
示す。
Examples 21 to 34 and Comparative Examples 5 to 8 The above extruded raw tubes were subjected to a first tensile working so as to have an outer diameter reduction rate shown in Table 3, followed by recrystallization annealing, followed by Pilger rolling and a vacuum atmosphere. After the medium recrystallization annealing, the steel sheet was further subjected to a second tensile working so as to have the outer diameter reduction rate shown in Table 3 and then recrystallization annealing, and then subjected to Pilger rolling and recrystallization annealing in a vacuum atmosphere, respectively. After repeated application, final pilger rolling and strain relief annealing in a vacuum atmosphere to obtain an outer diameter of 0.0.
The Zr alloy cladding tubes of Examples 21 to 34 and Comparative Examples 5 to 8 having dimensions of 374 inches (9.5 mm) and wall thickness: 0.022 inches (0.57 mm) were produced. This manufacturing process is shown in Table 3 for easy understanding.

従 来 例 上記押出し素管を、先ずピルガー圧延したのち真空雰
囲気中で再結晶焼鈍を施し、さらにピルガー圧延および
真空雰囲気中で再結晶焼鈍をそれぞれ3回づつ施したの
ち、最終ピルガー圧延 および真空雰囲気中で歪取り焼鈍することにより、外
径:0.374インチ(9.5mm)、肉厚:0.022インチ(0.57m
m)の寸法を有する従来例のZr合金被覆管を製造した。
この製造工程もわかりやすく第3表に示す。
Conventional Example The above extruded raw tube is first subjected to Pilger rolling, then subjected to recrystallization annealing in a vacuum atmosphere, further subjected to Pilger rolling and recrystallization annealing three times in a vacuum atmosphere, and then subjected to final Pilger rolling. Outer diameter: 0.374 inch (9.5mm), wall thickness: 0.022 inch (0.57m)
A conventional Zr alloy cladding tube having the dimensions of m) was manufactured.
This manufacturing process is also shown in Table 3 for easy understanding.

上記実施例1〜34、比較例1〜8および従来例の製造
方法で作製されたZr合金被覆管を360℃に保持し、腐食
性ガスとしてヨウ素ガスを濃度:6.0mg/cm2となるように
充填し、さらにアルゴンガスにより内側から応力:28.1k
g/mm2で加圧した状態に保持し、破損に至るまでの時間
を測定する耐応力腐食割れ試験を実施し、それらの測定
結果をそれぞれ第1〜3表に示した。
The Zr alloy cladding tubes produced by the production methods of Examples 1 to 34, Comparative Examples 1 to 8 and the conventional example were maintained at 360 ° C., and the concentration of iodine gas as a corrosive gas was adjusted to 6.0 mg / cm 2. And then from inside with argon gas: 28.1k
The specimen was held in a pressurized state at g / mm 2 , and a stress corrosion cracking test for measuring a time until breakage was performed. The measurement results are shown in Tables 1 to 3, respectively.

なお、72時間を越えて破損に至らなかったZr合金被覆
管については、その時点で耐応力腐食割れ試験を中止
し、「破損せず」として第1〜3表に示した。
In addition, about the Zr alloy cladding tube which did not lead to breakage over 72 hours, the stress corrosion cracking resistance test was stopped at that time, and it was shown in Tables 1-3 as "no breakage".

第1〜3表に示される結果から、実施例1〜34の製造
方法で作製されたZ合金被覆管は、いずれも従来例の製
造方法で作製されたZr合金被覆管と比べて、耐応力腐食
割れ性が優れており、またこの発明の条件から外れた条
件で行われる比較例1〜8の製造方法で作製されたZr合
金被覆管(第1〜3表において、この発明の条件から外
れた条件には、※印を付して示した。)は、耐応力腐食
割れ性が十分でなく、また耐応力腐食割れ性が優れてい
るものもあるが、それらのものは加工性に問題が生じる
ことがわかる。
From the results shown in Tables 1 to 3, the Z-alloy cladding tubes manufactured by the manufacturing methods of Examples 1 to 34 all have a higher stress resistance than the Zr alloy cladding tubes manufactured by the conventional manufacturing method. Zr alloy cladding tubes having excellent corrosion cracking properties and produced by the production methods of Comparative Examples 1 to 8 carried out under the conditions deviating from the conditions of the present invention. The conditions indicated with an asterisk (*) are those that have insufficient stress corrosion cracking resistance and some have excellent stress corrosion cracking resistance, but these have problems with workability. It can be seen that this occurs.

〔発明の効果〕〔The invention's effect〕

上述のように、この発明の製造方法によると、最近の
原子力発電の効率化による原子炉燃料集合体の炉内滞在
時間の長期化、原子炉燃料の高燃焼度化、および原子炉
の負荷追従運転等に対して、応力腐食割れを起す可能性
が小さく、長期にわたって続けて運転操業できることが
できるZr合金被覆管を提供することができる。
As described above, according to the manufacturing method of the present invention, the staying time of the reactor fuel assembly in the reactor is prolonged due to the recent improvement in the efficiency of nuclear power generation, the burnup of the reactor fuel is increased, and the load following of the reactor is followed. It is possible to provide a Zr alloy cladding tube which is less likely to cause stress corrosion cracking during operation and can be operated continuously for a long period of time.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI // C22F 1/00 626 C22F 1/00 640A 640 641C 641 685Z 685 686Z 686 694A 694 G21C 3/06 G (58)調査した分野(Int.Cl.6,DB名) C22F 1/18 B21B 21/00 B21C 1/22 G21C 3/06 C22C 16/00──────────────────────────────────────────────────続 き Continuation of front page (51) Int.Cl. 6 Identification symbol FI // C22F 1/00 626 C22F 1/00 640A 640 641C 641 685Z 685 686Z 686 694A 694 G21C 3/06 G (58) (Int.Cl. 6 , DB name) C22F 1/18 B21B 21/00 B21C 1/22 G21C 3/06 C22C 16/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ジルコニウム合金素管に、ピルガー圧延お
よび再結晶焼鈍をそれぞれ1回または複数回繰返し施し
たのち、最終ピルガー圧延および歪取り焼鈍することに
よりジルコニウム合金被覆管を製造する工程において、 上記ピルガー圧延のうち少なくとも1回を、外径減少
率:1〜30%の引張り加工で置換する、ことを特徴とする
耐応力腐食割れ性に優れたジルコニウム合金被覆管の製
造法。
In a process for producing a zirconium alloy cladding tube by subjecting a zirconium alloy tube to pilger rolling and recrystallization annealing once or a plurality of times, respectively, followed by final pilger rolling and strain relief annealing. A method for producing a zirconium alloy clad tube excellent in stress corrosion cracking resistance, wherein at least one of pilger rolling is replaced by a tensile process with an outer diameter reduction rate of 1 to 30%.
JP2212640A 1990-08-10 1990-08-10 Manufacturing method of zirconium alloy cladding tube excellent in stress corrosion cracking resistance Expired - Lifetime JP2830420B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2212640A JP2830420B2 (en) 1990-08-10 1990-08-10 Manufacturing method of zirconium alloy cladding tube excellent in stress corrosion cracking resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2212640A JP2830420B2 (en) 1990-08-10 1990-08-10 Manufacturing method of zirconium alloy cladding tube excellent in stress corrosion cracking resistance

Publications (2)

Publication Number Publication Date
JPH0499254A JPH0499254A (en) 1992-03-31
JP2830420B2 true JP2830420B2 (en) 1998-12-02

Family

ID=16625991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2212640A Expired - Lifetime JP2830420B2 (en) 1990-08-10 1990-08-10 Manufacturing method of zirconium alloy cladding tube excellent in stress corrosion cracking resistance

Country Status (1)

Country Link
JP (1) JP2830420B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2219191A1 (en) 2008-09-30 2010-08-18 Areva NP Cladding tube for nuclear fuel rod, method and apparatus for manufacturing a cladding tube

Also Published As

Publication number Publication date
JPH0499254A (en) 1992-03-31

Similar Documents

Publication Publication Date Title
JP2548773B2 (en) Zirconium-based alloy and method for producing the same
EP1111623B1 (en) Zirconium niobium tin alloys for nuclear fuel rods and structural parts for high burnup
US4450020A (en) Method of manufacturing cladding tubes of a zirconium-based alloy for fuel rods for nuclear reactors
EP0198570B1 (en) Process for producing a thin-walled tubing from a zirconium-niobium alloy
JP2003149365A (en) Manufacturing method of niobium-containing zircalloy nuclear fuel cladding with excellent corrosion resistance
JPH08239740A (en) Production of pipe for nuclear fuel aggregate,and pipe obtained thereby
JPS6239220B2 (en)
US5844959A (en) Zirconium niobium tin alloys for nuclear fuel rods and structural parts for high burnup
US5854818A (en) Zirconium tin iron alloys for nuclear fuel rods and structural parts for high burnup
CN113249616A (en) Zirconium alloy for fuel assembly, preparation method thereof and cladding tube of fuel assembly
EP0899747A2 (en) Method of manufacturing zirconium tin iron alloys for nuclear fuel rods and structural parts for high burnup
JP2894928B2 (en) Products made of Zr alloy on the outside and their manufacturing method and use
JPS6234095A (en) Nuclear fuel coated tube
US4452648A (en) Low in reactor creep ZR-base alloy tubes
JP2830420B2 (en) Manufacturing method of zirconium alloy cladding tube excellent in stress corrosion cracking resistance
JPH10513262A (en) Zirconium-based alloy tubes for nuclear reactor fuel assemblies and process for making such tubes
JPH10501846A (en) Method for producing zirconium-based alloy tubes for nuclear reactors and uses thereof
US3341373A (en) Method of treating zirconium-base alloys
JPS5822365A (en) Preparation of zirconium base alloy
JPH04154944A (en) Manufacture of zirconium alloy clad tube excellent in stress corrosion cracking resistance
JP3483804B2 (en) Manufacturing method of corrosion resistant zirconium based alloy tube
JPH0499255A (en) Production of zirconium alloy clad tube having superior resistance to stress corrosion cracking
JPH0499256A (en) Production of zirconium alloy clad tube having superior resistance to stress corrosion cracking
JPH07173587A (en) Production of zirconium alloy welded member
JP3208832B2 (en) Manufacturing method of texture adjusted zirconium alloy tube by pilger rolling