JP2018514650A - Zirconium alloy having excellent corrosion resistance and creep resistance, and method for producing the same - Google Patents

Zirconium alloy having excellent corrosion resistance and creep resistance, and method for producing the same Download PDF

Info

Publication number
JP2018514650A
JP2018514650A JP2017553426A JP2017553426A JP2018514650A JP 2018514650 A JP2018514650 A JP 2018514650A JP 2017553426 A JP2017553426 A JP 2017553426A JP 2017553426 A JP2017553426 A JP 2017553426A JP 2018514650 A JP2018514650 A JP 2018514650A
Authority
JP
Japan
Prior art keywords
stage
weight
heat treatment
zirconium alloy
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017553426A
Other languages
Japanese (ja)
Other versions
JP6588104B2 (en
Inventor
ヨン チョイ,ミン
ヨン チョイ,ミン
キュン モク,ヨン
キュン モク,ヨン
ホ キム,ユン
ホ キム,ユン
ス ナ,ヨン
ス ナ,ヨン
ヨン イ,チュン
ヨン イ,チュン
シク チャン,テ
シク チャン,テ
ギュン コ,デ
ギュン コ,デ
ジェ イ,スン
ジェ イ,スン
イク キム,ジェ
イク キム,ジェ
Original Assignee
ケプコ ニュークリア フューエル カンパニー リミテッド
ケプコ ニュークリア フューエル カンパニー リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ケプコ ニュークリア フューエル カンパニー リミテッド, ケプコ ニュークリア フューエル カンパニー リミテッド filed Critical ケプコ ニュークリア フューエル カンパニー リミテッド
Publication of JP2018514650A publication Critical patent/JP2018514650A/en
Application granted granted Critical
Publication of JP6588104B2 publication Critical patent/JP6588104B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C16/00Alloys based on zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/186High-melting or refractory metals or alloys based thereon of zirconium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D7/00Casting ingots, e.g. from ferrous metals
    • B22D7/005Casting ingots, e.g. from ferrous metals from non-ferrous metals

Abstract

本発明は、ニオブ1.1〜1.2重量%、リン0.01〜0.2重量%、鉄0.2〜0.3重量%及び残部のジルコニウムから構成されるジルコニウム合金、並びに、前記ジルコニウム合金の構成物である混合物を溶解してインゴット(Ingot)に製造する第1段階と、前記第1段階で製造されたインゴットを1000〜1050℃(β相区間)で30〜40分間溶体化熱処理した後、水に急冷してβ−焼入れ(β−Quenching)する第2段階と、前記第2段階で熱処理されたインゴットを630〜650℃で20〜30分間予熱した後、60〜65%の圧下率で熱間圧延する第3段階と、前記第3段階で熱間圧延された圧延材を570〜590℃で3〜4時間1次中間真空熱処理した後、30〜40%の圧下率で1次冷間圧延する第4段階と、前記第4段階で1次冷間圧延された圧延材を560〜580℃で2〜3時間2次中間真空熱処理した後、50〜60%の圧下率で2次冷間圧延する第5段階と、前記第5段階で2次冷間圧延された圧延材を560〜580℃で2〜3時間3次中間真空熱処理した後、30〜40%の圧下率で3次冷間圧延する第6段階と、前記第6段階で3次冷間圧延された圧延材を440〜650℃で7〜9時間最終真空熱処理する第7段階とを含むことにより、耐食性及びクリープ変形に対する抵抗性能に優れるジルコニウム合金の製造方法を提供しようとする。【選択図】図1The present invention relates to a zirconium alloy composed of niobium 1.1-1.2% by weight, phosphorus 0.01-0.2% by weight, iron 0.2-0.3% by weight and the balance zirconium, A first stage in which a mixture which is a component of a zirconium alloy is melted to produce an ingot, and the ingot produced in the first stage is solution-treated at 1000 to 1050 ° C. (β phase section) for 30 to 40 minutes. After the heat treatment, the second stage of β-quenching after quenching in water and preheating the ingot heat-treated in the second stage at 630-650 ° C. for 20-30 minutes, then 60-65% A third stage of hot rolling at a rolling reduction ratio of 30%, and after rolling the rolling material hot-rolled in the third stage at 570-590 ° C. for 3-4 hours, followed by a rolling reduction ratio of 30-40%. 1st cold rolling After the fourth stage and the secondary cold-rolled material first cold-rolled in the fourth stage at 560-580 ° C. for 2-3 hours, the secondary cold-rolling is performed at a reduction rate of 50-60%. The third intermediate vacuum heat treatment at 560 to 580 ° C. for 2 to 3 hours, and then the third cold at a rolling reduction of 30 to 40%. Including a sixth stage of rolling and a seventh stage of final vacuum heat treatment of the rolled material that has been third cold rolled in the sixth stage at 440 to 650 ° C. for 7 to 9 hours, thereby providing corrosion resistance and resistance to creep deformation. An object is to provide a method for producing a zirconium alloy having excellent performance. [Selection] Figure 1

Description

本発明は、優れた耐食性及びクリープ抵抗性を有するジルコニウム合金、及びその製造方法に関し、特に、軽水炉及び重水炉型原子力発電所の核燃料被覆管及び支持格子に使用されるジルコニウム合金組成、及び熱処理条件に関する。   The present invention relates to a zirconium alloy having excellent corrosion resistance and creep resistance, and a method for producing the same, and in particular, a zirconium alloy composition and heat treatment conditions used for nuclear fuel cladding tubes and support grids of light water reactors and heavy water reactor type nuclear power plants. About.

ジルコニウム合金は、低中性子吸収断面積、優れた耐腐食性及び機械的性質を持つ合金であって、燃料の被覆管、燃料集合体支持格子及び原子炉内構造物の材料として数十年間、加圧水型原子炉(PWR、Pressurized Water Reactor)及び沸騰水型原子炉(BWR、Boiling Water Reactor)で広く使用されてきた。
現在までに開発されたジルカロイ−2(Zircaloy−2、Sn1.20〜1.70重量%、Fe0.07〜0.20重量%、Cr0.05〜1.15重量%、Ni0.03〜0.08重量%、O900〜1500ppm、Zr残部)及びジルカロイ−4(Zircaloy−4、Sn1.20〜1.70重量%、Fe0.18〜0.24重量%、Cr0.07〜1.13重量%、O900〜1500ppm、Ni<0.007重量%、Zr残部)合金が最も広く使用されている。
Zirconium alloy is an alloy with low neutron absorption cross section, excellent corrosion resistance and mechanical properties, and has been used for several decades as a material for fuel cladding tubes, fuel assembly support grids and reactor structures. It has been widely used in PWR (Pressurized Water Reactor) and Boiling Water Reactor (BWR).
Zircaloy-2 (Zircaloy-2, Sn 1.20 to 1.70% by weight, Fe 0.07 to 0.20% by weight, Cr 0.05 to 1.15% by weight, Ni 0.03 to 0.3% developed so far. 08 wt%, O900-1500 ppm, Zr balance) and Zircaloy-4 (Zircaloy-4, Sn 1.20-1.70 wt%, Fe 0.18-0.24 wt%, Cr 0.07-1.13 wt%, O900-1500 ppm, Ni <0.007 wt%, Zr balance) alloys are most widely used.

しかし、最近では、原子炉の経済性向上の一環として、核燃料サイクルコストの削減のために高燃焼度核燃料が考慮されているが、既存のジルカロイ−2、ジルカロイ−4を核燃料被覆管の材料として使用する場合には、腐食及びクリープ特性などの機械的性質に多くの問題点を引き起こしている。
これにより、高燃焼度、長サイクルの条件で最も問題となる耐食性及びクリープ抵抗性に優れる材料を開発する必要性が台頭しており、最近では、このような努力の一環として、Zr−Nb系合金など、適切なジルコニウム合金の開発に関する研究が行われている。
先行技術について考察すると、米国特許第4,649,023号では、ジルコニウムにニオブ0.5〜2.0重量%、錫0.9〜1.5重量%を必須元素とし、鉄、クロム、モリブデン、バナジウム、銅、ニッケル及びタングステンのうちのいずれか1種の元素0.09〜0.11重量%、酸素0.1〜0.16重量%を含むジルコニウム合金を開示している。また、80nm以下の微細なサイズの析出物が均質に基地相内に分布している合金製品を製造する方法を開示している。
Recently, however, high burnup nuclear fuel has been considered as part of efforts to improve the economic efficiency of nuclear reactors. However, existing zircaloy-2 and zircaloy-4 have been used as materials for nuclear fuel cladding. When used, it causes many problems in mechanical properties such as corrosion and creep properties.
This has led to the emergence of the need to develop materials with excellent corrosion resistance and creep resistance that are most problematic under conditions of high burnup and long cycle. Recently, as part of such efforts, Zr-Nb series Research on the development of suitable zirconium alloys such as alloys is underway.
Considering the prior art, U.S. Pat. No. 4,649,023 discloses that zirconium, niobium 0.5 to 2.0% by weight, tin 0.9 to 1.5% by weight are essential elements, iron, chromium, molybdenum. , A zirconium alloy containing 0.09 to 0.11% by weight of any one element of vanadium, copper, nickel and tungsten and 0.1 to 0.16% by weight of oxygen is disclosed. Also disclosed is a method for producing an alloy product in which precipitates having a fine size of 80 nm or less are uniformly distributed in the matrix phase.

米国特許第5,648,995号では、ニオブ0.8〜1.3重量%、鉄50〜250ppm、酸素1600ppm以下、ケイ素120ppm以下から構成されるジルコニウム合金を用いた被覆管を開示している。
前記合金に対して、600〜800℃で熱処理した後、押出を行い、冷間圧延は4〜5回にわたって行い、冷間圧延の間の中間熱処理は565〜605℃の温度領域で2〜4時間行い、最終熱処理は580℃で行うことにより、燃料被覆管を製造した。
このとき、クリープ抵抗性を向上させるために、合金の組成物中の鉄は250ppm以下に制限し、酸素は1000〜1600ppmの範囲に制限している。
米国特許第6,325,966号では、ニオブ0.15〜0.25重量%、錫1.10〜1.40重量%、鉄0.35〜0.45重量%、クロム0.15〜0.25重量%を必須元素とし、モリブデン、銅及びマンガンのうちのいずれか1種の元素0.08〜0.12重量%、酸素1000〜1400ppm、及び残部のジルコニウムから構成される、腐食抵抗性及び機械的特性に優れる合金を設計した。
US Pat. No. 5,648,995 discloses a cladding tube using a zirconium alloy composed of 0.8 to 1.3% by weight of niobium, 50 to 250 ppm of iron, 1600 ppm or less of oxygen, and 120 ppm or less of silicon. .
The alloy is heat-treated at 600 to 800 ° C. and then extruded, cold rolling is performed 4 to 5 times, and intermediate heat treatment during cold rolling is 2 to 4 in the temperature range of 565 to 605 ° C. The fuel cladding tube was manufactured by performing the heat treatment for a time and performing the final heat treatment at 580 ° C.
At this time, in order to improve creep resistance, iron in the alloy composition is limited to 250 ppm or less, and oxygen is limited to a range of 1000 to 1600 ppm.
In US Pat. No. 6,325,966, niobium 0.15 to 0.25 wt%, tin 1.10 to 1.40 wt%, iron 0.35 to 0.45 wt%, chromium 0.15 to 0 Corrosion resistance comprising 25% by weight as an essential element, 0.08 to 0.12% by weight of any one element of molybdenum, copper and manganese, 1000 to 1400 ppm of oxygen, and the balance zirconium And an alloy with excellent mechanical properties was designed.

前記先行技術からも分かるように、従来のNbにSnを含んでいるジルコニウム合金において、添加元素の種類及び量を変化させるか或いは熱処理条件を変化させることにより、耐食性及び機械的特性が向上した高燃焼度用ジルコニウム合金組成を得するために研究を続けている。
このとき、ジルコニウム合金の優れた耐食性及び機械的性質を有する最適の条件は、添加元素の種類、添加量、加工条件及び熱処理条件などによって影響を受けるため、合金設計及び熱処理条件の確立が何よりも必要である。
そこで、本発明者らは、Zr−Nb合金系からSnを除去し、P、Taなどを添加して組成及び熱処理温度を調節することにより、耐食性を大幅に増加させながらもクリープ抵抗性を向上させることができることを見出し、本発明を完成した。
As can be seen from the prior art, in a conventional zirconium alloy containing Sn in Nb, the corrosion resistance and mechanical properties are improved by changing the kind and amount of additive elements or changing the heat treatment conditions. Research is ongoing to obtain a zirconium alloy composition for burnup.
At this time, the optimum conditions for the excellent corrosion resistance and mechanical properties of the zirconium alloy are affected by the type of additive element, the amount added, the processing conditions, and the heat treatment conditions. is necessary.
Therefore, the present inventors improved the creep resistance while greatly increasing the corrosion resistance by removing Sn from the Zr—Nb alloy system and adding P, Ta, etc. to adjust the composition and heat treatment temperature. The present invention has been completed.

米国登録特許公報第4649023号(登録日:1987年3月10日)US Registered Patent Publication No. 4649023 (Registration Date: March 10, 1987) 米国登録特許公報第5648995号(登録日:1997年7月15日)US Registered Patent Publication No. 5648995 (Registration date: July 15, 1997) 米国登録特許公報第6325966号(登録日:2001年12月4日)US Registered Patent Publication No. 6325966 (Registration Date: December 4, 2001)

そこで、本発明は、上述したような問題点を解決するために案出されたもので、その目的は、耐食性に悪い影響を及ぼす錫を除去し、クリープ抵抗性を維持させるためにニオブ、リン、タンタルなどを添加することにより最適な熱処理条件を考慮して耐食性及びクリープ抵抗性が向上したジルコニウム合金組成及び最終熱処理条件を提供することにある。   Accordingly, the present invention has been devised to solve the above-described problems, and its purpose is to remove tin that adversely affects corrosion resistance and maintain niobium, phosphorous in order to maintain creep resistance. It is an object of the present invention to provide a zirconium alloy composition and a final heat treatment condition in which corrosion resistance and creep resistance are improved in consideration of optimum heat treatment conditions by adding tantalum or the like.

上記の目的を達成するための本発明に係るジルコニウム合金は、基本的に、ニオブ1.1〜1.2重量%、リン0.01〜0.2重量%、鉄0.2〜0.3重量%及び残部のジルコニウムから構成されることを特徴とする。
このとき、リンは、好ましくは0.02〜0.07重量%であることを特徴とする。
好ましくは、前記ジルコニウム合金は、耐食性及びクリープ変形に対する抵抗性能の向上のために、タンタル(Ta)がさらに0.01〜0.15重量%添加できる。
特にさらに好ましくは、タンタル(Ta)は0.03〜0.1重量%添加できる。
In order to achieve the above object, the zirconium alloy according to the present invention basically includes niobium 1.1 to 1.2% by weight, phosphorus 0.01 to 0.2% by weight, iron 0.2 to 0.3%. It is characterized by comprising weight percent and the balance zirconium.
At this time, phosphorus is preferably 0.02 to 0.07% by weight.
Preferably, the zirconium alloy may further contain 0.01 to 0.15% by weight of tantalum (Ta) in order to improve corrosion resistance and resistance to creep deformation.
More preferably, tantalum (Ta) can be added in an amount of 0.03 to 0.1% by weight.

一方、本発明に係るジルコニウム合金の製造方法は、ニオブ1.1〜1.2重量%、リン0.01〜0.2重量%、鉄0.2〜0.3重量%及び残部のジルコニウムから構成される混合物を溶解してインゴット(Ingot)に製造する第1段階と、
前記第1段階で製造されたインゴットを1000〜1050℃(β相区間)で30〜40分間溶体化熱処理した後、水に急冷してβ−焼入れ(β−Quenching)する第2段階と、
前記第2段階で熱処理されたインゴットを630〜650℃で20〜30分間予熱した後、60〜65%の圧下率で熱間圧延する第3段階と、
前記第3段階で熱間圧延された圧延材を570〜590℃で3〜4時間1次中間真空熱処理した後、30〜40%の圧下率で1次冷間圧延する第4段階と、
前記第4段階で1次冷間圧延された圧延材を560〜580℃で2〜3時間2次中間真空熱処理した後、50〜60%の圧下率で2次冷間圧延する第5段階と、
前記第5段階で2次冷間圧延された圧延材を560〜580℃で2〜3時間3次中間真空熱処理した後、30〜40%の圧下率で3次冷間圧延する第6段階と、
前記第6段階で3次冷間圧延された圧延材を440〜650℃で7〜9時間最終真空熱処理する第7段階とを含んでなる。
On the other hand, the method for producing a zirconium alloy according to the present invention comprises niobium 1.1 to 1.2% by weight, phosphorus 0.01 to 0.2% by weight, iron 0.2 to 0.3% by weight and the balance zirconium. A first stage of dissolving the composed mixture to produce an ingot;
A second stage in which the ingot produced in the first stage is subjected to solution heat treatment at 1000 to 1050 ° C. (β phase section) for 30 to 40 minutes, and then rapidly cooled in water and β-quenched (β-Quenching);
A third stage in which the ingot heat-treated in the second stage is pre-heated at 630 to 650 ° C. for 20 to 30 minutes and then hot-rolled at a rolling reduction of 60 to 65%;
A fourth stage in which the rolled material hot-rolled in the third stage is subjected to primary intermediate vacuum heat treatment at 570 to 590 ° C. for 3 to 4 hours, and then first cold-rolled at a reduction rate of 30 to 40%;
A fifth stage in which the first cold-rolled material in the fourth stage is subjected to a secondary intermediate vacuum heat treatment at 560 to 580 ° C. for 2 to 3 hours, followed by a second cold rolling at a reduction rate of 50 to 60%; ,
A sixth step of subjecting the rolled material secondarily cold-rolled in the fifth step to a third intermediate vacuum heat treatment at 560 to 580 ° C. for 2 to 3 hours, followed by a third cold rolling at a reduction rate of 30 to 40%; ,
And a seventh step of subjecting the rolled material that has been third cold rolled in the sixth step to a final vacuum heat treatment at 440 to 650 ° C. for 7 to 9 hours.

このとき、第1段階におけるリンは好ましくは0.02〜0.07重量%とし、第7段階における前記最終真空熱処理の温度は好ましくは460〜600℃として、耐食性とクリープ変形に対する抵抗特性を最適化することができる。
また、好ましくは、第1段階の前記混合物にタンタル(Ta)をさらに0.01〜0.15重量%添加することにより、耐食性を一層向上させることができる。
特に好ましくは、前記タンタル(Ta)は0.03〜0.1重量%とし、第7段階における前記最終真空熱処理の温度は460〜530℃とすることにより、耐食性とクリープ変形に対する抵抗特性を最高に高めることができる。
一方、第1段階で前記混合物を溶解する前に、リンの析出防止のためにリンを圧粉することが好ましい。
At this time, phosphorus in the first stage is preferably 0.02 to 0.07% by weight, and the temperature of the final vacuum heat treatment in the seventh stage is preferably 460 to 600 ° C. to optimize the corrosion resistance and the resistance to creep deformation. Can be
Preferably, the corrosion resistance can be further improved by adding 0.01 to 0.15% by weight of tantalum (Ta) to the mixture in the first stage.
Particularly preferably, the tantalum (Ta) is 0.03 to 0.1% by weight, and the temperature of the final vacuum heat treatment in the seventh stage is 460 to 530 ° C., so that the corrosion resistance and the resistance to creep deformation are maximized. Can be increased.
On the other hand, before dissolving the mixture in the first stage, it is preferable to compact phosphorus to prevent precipitation of phosphorus.

本発明に係るジルコニウム合金は、錫を完全に除去し、P、Taなどの添加元素の種類、添加量及び最終熱処理条件の制御によって、ジルカロイ−4に比べて優れた耐食性を有するだけではなく、クリープ抵抗性も高いので、軽水炉及び重水炉型原子力発電所の原子炉心内で燃料被覆管などに非常に有用に使用できるという効果がある。   The zirconium alloy according to the present invention not only has excellent corrosion resistance as compared with Zircaloy-4 by completely removing tin, but also by controlling the kind of additive element such as P and Ta, the amount added, and the final heat treatment condition. Since the creep resistance is also high, there is an effect that it can be very usefully used for a fuel cladding tube or the like in a reactor core of a light water reactor or a heavy water nuclear power plant.

本発明に係るジルコニウム合金の腐食試験後の重量増加量を試験日によって示すグラフである。It is a graph which shows the weight increase amount after the corrosion test of the zirconium alloy which concerns on this invention with a test day. 本発明に係るジルコニウム合金のクリープ試験後の変形量を示すグラフである。It is a graph which shows the deformation after the creep test of the zirconium alloy which concerns on this invention.

本発明の実施例で提示される特定の構造ないし機能説明は、単に本発明の概念による実施例を説明するための目的で例示されたものであり、本発明の概念による実施例は、様々な形で実施できる。また、本明細書に説明された実施例に限定されるものと解釈されてはならず、本発明の思想及び技術範囲に含まれるすべての変更物、均等物ないし代替物を含むものと理解されるべきである。   The specific structure or function described in the embodiments of the present invention is merely illustrated for the purpose of illustrating the embodiments according to the concept of the present invention. Can be implemented. In addition, the present invention should not be construed as limited to the embodiments described herein, but is understood to include all modifications, equivalents, or alternatives that fall within the spirit and scope of the present invention. Should be.

以下、本発明を詳細に説明する。
本発明に係るジルコニウム合金は、ニオブ1.1〜1.2重量%、リン0.02〜0.05重量%、鉄0.2〜0.3重量%及び残部のジルコニウムから構成される。
また、前記ニオブ1.1〜1.2重量%、リン0.02重量%、鉄0.2〜0.3重量%及び残部のジルコニウムから構成される。
また、前記ニオブ1.1〜1.2重量%、リン0.05重量%、鉄0.2〜0.3重量%及び残部のジルコニウムから構成される。
また、前記ジルコニウム合金にタンタルを添加してニオブ1.1〜1.2重量%、リン0.05重量%、タンタル0.03〜0.04重量%、鉄0.2〜0.3重量%及び残部のジルコニウムから構成される。
また、前記ジルコニウム合金にタンタルを添加してニオブ1.1〜1.2重量%、リン0.05重量%、タンタル0.09〜0.1重量%、鉄0.2〜0.3重量%及び残部のジルコニウムから構成される。
Hereinafter, the present invention will be described in detail.
The zirconium alloy according to the present invention is composed of niobium 1.1-1.2% by weight, phosphorus 0.02-0.05% by weight, iron 0.2-0.3% by weight and the balance zirconium.
The niobium is composed of 1.1 to 1.2% by weight, phosphorus 0.02% by weight, iron 0.2 to 0.3% by weight and the balance zirconium.
Further, it is composed of 1.1 to 1.2% by weight of niobium, 0.05% by weight of phosphorus, 0.2 to 0.3% by weight of iron and the remaining zirconium.
Further, by adding tantalum to the zirconium alloy, niobium 1.1 to 1.2% by weight, phosphorus 0.05% by weight, tantalum 0.03 to 0.04% by weight, iron 0.2 to 0.3% by weight And the balance zirconium.
Further, by adding tantalum to the zirconium alloy, niobium 1.1 to 1.2% by weight, phosphorus 0.05% by weight, tantalum 0.09 to 0.1% by weight, iron 0.2 to 0.3% by weight And the balance zirconium.

以下、前述したような構成を有する本発明に係るジルコニウム合金の製造について説明する。
本発明に係るジルコニウム合金の製造方法は、
ジルコニウム合金組成元素の混合物を溶解してインゴット(Ingot、鋳塊)に製造する第1段階;前記第1段階で製造されたインゴットを1000〜1050℃(β相区間)で30〜40分間溶体化熱処理した後、水に急冷させるβ−焼入れ(β−Quenching)を行う第2段階;前記第2段階で熱処理されたインゴットを630〜650℃で20〜30分間予熱した後、60〜65%の圧下率で熱間圧延する第3段階;前記第3段階で熱間圧延された圧延材を570〜590℃で3〜4時間1次中間真空熱処理した後、30〜40%の圧下率で1次冷間圧延する第4段階と、前記第4段階で1次冷間圧延された圧延材を560〜580℃で2〜3時間2次中間真空熱処理した後、50〜60%の圧下率で2次冷間圧延する第5段階;前記第5段階で2次冷間圧延された圧延材を560〜580℃で2〜3時間3次中間真空熱処理した後、30〜40%の圧下率で3次冷間圧延する第6段階と、前記第6段階で3次冷間圧延された圧延材を最終真空熱処理する第7段階とを含んでなる。
Hereinafter, the production of the zirconium alloy according to the present invention having the above-described configuration will be described.
The method for producing a zirconium alloy according to the present invention includes:
A first stage in which a mixture of zirconium alloy composition elements is melted to produce an ingot; the ingot produced in the first stage is solutionized at 1000 to 1050 ° C. (β phase section) for 30 to 40 minutes A second stage of β-quenching that is quenched in water after heat treatment; after preheating the ingot heat-treated in the second stage at 630 to 650 ° C. for 20 to 30 minutes, 60 to 65% A third stage of hot rolling at a reduction ratio; the rolled material hot-rolled in the third stage is subjected to a first intermediate vacuum heat treatment at 570 to 590 ° C. for 3 to 4 hours, and then 1 at a reduction ratio of 30 to 40%. In the fourth stage of the next cold rolling, and after the second intermediate vacuum heat treatment at 560 to 580 ° C. for 2 to 3 hours after the primary cold rolling in the fourth stage, the rolling reduction is 50 to 60%. 5th stage of secondary cold rolling A sixth step of subjecting the rolled material secondarily cold-rolled in the fifth step to a third intermediate vacuum heat treatment at 560 to 580 ° C. for 2 to 3 hours, followed by a third cold rolling at a reduction rate of 30 to 40%; And a seventh step of subjecting the rolled material that has been third cold rolled in the sixth step to a final vacuum heat treatment.

以下、前述したような段階からなる本発明の様々な実施例を例としてより詳細に説明する。
<実施例1〜12>ジルコニウム合金の製造
(1)インゴットの製造
まず、第1段階では、ニオブ1.2重量%、リン0.02〜0.05重量%、タンタル0.03〜0.1重量%、鉄0.2重量%及び残部のジルコニウムを真空アーク溶解方法(VAR、Vacuum Arc Remelting)を用いてインゴット(Ingot、鋳塊)に製造する。
使用されたジルコニウムは、ASTM B349に明示された原子力グレードのジルコニウムスポンジ(Zirconium Sponge)であり、ニオブ、リン、タンタル、鉄などが添加された元素は、99.99%以上の高純度の元素を使用した。
このとき、不純物が偏析したり合金組成が不均一に分布したりするのを防ぐために、約3回程度繰り返し、アーク溶解装置のチャンバ内の真空を10−5torr以下で十分に維持した後、合金の溶解を行ってインゴットを製造した。このとき、リン(P)は、析出を防止するために、他の合金元素とは異なり圧粉して溶解した。
冷却過程の間に試験片の表面で酸化するのを防止するために、アルゴンなどの不活性ガスを注入して冷却した。
Hereinafter, various embodiments of the present invention having the above-described steps will be described in more detail as examples.
<Examples 1 to 12> Manufacture of zirconium alloy (1) Manufacture of ingot First, in the first stage, niobium 1.2 wt%, phosphorus 0.02 to 0.05 wt%, tantalum 0.03 to 0.1 % By weight, 0.2% by weight of iron and the remainder of the zirconium are produced in an ingot using a vacuum arc melting method (VAR, Vacuum Arc Remelting).
Zirconium used is a nuclear grade zirconium sponge specified in ASTM B349, and elements added with niobium, phosphorus, tantalum, iron, etc. are high purity elements of 99.99% or more. used.
At this time, in order to prevent segregation of impurities and uneven distribution of the alloy composition, it is repeated about 3 times, and after maintaining the vacuum in the chamber of the arc melting apparatus sufficiently at 10 −5 torr or less, The alloy was melted to produce an ingot. At this time, phosphorus (P) was compacted and dissolved unlike other alloy elements in order to prevent precipitation.
In order to prevent oxidation on the surface of the test piece during the cooling process, an inert gas such as argon was injected and cooled.

(2)β溶体化熱処理(β−Annealing)及びβ−焼入れ(β−Quenching)
第2段階では、β−溶体化熱処理及びβ−焼入れを行う工程であり、β相温度領域である1000〜1050℃で30分間溶体化処理した後、約300℃/sec以上の速度で水冷した。このとき、インゴット(Ingot)の酸化を防止するために、厚さ1mmのステンレス鋼板(Stainless Steel Plate)で被覆してスポット溶接を行った。この工程は、製造されたインゴット内の合金組成を均質化し、基地金属内の第2相析出物(SPP、Secondary Phase Particle)の大きさを均一に分布させるために行う。
(2) β solution heat treatment (β-Annealing) and β-quenching (β-Quenching)
In the second stage, β-solution heat treatment and β-quenching are performed, and after solution treatment at 1000 to 1050 ° C., which is a β-phase temperature range, for 30 minutes, water cooling is performed at a rate of about 300 ° C./sec or more. . At this time, in order to prevent oxidation of the ingot, spot welding was performed by coating with a stainless steel plate having a thickness of 1 mm (Stainless Steel Plate). This step is performed in order to homogenize the alloy composition in the manufactured ingot and to uniformly distribute the size of second phase precipitates (SPP) in the base metal.

(3)熱処理及び熱間圧延
第3段階では、β−焼入れ済みの試験片の熱間圧延を行う。
このとき、630〜650℃で約20〜30分間予熱した後、約60〜65%の圧下率で圧延を行った。もし上記の熱処理温度から外れる場合には、次の第4段階の加工に適した圧延材を得ることが難しい。また、熱間圧延時の圧下率が60%未満である場合には、ジルコニウム材料の集合組織が不均一であって水素脆化抵抗性が低下するという問題があり、熱間圧延時の圧下率が80%以上である場合には、向後の加工性に問題があると報告されている。
熱間圧延された圧延材は、被覆されたステンレス鋼板(Stainless Steel Plate)を除去した後、水:硝酸:フッ酸の体積比が50:40:10である酸洗溶液を用いて酸化膜及び不純物を除去し、後続の工程のためにワイヤーブラシ(Wire Brush)を用いて、残っている酸化膜を完全に除去した。
(3) Heat treatment and hot rolling In the third stage, β-quenched test pieces are hot rolled.
At this time, after preheating at 630 to 650 ° C. for about 20 to 30 minutes, rolling was performed at a rolling reduction of about 60 to 65%. If it deviates from the above heat treatment temperature, it is difficult to obtain a rolled material suitable for the next fourth stage processing. Further, when the rolling reduction during hot rolling is less than 60%, there is a problem that the texture of the zirconium material is uneven and the hydrogen embrittlement resistance is lowered, and the rolling reduction during hot rolling. When the ratio is 80% or more, it is reported that there is a problem in later workability.
After the hot-rolled rolled material is removed from the coated stainless steel plate, an oxide film and a pickling solution having a volume ratio of water: nitric acid: hydrofluoric acid of 50:40:10 are used. The impurities were removed, and the remaining oxide film was completely removed using a wire brush for the subsequent process.

(4)1次中間熱処理及び1次冷間圧延
熱間圧延後の残留応力を除去し、1次冷間加工の際に試験片の破損を防ぐために、約580〜590℃で約3〜4時間真空度を10−5torr以下に維持して1次真空熱処理を行った。
中間真空熱処理は、再結晶熱処理温度まで上昇させて熱処理することが好ましく、もし上記の温度範囲から外れる場合には、腐食抵抗性が低下する問題が発生するおそれがある。
1次中間真空熱処理済みの前記圧延材に対して、1パスあたり約0.3mmの間隔で約40〜50%の圧下率で1次冷間圧延を行った。
(5)2次中間真空熱処理及び2次冷間圧延
1次冷間圧延された圧延材に対して570〜580℃で約2〜3時間2次中間真空熱処理を行った。
もし前記中間熱処理の温度から外れる場合には、腐食抵抗性が低下する問題が発生するおそれがある。
2次中間真空熱処理済みの前記圧延材に対して、1パスあたり約0.3mmの間隔で約50〜60%の圧下率で2次冷間圧延を行った。
(4) Primary intermediate heat treatment and primary cold rolling About 3 to 4 at about 580 to 590 ° C. in order to remove residual stress after hot rolling and prevent breakage of the test piece during primary cold working. A primary vacuum heat treatment was performed while maintaining the degree of vacuum at 10 −5 torr or less.
The intermediate vacuum heat treatment is preferably performed by raising the temperature to the recrystallization heat treatment temperature. If the intermediate vacuum heat treatment is out of the above temperature range, there is a possibility that a problem that the corrosion resistance is lowered may occur.
Primary cold rolling was performed on the rolled material that had been subjected to the primary intermediate vacuum heat treatment at a rolling reduction of about 40 to 50% at intervals of about 0.3 mm per pass.
(5) Secondary intermediate vacuum heat treatment and secondary cold rolling Secondary intermediate vacuum heat treatment was performed at 570 to 580 ° C. for about 2 to 3 hours on the primary cold rolled material.
If it deviates from the temperature of the intermediate heat treatment, there is a possibility that a problem of reducing corrosion resistance may occur.
Secondary cold rolling was performed on the rolled material subjected to the secondary intermediate vacuum heat treatment at a reduction rate of about 50 to 60% at intervals of about 0.3 mm per pass.

(6)3次中間真空熱処理及び3次冷間圧延
2次冷間圧延された圧延材に対して570〜580℃で2〜3時間3次中間真空熱処理を行った。
もし前記中間熱処理の温度から外れる場合には、腐食抵抗性が低下する問題が発生するおそれがある。
3次中間真空熱処理済みの前記圧延材に対して1パスあたり約0.3mmの間隔で約30〜40%の圧下率で3次冷間圧延を行った。
(7)最終真空熱処理
3次冷間圧延された圧延材の最終熱処理を10−5torr以下の高真空雰囲気で行う。
最終熱処理は460〜580℃で8時間行った。
本発明に係るジルコニウム合金の具体的な合金組成及び最終熱処理温度は、表1にまとめた。
(6) Third intermediate vacuum heat treatment and third cold rolling A third intermediate vacuum heat treatment was performed on the rolled material subjected to the second cold rolling at 570 to 580 ° C. for 2 to 3 hours.
If it deviates from the temperature of the intermediate heat treatment, there is a possibility that a problem of reducing corrosion resistance may occur.
Third cold rolling was performed on the rolled material that had been subjected to the third intermediate vacuum heat treatment at a reduction rate of about 30 to 40% at intervals of about 0.3 mm per pass.
(7) Final vacuum heat treatment The final heat treatment of the rolled material subjected to the third cold rolling is performed in a high vacuum atmosphere of 10 −5 torr or less.
The final heat treatment was performed at 460 to 580 ° C. for 8 hours.
The specific alloy composition and final heat treatment temperature of the zirconium alloy according to the present invention are summarized in Table 1.

Figure 2018514650
Figure 2018514650

<比較例1〜2>
比較例1〜2で、原子力発電所で使用されている商用のジルコニウム合金であるジルカロイ−4の被覆管を使用した。
<Comparative Examples 1-2>
In Comparative Examples 1 and 2, a cladding tube of Zircaloy-4, which is a commercial zirconium alloy used in nuclear power plants, was used.

<実験例1>耐食性実験
本発明に係るジルコニウム合金組成物の耐食性を調べるために、次の腐食試験を行った。
実施例1〜12のジルコニウム合金を用いて上記の製造工程で板材試験片を製造した後、サイズ20mm×20mm×1.0mmの板材腐食試験の試験片を製作し、#400で#1200のSiC研磨紙を用いて段階別に機械的研磨を行った。
表面研磨済みの試験片は、水:硝酸:フッ酸=50:40:10(体積比)の溶液を用いて酸洗処理し、アセトンで超音波洗浄した後、乾燥機で24時間以上十分に乾燥させた。
合金の腐食程度を測定するために、オートクレーブ(autoclave)への装入前に前記合金の表面積及び初期重量を測定した。
装入された試験片は、360℃、18.6MPaで純水雰囲気及び70ppm Li水雰囲気のスタティックオートクレーブ(static autoclave)を用いて100日間腐食試験を行った。
腐食試験を行うとき、実施例1〜12だけでなく、比較例1の商用ジルカロイ−4を一緒に入れて試験した。
腐食試験の後、260日間合計8回にわたって試験片を取り出してそれぞれの重量を測定した後、重量増加量を計算して腐食の程度を定量的に評価した。その結果を下記表に示す。
<Experimental Example 1> Corrosion Resistance Experiment In order to investigate the corrosion resistance of the zirconium alloy composition according to the present invention, the following corrosion test was performed.
After the plate material test piece was manufactured in the above manufacturing process using the zirconium alloys of Examples 1 to 12, a test piece for a plate material corrosion test having a size of 20 mm × 20 mm × 1.0 mm was manufactured. Mechanical polishing was performed step by step using abrasive paper.
The surface-polished test piece is pickled using a solution of water: nitric acid: hydrofluoric acid = 50: 40: 10 (volume ratio), ultrasonically washed with acetone, and then sufficiently dried for 24 hours or more with a dryer. Dried.
In order to determine the degree of corrosion of the alloy, the surface area and initial weight of the alloy were measured prior to charging into the autoclave.
The loaded test piece was subjected to a corrosion test for 100 days using a static autoclave in a pure water atmosphere and a 70 ppm Li water atmosphere at 360 ° C. and 18.6 MPa.
When performing the corrosion test, not only Examples 1 to 12 but also commercial Zircaloy-4 of Comparative Example 1 was put together and tested.
After the corrosion test, the test pieces were taken out for a total of 8 times for 260 days and their respective weights were measured, and then the weight increase was calculated to quantitatively evaluate the degree of corrosion. The results are shown in the table below.

以下では、腐食試験の結果を1)タンタルのない状態でリンを0.02重量%と0.05重量%で添加したときのそれぞれの結果、及び2)リン成分が0.05重量%であるときにタンタルを0.03重量%と0.1重量%で添加したときのそれぞれの結果に分けて考察する。この場合、上記の1)と2)の両方ともで、最終熱処理温度がそれぞれ460℃、520℃、580℃であるときの3つの場合について実験がすべて行われた。
タンタルのない状態でリンを0.02重量%と0.05重量%で添加したときの結果
In the following, the results of the corrosion test are 1) the respective results when phosphorus is added at 0.02 wt% and 0.05 wt% without tantalum, and 2) the phosphorus component is 0.05 wt% In some cases, tantalum is added separately at 0.03% by weight and 0.1% by weight. In this case, in both the above 1) and 2), all the experiments were performed for the three cases where the final heat treatment temperatures were 460 ° C., 520 ° C., and 580 ° C., respectively.
Results when phosphorus is added at 0.02 wt% and 0.05 wt% without tantalum

Figure 2018514650
Figure 2018514650

前記表2より、リンが添加されていない比較例1の場合と、リンが0.02%添加され且つ最終熱処理温度が460℃である場合との耐食性の差が顕著であることが分かる。特に、リンの添加量が0.02重量%である実施例1、5及び9の場合よりも、リンの添加量が0.05%である実施例2、6及び10の場合がさらに高い耐食性を示すことが分かる。
したがって、リンの成分比に関連し、リンが少量でも添加された場合には耐食性に著しい差があるので、実施例1のリンが0.02重量%であることからみて、リンの添加量が0.01重量%である場合からは明らかな耐食性の向上があることが予測される。
但し、耐食性の著しい向上を示す場合は、実験数値が0.02重量%乃至0.07重量%の場合であると看做すことができる。実施例2、6及び10では、リンの成分は0.05重量%であるが、リンが0.02重量%である場合よりも、0.05重量%である場合に耐食性の増加が観測されるので、少なくとも著しい耐食性の向上は0.07重量%の場合にも維持できることが十分に予測される。
From Table 2, it can be seen that the difference in corrosion resistance between the case of Comparative Example 1 where no phosphorus is added and the case where 0.02% of phosphorus is added and the final heat treatment temperature is 460 ° C. is significant. In particular, the cases of Examples 2, 6, and 10 in which the amount of phosphorus added is 0.05% are higher than those in Examples 1, 5, and 9 in which the amount of phosphorus added is 0.02% by weight. It can be seen that
Therefore, in relation to the component ratio of phosphorus, there is a significant difference in corrosion resistance when phosphorus is added even in a small amount, so that the amount of phosphorus added is 0.02% by weight in view of the phosphorus of Example 1 being 0.02% by weight. From the case of 0.01% by weight, it is predicted that there is a clear improvement in corrosion resistance.
However, when the corrosion resistance is remarkably improved, it can be considered that the experimental value is 0.02 wt% to 0.07 wt%. In Examples 2, 6 and 10, the phosphorus component was 0.05% by weight, but an increase in corrosion resistance was observed when 0.05% by weight of phosphorus compared to 0.02% by weight. Therefore, it is fully predicted that at least a significant improvement in corrosion resistance can be maintained even in the case of 0.07% by weight.

2)リン成分が0.05重量%である状態で、タンタルを0.03重量%と0.1重量%で添加したときの結果   2) Results when tantalum was added at 0.03% and 0.1% by weight with the phosphorus component at 0.05% by weight

Figure 2018514650
Figure 2018514650

実施例2、6及び10はタンタルなしにリンのみ添加された場合であり、実施例3、7及び11はタンタルが0.03重量%添加された場合であり、実施例4、8及び12はタンタルが0.1重量%添加された場合である。
タンタルが0.1重量%である場合には、最終熱処理温度460℃の実施例4と最終熱処理温度520℃の実施例8では著しい耐食性の増加があり、タンタルが0.03重量%である場合には、微々たるものであるけれども、やや耐食性の増加があることが観察される。
したがって、タンタルは、成分比が0.01重量%〜0.15重量%である場合に耐食性の増加があることが実験結果から予測され、さらに著しい耐食性の増加は0.03重量%〜0.1重量%の場合であることが実験によって証明される。
Examples 2, 6 and 10 are cases where only phosphorus was added without tantalum, Examples 3, 7 and 11 were cases where 0.03% by weight of tantalum was added, and Examples 4, 8 and 12 were This is a case where 0.1% by weight of tantalum is added.
When tantalum is 0.1% by weight, there is a significant increase in corrosion resistance in Example 4 with a final heat treatment temperature of 460 ° C. and Example 8 with a final heat treatment temperature of 520 ° C., where tantalum is 0.03% by weight. It is observed that there is a slight increase in corrosion resistance, though only slightly.
Therefore, it is predicted from experimental results that tantalum has an increase in corrosion resistance when the component ratio is 0.01% by weight to 0.15% by weight, and a further significant increase in corrosion resistance is 0.03% by weight to 0.3%. Experiments prove that this is the case for 1% by weight.

<実験例2>クリープ実験
本発明に係るジルコニウム合金組成物のクリープ抵抗性を調べるために、次のクリープ試験を行った。
実施例1〜4のジルコニウム合金を用いて上記の製造工程で板材試験片を製造した後、クリープ試験片を製作した。
また、クリープ特性を比較するために、比較例1の商用被覆管を模写して、同じ工程で板材タイプの比較例2のジルカロイ−4試験片を製作した。このとき、比較例2の最終熱処理温度を実施例1〜4、比較例1と同様の条件である460℃にしてクリープ試験を行った。
クリープ試験は、350℃で120MPaの一定荷重を加えて120時間行った。その試験結果を比較例2の結果と比較して表4に示した。
<Experimental Example 2> Creep Experiment In order to investigate the creep resistance of the zirconium alloy composition according to the present invention, the following creep test was performed.
A plate test piece was manufactured in the above manufacturing process using the zirconium alloys of Examples 1 to 4, and then a creep test piece was manufactured.
Further, in order to compare the creep characteristics, the commercial cladding tube of Comparative Example 1 was copied, and a Zircaloy-4 test piece of Comparative Example 2 of the plate type was manufactured in the same process. At this time, the final heat treatment temperature of Comparative Example 2 was set to 460 ° C. which is the same condition as in Examples 1 to 4 and Comparative Example 1, and a creep test was performed.
The creep test was performed for 120 hours at 350 ° C. with a constant load of 120 MPa. The test results are shown in Table 4 in comparison with the results of Comparative Example 2.

Figure 2018514650
Figure 2018514650

表4に示すように、本発明に係るジルコニウム合金組成からなる実施例1〜4は、350℃、120MPaの応力条件で10日間評価した結果、クリープ変形量が0.22〜0.34の範囲と測定された。特に、Taの量が増加するほどクリープ変形量が非常に減少した。一方、比較例2のクリープ変形量は、0.46であって、実施例1〜4よりも遥かに大きいことが分かる。
したがって、クリープ変形に対する抵抗特性は、リンが少量でも添加される場合にその効果があることが分かり、タンタルの添加量が増加するほどクリープ変形に対する抵抗特性は著しく高まることが分かる。
以上で説明した本発明は、前述した実施例及び添付図面によって限定されるものではない。本発明の技術的思想を逸脱することなく。様々な置換、変形及び変更を加え得ることは、本発明の属する技術分野における通常の知識を有する者にとって明らかであろう。
As shown in Table 4, Examples 1 to 4 having the zirconium alloy composition according to the present invention were evaluated in a stress condition of 350 ° C. and 120 MPa for 10 days. As a result, the creep deformation amount was in the range of 0.22 to 0.34. And measured. In particular, the amount of creep deformation greatly decreased as the amount of Ta increased. On the other hand, the creep deformation amount of Comparative Example 2 is 0.46, which is much larger than those of Examples 1 to 4.
Therefore, it can be seen that the resistance characteristic against creep deformation is effective when phosphorus is added even in a small amount, and the resistance characteristic against creep deformation is remarkably enhanced as the amount of tantalum added is increased.
The present invention described above is not limited by the above-described embodiments and the accompanying drawings. Without departing from the technical idea of the present invention. It will be apparent to those skilled in the art to which the present invention pertains that various substitutions, modifications and changes can be made.

Claims (9)

ニオブ1.1〜1.2重量%、リン0.01〜0.2重量%、鉄0.2〜0.3重量%及び残部のジルコニウムから構成される、ジルコニウム合金組成物。   A zirconium alloy composition composed of 1.1 to 1.2% by weight of niobium, 0.01 to 0.2% by weight of phosphorus, 0.2 to 0.3% by weight of iron and the balance zirconium. リンが0.02〜0.07重量%であることを特徴とする、請求項1に記載のジルコニウム合金組成物。   The zirconium alloy composition according to claim 1, wherein phosphorus is 0.02 to 0.07 wt%. タンタル(Ta)がさらに0.01〜0.15重量%添加されることを特徴とする、請求項1に記載のジルコニウム合金。   The zirconium alloy according to claim 1, wherein tantalum (Ta) is further added in an amount of 0.01 to 0.15% by weight. タンタル(Ta)が0.03〜0.1重量%であることを特徴とする、請求項3に記載のジルコニウム合金。   Zirconium alloy according to claim 3, characterized in that tantalum (Ta) is 0.03 to 0.1% by weight. ニオブ1.1〜1.2重量%、リン0.01〜0.2重量%、鉄0.2〜0.3重量%及び残部のジルコニウムから構成される混合物を溶解してインゴット(Ingot)に製造する第1段階と、
前記第1段階で製造されたインゴットを1000〜1050℃(β相区間)で30〜40分間溶体化熱処理した後、水に急冷してβ−焼入れ(β−Quenching)する第2段階と、
前記第2段階で熱処理されたインゴットを630〜650℃で20〜30分間予熱した後、60〜65%の圧下率で熱間圧延する第3段階と、
前記第3段階で熱間圧延された圧延材を570〜590℃で3〜4時間1次中間真空熱処理した後、30〜40%の圧下率で1次冷間圧延する第4段階と、
前記第4段階で1次冷間圧延された圧延材を560〜580℃で2〜3時間2次中間真空熱処理した後、50〜60%の圧下率で2次冷間圧延する第5段階と、
前記第5段階で2次冷間圧延された圧延材を560〜580℃で2〜3時間3次中間真空熱処理した後、30〜40%の圧下率で3次冷間圧延する第6段階と、
前記第6段階で3次冷間圧延された圧延材を440〜650℃で7〜9時間最終真空熱処理する第7段階とを含んでなる、ジルコニウム合金の製造方法。
A mixture composed of 1.1 to 1.2% by weight of niobium, 0.01 to 0.2% by weight of phosphorus, 0.2 to 0.3% by weight of iron, and the balance zirconium is dissolved in an ingot. A first stage of manufacturing;
A second stage in which the ingot produced in the first stage is subjected to solution heat treatment at 1000 to 1050 ° C. (β phase section) for 30 to 40 minutes, and then rapidly cooled in water and β-quenched (β-Quenching);
A third stage in which the ingot heat-treated in the second stage is pre-heated at 630 to 650 ° C. for 20 to 30 minutes and then hot-rolled at a rolling reduction of 60 to 65%;
A fourth stage in which the rolled material hot-rolled in the third stage is subjected to primary intermediate vacuum heat treatment at 570 to 590 ° C. for 3 to 4 hours, and then first cold-rolled at a reduction rate of 30 to 40%;
A fifth stage in which the first cold-rolled material in the fourth stage is subjected to a secondary intermediate vacuum heat treatment at 560 to 580 ° C. for 2 to 3 hours, followed by a second cold rolling at a reduction rate of 50 to 60%; ,
A sixth step of subjecting the rolled material secondarily cold-rolled in the fifth step to a third intermediate vacuum heat treatment at 560 to 580 ° C. for 2 to 3 hours, followed by a third cold rolling at a reduction rate of 30 to 40%; ,
And a seventh step of subjecting the rolled material that has been third cold rolled in the sixth step to a final vacuum heat treatment at 440 to 650 ° C. for 7 to 9 hours.
第1段階におけるリンは0.02〜0.07重量%であり、第7段階における前記最終真空熱処理の温度は460〜600℃であることを特徴とする、請求項5に記載のジルコニウム合金の製造方法。   6. The zirconium alloy according to claim 5, wherein phosphorus in the first stage is 0.02 to 0.07 wt%, and a temperature of the final vacuum heat treatment in the seventh stage is 460 to 600 ° C. 6. Production method. 第1段階の前記混合物にタンタル(Ta)をさらに0.01〜0.15重量%添加することを特徴とする、請求項5に記載のジルコニウム合金。   The zirconium alloy according to claim 5, wherein 0.01 to 0.15% by weight of tantalum (Ta) is further added to the mixture in the first stage. 前記タンタル(Ta)は0.03〜0.1重量%であり、第7段階における前記最終真空熱処理の温度は460〜530℃であることを特徴とする、請求項7に記載のジルコニウム合金の製造方法。   The zirconium alloy according to claim 7, wherein the tantalum (Ta) is 0.03 to 0.1 wt%, and the temperature of the final vacuum heat treatment in the seventh stage is 460 to 530 ° C. Production method. 第1段階で前記混合物を溶解する前に、リンを圧粉することを特徴とする、請求項5乃至9のいずれか一項に記載のジルコニウム合金の製造方法。   The method for producing a zirconium alloy according to any one of claims 5 to 9, wherein the phosphorus is compacted before the mixture is dissolved in the first stage.
JP2017553426A 2015-04-14 2015-05-08 Zirconium alloy having excellent corrosion resistance and creep resistance, and method for producing the same Active JP6588104B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020150052711A KR101604105B1 (en) 2015-04-14 2015-04-14 Zirconium alloy having excellent corrosion resistance and creep resistance and method of manufacturing for it
KR10-2015-0052711 2015-04-14
PCT/KR2015/004641 WO2016167397A1 (en) 2015-04-14 2015-05-08 Zirconium alloy having excellent corrosion resistance and creep resistance, and method for manufacturing same

Publications (2)

Publication Number Publication Date
JP2018514650A true JP2018514650A (en) 2018-06-07
JP6588104B2 JP6588104B2 (en) 2019-10-09

Family

ID=55649936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017553426A Active JP6588104B2 (en) 2015-04-14 2015-05-08 Zirconium alloy having excellent corrosion resistance and creep resistance, and method for producing the same

Country Status (6)

Country Link
US (1) US20160304991A1 (en)
EP (1) EP3284836B1 (en)
JP (1) JP6588104B2 (en)
KR (1) KR101604105B1 (en)
CN (1) CN107438675B (en)
WO (1) WO2016167397A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108251698A (en) * 2018-01-15 2018-07-06 燕山大学 A kind of corrosion-resistant zircaloy and its preparation method and application
AR110991A1 (en) 2018-02-21 2019-05-22 Comision Nac De Energia Atomica Cnea CIRCONY ALLOYS WITH IMPROVED CORROSION RESISTANCE AND SERVICE TEMPERATURE FOR USE IN THE COATING OF FUEL AND STRUCTURAL PARTS OF THE NUCLEAR REACTOR CORE
WO2020223107A1 (en) * 2019-04-30 2020-11-05 Westinghouse Electric Company Llc Improved corrosion resistance of additively-manufactured zirconium alloys
WO2021133194A1 (en) * 2019-12-26 2021-07-01 Акционерное Общество "Твэл" Method of manufacturing tubular products from a zirconium alloy
CN115011822B (en) * 2022-06-13 2023-07-18 国核宝钛锆业股份公司 Preparation method of square-outside and round-inside zirconium alloy section bar
CN115652237B (en) * 2022-08-16 2023-11-24 重庆大学 Zirconium alloy containing triple twin crystals and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002332533A (en) * 2001-05-07 2002-11-22 Korea Atom Energ Res Inst Zirconium alloy nuclear fuel clad tube having excellent corrosion resistance and mechanical property, and production method therefor
JP2003149365A (en) * 2001-11-02 2003-05-21 Korea Atom Energ Res Inst Manufacturing method of niobium-containing zircalloy nuclear fuel cladding with excellent corrosion resistance
JP2006214001A (en) * 2005-02-07 2006-08-17 Korea Atom Energ Res Inst Zirconium based alloy composite having excellent creep resistance

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4814136A (en) 1987-10-28 1989-03-21 Westinghouse Electric Corp. Process for the control of liner impurities and light water reactor cladding
JPH04224648A (en) * 1990-12-25 1992-08-13 Kobe Steel Ltd High corrosion resistant and high strength zirconium alloy
JPH08253828A (en) * 1995-03-14 1996-10-01 Sumitomo Metal Ind Ltd Highly corrosion resistant zirconium alloy
JPH11194189A (en) * 1997-10-13 1999-07-21 Mitsubishi Materials Corp Production for zr alloy tube for reactor fuel clad superior in corrosion resistivity and creep characteristic
JP3510211B2 (en) * 1999-03-29 2004-03-22 フラマトム アンプ ゲゼルシャフト ミット ベシュレンクテル ハフツング Cladding tube for fuel rod of pressurized water reactor and method of manufacturing the cladding tube
KR100831578B1 (en) * 2006-12-05 2008-05-21 한국원자력연구원 Zirconium alloy compositions having excellent corrosion resistance for nuclear applications and preparation method thereof
KR100754477B1 (en) * 2007-03-26 2007-09-03 한국원자력연구원 Zr-based Alloys Having Excellent Creep Resistance
KR100999387B1 (en) * 2008-02-29 2010-12-09 한국원자력연구원 Zirconium alloy compositions having excellent corrosion resistance by the control of various metal-oxide and precipitate and preparation method thereof
KR101341135B1 (en) * 2011-05-11 2013-12-13 충남대학교산학협력단 Zirconium alloy having excellent mechanical properties and corrosion resistance for nuclear fuel rod cladding tube
CN103409661B (en) * 2013-07-31 2015-09-23 中科华核电技术研究院有限公司 For the zirconium-niobium alloy of reactor nuclear fuel assembly
CN103589910B (en) * 2013-09-05 2016-05-25 上海大学 The zirconium ferrocolumbium of sulfur-bearing for fuel for nuclear power plant involucrum

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002332533A (en) * 2001-05-07 2002-11-22 Korea Atom Energ Res Inst Zirconium alloy nuclear fuel clad tube having excellent corrosion resistance and mechanical property, and production method therefor
JP2003149365A (en) * 2001-11-02 2003-05-21 Korea Atom Energ Res Inst Manufacturing method of niobium-containing zircalloy nuclear fuel cladding with excellent corrosion resistance
JP2006214001A (en) * 2005-02-07 2006-08-17 Korea Atom Energ Res Inst Zirconium based alloy composite having excellent creep resistance

Also Published As

Publication number Publication date
CN107438675B (en) 2020-04-07
WO2016167397A1 (en) 2016-10-20
EP3284836A1 (en) 2018-02-21
CN107438675A (en) 2017-12-05
JP6588104B2 (en) 2019-10-09
EP3284836B1 (en) 2020-07-01
KR101604105B1 (en) 2016-03-16
EP3284836A4 (en) 2018-09-26
US20160304991A1 (en) 2016-10-20

Similar Documents

Publication Publication Date Title
JP6588104B2 (en) Zirconium alloy having excellent corrosion resistance and creep resistance, and method for producing the same
JP4455603B2 (en) Zirconium alloy composition for nuclear power and manufacturing method thereof
US9099205B2 (en) Zirconium alloys for a nuclear fuel cladding having a superior oxidation resistance in a reactor accident condition, zirconium alloy nuclear fuel claddings prepared by using thereof and methods of preparing the same
US11195628B2 (en) Method of manufacturing a corrosion-resistant zirconium alloy for a nuclear fuel cladding tube
KR101378066B1 (en) Zirconium alloys for nuclear fuel cladding, having a superior corrosion resistance by reducing the amount of alloying elements, and the preparation method of zirconium alloys nuclear fuel claddings using thereof
JP6535752B2 (en) Manufacturing method of zirconium component for nuclear fuel applying multistage hot rolling
US9111650B2 (en) Zirconium alloys for a nuclear fuel cladding having a superior oxidation resistance in a severe reactor operation condition and methods of preparing a zirconium alloy nuclear cladding by using thereof
KR20080065749A (en) Zirconium alloys having excellent resistance property in both water and steam reaction
KR20140118949A (en) Zirconium alloys for nuclear fuel cladding, having a superior oxidation resistance in a severe reactor operation conditions, and the preparation method of zirconium alloys nuclear fuel claddings using thereof
KR20130098622A (en) Zirconium alloys for nuclear fuel claddings, having a superior oxidation resistance in the high temperature pressurized water and steam, and the preparation method of zirconium alloys nuclear fuel claddings using thereof
KR20090079866A (en) Zirconium alloys having excellent resistance property in both water and steam reaction
KR100296952B1 (en) New zirconium alloys for fuel rod cladding and process for manufacturing thereof
KR20140120290A (en) Zirconium alloys for nuclear fuel claddings having a superior oxidation resistance in the reactor accident conditions, zirconium alloy nuclear fuel claddings prepared by using thereof and method of preparing the same
KR101088111B1 (en) Zirconium alloy compositions having excellent corrosion resistance and creep resistance
KR20080097380A (en) Zirconium alloys having excellent resistance property in both water and steam reaction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181016

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190911

R150 Certificate of patent or registration of utility model

Ref document number: 6588104

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250