JP2006214001A - Zirconium based alloy composite having excellent creep resistance - Google Patents

Zirconium based alloy composite having excellent creep resistance Download PDF

Info

Publication number
JP2006214001A
JP2006214001A JP2005161111A JP2005161111A JP2006214001A JP 2006214001 A JP2006214001 A JP 2006214001A JP 2005161111 A JP2005161111 A JP 2005161111A JP 2005161111 A JP2005161111 A JP 2005161111A JP 2006214001 A JP2006214001 A JP 2006214001A
Authority
JP
Japan
Prior art keywords
alloy
zirconium
ppm
composition
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005161111A
Other languages
Japanese (ja)
Other versions
JP4099493B2 (en
Inventor
Hwan Jeong Yong
ファン・チョン ヨン
Jong Hyuk Baek
ヒュク・ベク チョン
Kwon Choi Byoung
クウォン・チョイ ビョン
Sang Yoon Park
ヨーン・パク サン
Ho Lee Myung
ホ・リー ミュン
Je Geon Bang
ケオン・バン チェ
Jeong Yong Park
ヨン・パク チョン
Jun Hwan Kim
ファン・キム チュン
Gil Kim Hyun
ギル・キム ヒュン
Ho Jung Youn
ホー・チュン ヨウン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Korea Atomic Energy Research Institute KAERI
Korea Hydro and Nuclear Power Co Ltd
Original Assignee
Korea Atomic Energy Research Institute KAERI
Korea Hydro and Nuclear Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Korea Atomic Energy Research Institute KAERI, Korea Hydro and Nuclear Power Co Ltd filed Critical Korea Atomic Energy Research Institute KAERI
Publication of JP2006214001A publication Critical patent/JP2006214001A/en
Application granted granted Critical
Publication of JP4099493B2 publication Critical patent/JP4099493B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C16/00Alloys based on zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/186High-melting or refractory metals or alloys based thereon of zirconium or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a zirconium based alloy composite having an excellent creep resistance. <P>SOLUTION: The zirconium based alloy composite is finally heat-treated to have the degree of recrystallization in the range of 40 to 70% in order to improve the creep resistance. The zirconium based alloy comprises 0.8 to 1.8 wt.% niobium; 0.38 to 0.50 wt.% tin; one or more elements selected from 0.1 to 0.2 wt.% iron, 0.05 to 0.15% copper, and 0.12 wt.% chromium; 0.10 to 0.15 wt.% oxygen; 0.006 to 0.010 wt.% carbon; 0.006 to 0.010 wt.% silicon; 0.0005 to 0.0020 wt.% sulfur; and the balance zirconium. The zirconium alloy manufactured with the composition in accordance with the present invention has an excellent creep resistance compared to a conventional Zircaloy-4, and may effectively be used as a nuclear cladding tube, supporting lattice and inner structures of reactor core in the nuclear power plant utilizing a light or heavy water reactor. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、耐クリープ性が優れたジルコニウム合金組成物に関するもので、より詳細には、耐クリープ性を向上させるために再結晶度が40乃至70%になるように最終熱処理したニオブ(Nb)0.8〜1.8重量%;スズ(Sn)0.38〜0.50重量%;及び/または鉄(Fe)0.1〜0.2重量%、銅(Cu)0.05〜0.15重量%、クロム(Cr)0.12重量%の中から選択された一つ以上の元素;酸素(O)0.10〜0.15重量%;炭素(C)0.006〜0.010重量%;ケイ素(Si)0.006〜0.010重量%;イオウ(S)0.0005〜0.0020重量%;及びジルコニウム残部(Zr)を含むジルコニウム合金組成物に関するものである。   The present invention relates to a zirconium alloy composition having excellent creep resistance. More specifically, the present invention relates to niobium (Nb) that has been subjected to a final heat treatment so that the recrystallization degree is 40 to 70% in order to improve creep resistance. 0.8 to 1.8% by weight; tin (Sn) 0.38 to 0.50% by weight; and / or iron (Fe) 0.1 to 0.2% by weight; copper (Cu) 0.05 to 0 One or more elements selected from 15% by weight, chromium (Cr) 0.12% by weight; oxygen (O) 0.10 to 0.15% by weight; carbon (C) 0.006 to 0.005. The present invention relates to a zirconium alloy composition comprising: 010 wt%; silicon (Si) 0.006 to 0.010 wt%; sulfur (S) 0.0005 to 0.0020 wt%; and zirconium balance (Zr).

原子力発電所核燃料被覆管は、核燃料を閉じこめて核分裂生成物が冷却水に流入することを防ぐ重要な炉心部品中の一つである。核燃料被覆管の外部は、約15MPa圧力下の320℃冷却水に露出している。核燃料被覆管は、高温/高圧の腐食環境と中性子の照射によって臭化及び成長現象による機械的性質の低下を伴うので合金組成が非常に重要である。それで、高温での機械的強度、耐クリープ性(creep resistance)、耐腐食性、及び熱伝導性が優秀で、中性子吸収性が少ないジルコニウム系合金(例、Zircaloy−4)が、1960年代初めに開発されて現在まで広く使われている。   Nuclear power plant nuclear fuel cladding is one of the key core components that confine nuclear fuel and prevent fission products from flowing into cooling water. The outside of the nuclear fuel cladding tube is exposed to 320 ° C. cooling water under a pressure of about 15 MPa. Since the nuclear fuel cladding tube is accompanied by deterioration of mechanical properties due to bromination and growth phenomenon due to high temperature / high pressure corrosive environment and neutron irradiation, the alloy composition is very important. Thus, zirconium-based alloys (eg, Zircaloy-4) with excellent mechanical strength, creep resistance, corrosion resistance, and thermal conductivity at low temperatures and low neutron absorption were introduced in the early 1960s. Developed and used widely until now.

しかし、原子力発電所の経済性を高めるための高燃焼度、長周期運転、高温冷却材及び高いpH運転などにより、既存のジルカロイ−4(Zircaloy−4)被覆管を継続して核燃料被覆管として使用しにくい現実である。   However, the existing Zircaloy-4 cladding tube will continue as a nuclear fuel cladding tube due to high burn-up, long period operation, high temperature coolant and high pH operation to improve the economic efficiency of nuclear power plants. It is a reality that is difficult to use.

したがって、原子炉の安全性と経済性向上のために破損信頼度と熱的余裕度が大きく向上した新しい核燃料被覆管が要求されている。このために耐食性と耐クリープ性を向上させた新合金被覆管が開発されている。新たに開発されている新型被覆管用新合金は、耐食性に悪影響を及ぼすSnの含量を減らしたり排除したりしてNbを添加する傾向である。   Therefore, there is a demand for a new nuclear fuel cladding tube with greatly improved damage reliability and thermal margin in order to improve the safety and economic efficiency of the nuclear reactor. Therefore, a new alloy cladding tube with improved corrosion resistance and creep resistance has been developed. Newly developed new alloys for new cladding tubes tend to add Nb by reducing or eliminating the Sn content which adversely affects corrosion resistance.

特許文献1では、Zrを96%(以下、%は重量%を意味する)以上含んだ、ジルコニウム合金にイオウを8〜100ppm添加して腐食抵抗性及び耐クリープ性を向上させたジルコニウム合金組成物と製造工程を開示している。上記特許で言及された合金組成は、イオウを8〜100ppm(好ましくは、8〜30ppm)添加して、Zrを96%以上含んだZr合金を独立項で請求しながら、下記の8種の合金を従属項で請求している。   In Patent Document 1, a zirconium alloy composition containing 96% or more of Zr (hereinafter,% means% by weight) and containing 8 to 100 ppm of sulfur to a zirconium alloy to improve corrosion resistance and creep resistance. And the manufacturing process. The alloy composition referred to in the above patent is composed of the following eight alloys while claiming a Zr alloy containing 96% or more of Zr to which 8 to 100 ppm (preferably 8 to 30 ppm) of sulfur is added. Is claimed in the dependent claims.

すなわち、合金1:Sn 1.2〜1.7%、Fe 0.18〜0.25%、Ni 0.05〜0.15%、Cr 0.05〜0.15%であるZr合金;
合金2:Sn 1.2〜1.7%、Fe 0.07〜0.2%、Ni 0.05〜0.15%、Cr 0.05〜0.15%であるZr合金;
合金3:Nb 0.7〜1.3%、O 900〜1600ppmであるZr合金;
合金4:Sn 0.3〜1.4%、Fe 0.4〜1%、V 0.2〜0.7%、O 500〜1800ppmであるZr合金;
合金5:Nb 0.7〜1.3%、Sn 0.8〜1.5%、Fe 0.1〜0.6%、Cr 0.01〜0.2%、O 500〜1800ppmであるZr合金;
合金6:Nb 0.1〜0.3%、Sn 0.7〜1.25%、Fe 0.1〜0.3%、Cr 0.05〜0.2%、Ni 0.01〜0.02%、O 500〜1800ppmであるZr合金;
合金7:Nb 2.2〜2.8%であるZr合金;及び
合金8:Sn 0.3〜0.7%、Fe 0.3〜0.7%、Cr 0.1〜0.4%、Ni 0.01〜0.04%、Si 70〜120ppm、O 500〜1800ppmであるZr合金を開示している。
That is, alloy 1: Zr alloy which is Sn 1.2-1.7%, Fe 0.18-0.25%, Ni 0.05-0.15%, Cr 0.05-0.15%;
Alloy 2: Zr alloy of Sn 1.2-1.7%, Fe 0.07-0.2%, Ni 0.05-0.15%, Cr 0.05-0.15%;
Alloy 3: Zr alloy with Nb 0.7-1.3% and O 900-1600 ppm;
Alloy 4: Zr alloy with Sn 0.3-1.4%, Fe 0.4-1%, V 0.2-0.7%, O 500-1800 ppm;
Alloy 5: Zr with Nb 0.7-1.3%, Sn 0.8-1.5%, Fe 0.1-0.6%, Cr 0.01-0.2%, O 500-1800 ppm alloy;
Alloy 6: Nb 0.1-0.3%, Sn 0.7-1.25%, Fe 0.1-0.3%, Cr 0.05-0.2%, Ni 0.01-0. Zr alloy that is 02%, O 500-1800 ppm;
Alloy 7: Zr alloy that is Nb 2.2-2.8%; and Alloy 8: Sn 0.3-0.7%, Fe 0.3-0.7%, Cr 0.1-0.4% , Ni 0.01-0.04%, Si 70-120 ppm, and O 500-1800 ppm are disclosed.

特許文献2では、再結晶熱処理を実施して析出物の組成及び大きさを制限して腐食抵抗性を向上させた下記の合金系組成物と製造工程に対して開示している。   Patent Document 2 discloses the following alloy-based composition and manufacturing process in which recrystallization heat treatment is performed to limit the composition and size of precipitates to improve corrosion resistance.

(Fe 0.03〜0.25%)+(Cr、V、Nb 0.8〜1.3%、Sn<2000ppm、O 500〜2000ppm、C<100ppm、S 3〜35ppm、Si<50ppmの中から少なくとも一つ以上)であるZr合金。   (Fe 0.03-0.25%) + (Cr, V, Nb 0.8-1.3%, Sn <2000 ppm, O 500-2000 ppm, C <100 ppm, S 3-35 ppm, Si <50 ppm Zr alloy that is at least one of

また、非特許文献1には、イオウを添加して熱的耐クリープ性を向上させた、Zr−1.0%NbとZr−0.5%Sn−0.6%Fe−0.4%V合金に対して言及しているし、同一雑誌の非特許文献2には、アンアロイド−Zr(unalloyed−Zr)にイオウを850ppmまで添加して生成された析出相と腐食特性間の関連性を説明している。   Non-Patent Document 1 discloses that Zr-1.0% Nb and Zr-0.5% Sn-0.6% Fe-0.4%, in which sulfur is added to improve thermal creep resistance. Reference is made to V alloy, and Non-Patent Document 2 of the same magazine describes the relationship between the precipitation phase produced by adding sulfur to 850 ppm to unalloyed-Zr and the corrosion characteristics. Explains.

上記の従来技術の他にも、特許文献3では、Sn減少による合金の機械的特性を維持するためにNbとFeを添加した合金を開示している。この合金は、0.45〜0.75%Sn(好ましくは、0.6%)、0.4〜0.53%Fe(好ましくは、0.45%)、0.2〜0.3%Cr(好ましくは、0.25%)、0.3〜0.5%Nb(好ましくは、0.45%)、0.012〜0.03%Ni(好ましくは、0.02%)、50〜200ppm Si(好ましくは、100ppm)、1000〜2000ppm酸素(好ましくは、1600ppm)で構成されている。ここで、Fe/Cr=1.5になるようにし、Nbの添加量は水素吸収性に影響を与えるFeの添加量によって決定し、Ni、Si、C、Oの添加量を調節して、合金が優れた腐食抵抗性と強度を持つようにした。特許文献4では、腐食抵抗性及び水素吸収抵抗性を向上させるために、1.0〜2.0%Sn、0.07〜0.70%Fe、0.05〜0.15%Cr、0.16〜0.40%Ni、0.015〜0.30%Nb(好ましくは、0.015〜0.20%)、0.002〜0.05%Si(好ましくは、0.015〜0.05%)、900〜1600ppm酸素からなる合金組成を開示している。特許文献5では、主にSn、N、Nbの添加量を調節し、0〜1.5%Sn(好ましくは、0.6%)、0〜0.24%Fe(好ましくは、0.12%)、0〜0.15%Cr(好ましくは、0.10%)、0〜2300ppm N、0〜100ppm Si(好ましくは、100ppm)、0〜1600ppm酸素(好ましくは、1200ppm)、0〜0.5%Nb(好ましくは、0.45%)で構成された合金組成を開示している。特許文献6では、中性子の照射環境で延性(ductility)とクリープ強度(creep strength)及び腐食抵抗性(corrosion resistance)を向上させる目的で開発されたジルコニウム合金組成に対して開示している。ここで、合金は、Sn 0.8〜1.2%、Fe 0.2〜0.5%(好ましくは、0.35%)、Cr 0.1〜0.4%(好ましくは、0.25%)、Nb 0〜0.6%、Si 50〜200(好ましくは、50ppm)、O 900〜1800ppm(好ましくは、1600ppm)の組成からなり、Siの添加量を変化させて水素吸収及び工程の差による腐食抵抗性の変化を減少させようとした。   In addition to the above prior art, Patent Document 3 discloses an alloy to which Nb and Fe are added in order to maintain the mechanical properties of the alloy due to Sn reduction. This alloy is 0.45-0.75% Sn (preferably 0.6%), 0.4-0.53% Fe (preferably 0.45%), 0.2-0.3% Cr (preferably 0.25%), 0.3-0.5% Nb (preferably 0.45%), 0.012-0.03% Ni (preferably 0.02%), 50 ˜200 ppm Si (preferably 100 ppm), 1000 to 2000 ppm oxygen (preferably 1600 ppm). Here, Fe / Cr = 1.5, the addition amount of Nb is determined by the addition amount of Fe that affects the hydrogen absorption, and the addition amounts of Ni, Si, C, and O are adjusted, The alloy was made to have excellent corrosion resistance and strength. In Patent Document 4, in order to improve corrosion resistance and hydrogen absorption resistance, 1.0 to 2.0% Sn, 0.07 to 0.70% Fe, 0.05 to 0.15% Cr, 0 .16 to 0.40% Ni, 0.015 to 0.30% Nb (preferably 0.015 to 0.20%), 0.002 to 0.05% Si (preferably 0.015 to 0) .05%), an alloy composition comprising 900-1600 ppm oxygen is disclosed. In Patent Document 5, the addition amount of Sn, N, and Nb is mainly adjusted, and 0 to 1.5% Sn (preferably 0.6%), 0 to 0.24% Fe (preferably 0.12). %), 0-0.15% Cr (preferably 0.10%), 0-2300 ppm N, 0-100 ppm Si (preferably 100 ppm), 0-1600 ppm oxygen (preferably 1200 ppm), 0-0 An alloy composition composed of 0.5% Nb (preferably 0.45%) is disclosed. Patent Document 6 discloses a zirconium alloy composition developed for the purpose of improving ductility, creep strength, and corrosion resistance in a neutron irradiation environment. Here, the alloy is Sn 0.8-1.2%, Fe 0.2-0.5% (preferably 0.35%), Cr 0.1-0.4% (preferably 0.8. 25%), Nb 0-0.6%, Si 50-200 (preferably 50 ppm), O 900-1800 ppm (preferably 1600 ppm), and the amount of Si added to change the hydrogen absorption and process An attempt was made to reduce the change in corrosion resistance due to the difference between the two.

特許文献7では、2重形態(Duplex)の被覆管を開示している。、このジルコニウム合金は、0.1〜0.3%Sn、0.05〜0.2%Fe、0.05〜0.4%Nb、CrとNi中の一つまたはふたつの含量0.03〜0.1%で構成された。ここで、Fe+Cr+Niの含量は、0.25%を超過してはならず、酸素は300〜1200ppm含まれた。特許文献8または特許文献9では、高燃焼度で合金の腐食抵抗性を向上させるために、0〜0.6%Nb、0〜0.2%Sb、0〜0.2%Te、0.5〜1.0%Sn、0.18〜0.24%Fe、0.07〜0.13%Cr、900〜2000ppmO、0〜70ppmNi、0〜200ppmCで構成されたジルコニウム合金を開示している。ここで、析出物の大きさは、1200〜1800Åに制限し、TeやSbの代りにBiを0.2%まで添加することもできると報告している。これと類似成分のジルコニウム合金組成物が、特許文献10に開示されたが、この合金は、Nb 0〜0.6%、Mo 0〜0.1%、Sn 1.2〜1.70%、Fe 0.07〜0.24%、Cr 0.05〜0.13%、Ni 0〜0.08%、O 900〜1800ppmの組成で成り立っている。特許文献11では、合金の腐食抵抗性、照射安全性、機械的強度及び耐クリープ性を向上させるための組成として、Nb 0〜0.6%、Sn 0.8〜1.2%、Fe 0.2〜0.5%(好ましくは、0.35%)、Cr 0.1〜0.4%(好ましくは、0.25%)、Si 50〜200ppm(好ましくは、100ppm)、O 900〜1800ppm(好ましくは、1600ppm)であるジルコニウム合金を開示している。特許文献12では、NbとVが一緒に添加されたジルコニウム合金として、Fe 0.1〜0.35%、V 0.1〜0.4%、O 0.05〜0.3%、Sn 0〜0.25%、Nb 0〜0.25%、V/Fe>0.5の組成と、この組成を使った最適の合金製造工程を開示している。   Patent Document 7 discloses a double-type (Duplex) cladding tube. This zirconium alloy has a content of 0.1 to 0.3% Sn, 0.05 to 0.2% Fe, 0.05 to 0.4% Nb, one or two in Cr and Ni, 0.03. It was composed of ~ 0.1%. Here, the content of Fe + Cr + Ni should not exceed 0.25%, and oxygen was contained in 300 to 1200 ppm. In Patent Document 8 or Patent Document 9, 0 to 0.6% Nb, 0 to 0.2% Sb, 0 to 0.2% Te,. A zirconium alloy composed of 5-1.0% Sn, 0.18-0.24% Fe, 0.07-0.13% Cr, 900-2000 ppmO, 0-70 ppm Ni, 0-200 ppmC is disclosed. . Here, it is reported that the size of the precipitate is limited to 1200 to 1800 mm, and Bi can be added up to 0.2% instead of Te or Sb. A zirconium alloy composition having similar components to this is disclosed in Patent Document 10, but this alloy contains Nb 0 to 0.6%, Mo 0 to 0.1%, Sn 1.2 to 1.70%, The composition is composed of Fe 0.07 to 0.24%, Cr 0.05 to 0.13%, Ni 0 to 0.08%, and O 900 to 1800 ppm. In Patent Document 11, Nb 0 to 0.6%, Sn 0.8 to 1.2%, Fe 0 as compositions for improving the corrosion resistance, irradiation safety, mechanical strength and creep resistance of alloys. 0.2-0.5% (preferably 0.35%), Cr 0.1-0.4% (preferably 0.25%), Si 50-200 ppm (preferably 100 ppm), O 900- A zirconium alloy that is 1800 ppm (preferably 1600 ppm) is disclosed. In Patent Document 12, as a zirconium alloy in which Nb and V are added together, Fe 0.1 to 0.35%, V 0.1 to 0.4%, O 0.05 to 0.3%, Sn 0 A composition of ˜0.25%, Nb of 0 to 0.25%, V / Fe> 0.5 and an optimal alloy manufacturing process using this composition are disclosed.

特許文献13では、合金の機械的強度とノデュラ(nodular)腐食抵抗性を向上させるため、Nb 1.7〜2.5%、Sn 0.5〜2.2%、Fe 0.04〜1.0%であるZr合金を開示し、ここで、Fe+Moの添加量を0.2〜1.0%に制限した。特許文献14でもノデュラ腐食抵抗性を向上させるため、Zr−Sn−Fe−V合金を含めたNbが添加された合金を開示している。すなわち、Zr 0.25〜1.5%、Nb 0.15〜1.0%、Feからなる合金組成物とZr 0.25〜1.5%、Nb 0.5〜1.0%、Sn 0.05〜0.15%、Niからなる合金組成物を提案した。特許文献15では、Zr 0.2〜2.0%、Nb 0.5〜3.0%、Sn 900〜2500ppm、Oからなる3元系合金を開示している。特許文献16では、腐食抵抗性と延性及び強度を向上させるために、Nb 1〜2.5%、Sn 0.5〜2.0%、Mo 0.1〜1.0%、Mo+Nb 1.5〜2.5%である合金組成を開示していて、α+βまたはβ領域で溶体化処理などの方法による製造工程を提案し、特許文献13でも、Feが追加されたことを除き類似の組成を、すなわちNb 1.7〜2.5%、Sn 0.5〜2.2%、Fe 0.04〜1.0%、Mo 0.2〜1.0%、Fe+Mo 0.2〜1.0%の組成を開示している。   In Patent Document 13, Nb 1.7 to 2.5%, Sn 0.5 to 2.2%, and Fe 0.04 to 1.0.0 are used in order to improve the mechanical strength and the nodular corrosion resistance of the alloy. A 0% Zr alloy was disclosed, where the Fe + Mo addition was limited to 0.2-1.0%. Patent Document 14 also discloses alloys to which Nb including Zr—Sn—Fe—V alloy is added in order to improve the nodular corrosion resistance. That is, Zr 0.25 to 1.5%, Nb 0.15 to 1.0%, an alloy composition made of Fe and Zr 0.25 to 1.5%, Nb 0.5 to 1.0%, Sn An alloy composition comprising 0.05 to 0.15% Ni was proposed. Patent Document 15 discloses a ternary alloy composed of Zr 0.2 to 2.0%, Nb 0.5 to 3.0%, Sn 900 to 2500 ppm, and O. In Patent Document 16, in order to improve corrosion resistance, ductility and strength, Nb 1 to 2.5%, Sn 0.5 to 2.0%, Mo 0.1 to 1.0%, Mo + Nb 1.5 An alloy composition of ~ 2.5% is disclosed, and a manufacturing process by a solution treatment method such as solution treatment in the α + β or β region is proposed, and Patent Document 13 also has a similar composition except that Fe is added. That is, Nb 1.7 to 2.5%, Sn 0.5 to 2.2%, Fe 0.04 to 1.0%, Mo 0.2 to 1.0%, Fe + Mo 0.2 to 1.0 % Composition is disclosed.

特許文献17、特許文献18、特許文献19及び特許文献20では、0.5〜2.0%Snと約0.5〜1.0%の他の溶質原子が入っているZr合金を開示している。この合金には、また、0.09〜0.16%の酸素が含有されている。詳細には、特許文献17の合金は、Sn以外の他の溶質原子としてMo、Te、それらの混合物またはNb−Te、Nb−Moを含んでいる。特許文献18の合金組成物は、Cu、Ni、Fe等を溶質原子として含んでいる。その含量は、0.24〜0.40%に制限し、Cuは最小0.05%以上添加した。特許文献19と特許文献20では、Mo、Nb、Te等を溶質原子として添加し、その添加量は特許文献17と等しく0.5〜1.0%に制限し、BiまたはBi+Snを0.5〜2.5%で添加した。   Patent Literature 17, Patent Literature 18, Patent Literature 19 and Patent Literature 20 disclose Zr alloys containing 0.5 to 2.0% Sn and about 0.5 to 1.0% of other solute atoms. ing. This alloy also contains 0.09 to 0.16% oxygen. Specifically, the alloy of Patent Document 17 contains Mo, Te, a mixture thereof, or Nb—Te, Nb—Mo as solute atoms other than Sn. The alloy composition of Patent Document 18 contains Cu, Ni, Fe, and the like as solute atoms. The content was limited to 0.24 to 0.40%, and Cu was added at least 0.05%. In Patent Document 19 and Patent Document 20, Mo, Nb, Te or the like is added as a solute atom, and the amount of addition is limited to 0.5 to 1.0% as in Patent Document 17, and Bi or Bi + Sn is set to 0.5. Added at ~ 2.5%.

特許文献21では、従来のジルカロイ−4を改善して腐食抵抗性がより向上した合金を開発しようとしたが、Snの添加量を0〜0.8%に減少させて0〜0.3%のVと0〜1%のNbを添加した。この時、Feの添加量は0.2〜0.8%、Crの添加量は0〜0.4%で、Fe+Cr+Vの添加量は0.25〜1.0%に制限した。また、酸素の添加量は1000〜1600ppmであった。0.8%Sn−0.22%Fe−0.11%Cr−0.14%O、0.4%Nb−0.67%Fe−0.33%Cr−0.15%O、0.75%Fe−0.25%V−0.1%Oまたは、0.25%Sn−0.2%Fe−0.15%V−0.1%Oの組成を持った合金に対して400℃蒸気雰囲気で200日間腐食試験をした時、腐食量はジルカロイ−4の約60%程度で優秀であり、引伸強度はジルカロイ−4と似ていた。   In Patent Document 21, an attempt was made to develop an alloy with improved corrosion resistance by improving the conventional Zircaloy-4. However, the amount of Sn added was reduced to 0 to 0.8% and 0 to 0.3%. V and 0-1% Nb were added. At this time, the addition amount of Fe was 0.2 to 0.8%, the addition amount of Cr was 0 to 0.4%, and the addition amount of Fe + Cr + V was limited to 0.25 to 1.0%. The amount of oxygen added was 1000 to 1600 ppm. 0.8% Sn-0.22% Fe-0.11% Cr-0.14% O, 0.4% Nb-0.67% Fe-0.33% Cr-0.15% O, 0. 400% for alloys with a composition of 75% Fe-0.25% V-0.1% O or 0.25% Sn-0.2% Fe-0.15% V-0.1% O When a corrosion test was conducted in a steam atmosphere at 200 ° C. for 200 days, the corrosion amount was about 60% of Zircaloy-4 and excellent, and the tensile strength was similar to that of Zircaloy-4.

特許文献22または特許文献23では、耐腐食性が向上した核燃料被覆管材料を開発するために既存のジルカロイ−4で合金成分を修正した。すなわち、Snの含量を減らして、Nbを添加してSn減少による強度減少を補って窒素の量を60ppm以下にした。詳細には、Sn 0.2〜1.15%、Fe 0.19〜0.6%(好ましくは、0.19〜0.24%)、Cr 0.07〜0.4%(好ましくは、0.07〜0.13%)、Nb 0.05〜0.5%、N≦60ppmで構成されたZr合金であった。また、特許文献24では、Nb、Ta、V、Moを添加して既存のジルカロイ−4の合金成分を調節したが、詳細には、Sn 0.2〜0.9%、Fe 0.18〜0.6%、Cr 0.07〜0.4%、Nb 0.05〜0.5%、Ta 0.01〜0.2%、V 0.05〜1%、Mo 0.05〜1%からなるZr合金を提示した。特許文献25または特許文献26でも、従来のジルカロイ−4合金成分において、Sn、Fe、Crだけではなく、さらにTaを添加してNbを選択的に添加したZr合金、すなわちSn 0.2〜1.15%、Fe 0.19〜0.6%(好ましくは、0.19〜0.24%)、Cr 0.07〜0.4%(好ましくは、0.07〜0.13%)、Ta 0.01〜0.2%、Nb 0.05〜0.5%、N≦60ppmからなる合金組成物を開示している。特許文献27でも、これと類似組成のZr合金を提示した。詳細には、Sn 0.2〜1.7%、Fe 0.18〜0.6%、Cr 0.07〜0.4%、Nb 0.05〜1.0%、選択的にTa 0.01〜0.1%、N<60ppmからなり、また組成による熱処理変数を提示した。   In Patent Document 22 or Patent Document 23, the alloy components were modified with existing Zircaloy-4 in order to develop a nuclear fuel cladding material with improved corrosion resistance. That is, the amount of nitrogen was reduced to 60 ppm or less by reducing the Sn content and adding Nb to compensate for the decrease in strength due to the decrease in Sn. Specifically, Sn 0.2 to 1.15%, Fe 0.19 to 0.6% (preferably 0.19 to 0.24%), Cr 0.07 to 0.4% (preferably 0.07 to 0.13%), Nb 0.05 to 0.5%, and N ≦ 60 ppm. In Patent Document 24, Nb, Ta, V, and Mo were added to adjust the existing alloy components of Zircaloy-4. Specifically, Sn 0.2 to 0.9%, Fe 0.18 to 0.6%, Cr 0.07 to 0.4%, Nb 0.05 to 0.5%, Ta 0.01 to 0.2%, V 0.05 to 1%, Mo 0.05 to 1% A Zr alloy consisting of Even in Patent Document 25 or Patent Document 26, in a conventional Zircaloy-4 alloy component, not only Sn, Fe, Cr but also a Zr alloy in which Ta is further added and Nb is selectively added, that is, Sn 0.2-1 .15%, Fe 0.19 to 0.6% (preferably 0.19 to 0.24%), Cr 0.07 to 0.4% (preferably 0.07 to 0.13%), An alloy composition comprising Ta 0.01-0.2%, Nb 0.05-0.5%, and N ≦ 60 ppm is disclosed. Patent Document 27 also presented a Zr alloy having a composition similar to this. Specifically, Sn 0.2 to 1.7%, Fe 0.18 to 0.6%, Cr 0.07 to 0.4%, Nb 0.05 to 1.0%, and Ta 0. It consisted of 01-0.1%, N <60 ppm, and presented heat treatment variables depending on composition.

特許文献28では、0.5〜1.5%Nb、0.9〜1.5%Sn、0.3〜0.6%Fe、0.005〜0.2%Cr、0.005〜0.04%C、0.05〜0.15%O、0.005〜0.015%Siからなる合金組成を開示している。ここで、SnやFeを含んだ析出相(Zr(Nb、Fe)、Zr(Fe、Cr、Nb)、(Zr、Nb)Fe)間の距離を0.20〜0.40μmにして、Feを含んだ析出相を全体析出相の60体積%に制限した。 In Patent Document 28, 0.5 to 1.5% Nb, 0.9 to 1.5% Sn, 0.3 to 0.6% Fe, 0.005 to 0.2% Cr, 0.005 to 0 An alloy composition comprising 0.04% C, 0.05-0.15% O, 0.005-0.015% Si is disclosed. Here, the distance between the precipitated phases containing Sn and Fe (Zr (Nb, Fe) 2 , Zr (Fe, Cr, Nb), (Zr, Nb) 3 Fe) is set to 0.20 to 0.40 μm. The precipitation phase containing Fe was limited to 60% by volume of the total precipitation phase.

特許文献29では、腐食抵抗性を向上させるための合金組成と析出相の大きさを提案した。詳細には、合金組成物は、0.5〜2.0%Sn、0.05〜0.3%Fe、0.05〜0.3%Cr、0.05〜0.15%Ni、0.05〜0.2%O、0〜1.2%Nb及び残部Zrからなり、析出物の平均サイズは0.5μm以下に制限した。特許文献30では、α−領域で熱間/冷間加工中に導入する熱処理変数を提示し、また、Sn 0.4〜1.7%、Fe 0.25〜0.75%、Cr 0.05〜0.30%、Ni 0〜0.10%、Nb 0〜1.0%からなるZr合金を提示した。特許文献31では、高温で応力腐食亀裂(Stress corrosion cracking)と水素吸収による合金の2次損傷を減少させるために、Nb 0.05〜0.75%とSi 0〜0.02%を含んだSn−Fe−Cr−Niで内側層(inner layer)からなる2重構造のZr合金を提示した。特許文献32では、ノデュラ腐食を防止するために0.5〜1.7%Sn、0.1〜0.3%Fe、0.05〜0.02%Cr、0.05〜0.2%Cu、0.01〜1.0%Nb、0.01〜0.20%NiからなるZr合金を提示した。特許文献33では、合金の加工性と耐食性を向上させるために、Sn 0.3〜0.7%、Fe 0.2〜0.25%、Cr 0.1〜0.15%、Nb 0.05〜0.20%からなるZr合金を提示した。   In Patent Document 29, an alloy composition and a size of a precipitated phase for improving corrosion resistance are proposed. Specifically, the alloy composition is 0.5-2.0% Sn, 0.05-0.3% Fe, 0.05-0.3% Cr, 0.05-0.15% Ni, 0 0.05 to 0.2% O, 0 to 1.2% Nb and the balance Zr, and the average size of the precipitates was limited to 0.5 μm or less. In Patent Document 30, heat treatment variables introduced during hot / cold working in the α-region are presented, and Sn 0.4 to 1.7%, Fe 0.25 to 0.75%, Cr 0. A Zr alloy consisting of 05-0.30%, Ni 0-0.10%, Nb 0-1.0% was presented. Patent Document 31 includes 0.05 to 0.75% Nb and 0 to 0.02% Si in order to reduce secondary damage of the alloy due to stress corrosion cracking and hydrogen absorption at high temperatures. A Zr alloy having a double structure composed of an inner layer of Sn—Fe—Cr—Ni was presented. In Patent Document 32, in order to prevent nodular corrosion, 0.5 to 1.7% Sn, 0.1 to 0.3% Fe, 0.05 to 0.02% Cr, 0.05 to 0.2% A Zr alloy composed of Cu, 0.01 to 1.0% Nb, 0.01 to 0.20% Ni was presented. In Patent Document 33, in order to improve the workability and corrosion resistance of the alloy, Sn 0.3 to 0.7%, Fe 0.2 to 0.25%, Cr 0.1 to 0.15%, Nb 0. A Zr alloy consisting of 05-0.20% was presented.

特許文献34では、Zr−Nbからなる2元系合金において、Nbの含量を1〜2.5%に制限し、合金の製造工程中に導入する熱処理温度を提示した。ここで、Nbを含んだ第2相は均一に分布されなければならず、その大きさは800Å以下に維持されなければならない。特許文献35では、0.5〜2.0%Nb、0.7〜1.5%Sn、Fe、Ni、Crの中から一つ以上を0.07〜0.28%で有する合金を提示し、多くの製造過程を利用して材料のクリープ特性を調節することができるとした。ここで、製造過程の特徴の一つは、中盤にβ−急冷熱処理を導入することである。   In Patent Document 34, in a binary alloy composed of Zr—Nb, the Nb content is limited to 1 to 2.5%, and a heat treatment temperature introduced during the manufacturing process of the alloy is presented. Here, the second phase containing Nb must be uniformly distributed, and the size thereof must be maintained at 800 cm or less. Patent Document 35 presents an alloy having 0.07 to 0.28% of one or more of 0.5 to 2.0% Nb, 0.7 to 1.5% Sn, Fe, Ni, and Cr. The creep characteristics of the material can be adjusted using many manufacturing processes. Here, one of the features of the manufacturing process is to introduce β-quenching heat treatment in the middle stage.

このように、ジルコニウム合金に対しては、ジルカロイ−4等様々な方向で研究が進められた。しかし、現在の原子力発電所は、経済的な効率を向上させるために運転条件が苛酷になり、従来のジルカロイ−4等で製造された核燃料被覆管は使用限界に到逹していて、より優れた耐クリープ性を持った新しいジルコニウム合金の開発が必要である。   As described above, research has been conducted on zirconium alloys in various directions such as Zircaloy-4. However, the current nuclear power plant has severe operating conditions to improve economic efficiency, and the conventional nuclear fuel cladding tube manufactured with Zircaloy-4 or the like has reached the limit of use and is more excellent. It is necessary to develop new zirconium alloys with high creep resistance.

以上のことに鑑みて、本発明者らは、より優れた耐クリープ性を持った新しいジルコニウム合金を開発するために熱心に研究する中、再結晶度を適切に調節させた新しい組成のジルコニウム合金を開発することにより、ジルコニウム合金の耐クリープ性を向上させることができることを見出して本発明を完成した。
米国特許第5、832、050号 米国公開第2004/0118491号 米国特許第5、254、308号 米国特許第5、334、345号 米国特許第5、366、690号 米国特許第5、211、774号 欧州特許第195、155号 欧州特許第468、093号 米国特許第5、080、861号 欧州特許第345、531号 欧州特許第532、830号 フランス特許第2、624、136号 特開昭62−180027号 特開平02−213437号 特開昭62−207835号 特開昭62−297449号 米国特許第4、863、685号 米国特許第4、986、975号 米国特許第5、024、809号 米国特許第5、026、516号 米国特許第4、938、920号 米国特許第4、963、323号 特開平01−188646号 米国特許第5、017、336号 米国特許第5、196、163号 特開昭63−035751号 フランス特許第2、769、637号 米国特許第5、560、790号 特開平05−214500号 特開平08−086954号 特開平08−114688号 特開平09−111379号 特開平10−273746号 欧州特許第198、570号 米国特許第5、125、985号 J.Nucl.Mater.,1998年,第255巻,78頁 J.Nucl.Mater.,2002年,第304巻,246頁
In view of the above, the present inventors have intensively researched to develop a new zirconium alloy with better creep resistance, while the zirconium alloy having a new composition in which the recrystallization degree is appropriately adjusted. As a result, it was found that the creep resistance of the zirconium alloy can be improved, thereby completing the present invention.
US Pat. No. 5,832,050 US Publication No. 2004/0118491 US Pat. No. 5,254,308 US Pat. No. 5,334,345 U.S. Pat. No. 5,366,690 US Pat. No. 5,211,774 European Patent No. 195,155 European Patent No. 468,093 US Pat. No. 5,080,861 European Patent No. 345,531 European Patent Nos. 532 and 830 French Patent No. 2,624,136 JP 62-180027 JP-A-02-213437 JP-A 62-207835 JP-A-62-297449 U.S. Pat. No. 4,863,685 U.S. Pat. No. 4,986,975 US Pat. No. 5,024,809 US Pat. No. 5,026,516 US Pat. No. 4,938,920 U.S. Pat. No. 4,963,323 Japanese Patent Laid-Open No. 01-188646 US Pat. No. 5,017,336 US Pat. No. 5,196,163 JP-A-63-035751 French Patent No. 2,769,637 US Pat. No. 5,560,790 JP 05-214500 A JP 08-086954 A JP 08-114688 JP 09-111379 A JP-A-10-273746 European Patent No. 198,570 US Pat. No. 5,125,985 J. et al. Nucl. Mater. 1998, 255, 78. J. et al. Nucl. Mater. , 2002, 304, 246

本発明は、軽水炉及び重水炉原子力発電所内の核燃料被覆管及び炉心部品材料に使われる時、稼動中に発生するクリープ変形を最小化して既存の常用材料より安全性と経済性を倍加させることができる、耐クリープ性が優れたジルコニウム合金を提供することにその目的がある。   The present invention minimizes the creep deformation that occurs during operation when used for nuclear fuel cladding and core component materials in light water reactors and heavy water reactor nuclear power plants, doubling safety and economy over existing conventional materials. The object is to provide a zirconium alloy having excellent creep resistance.

上記の目的を達成するために、本発明はニオブ(Nb)0.8〜1.8重量%;スズ(Sn)0.38〜0.50重量%;及び/または鉄(Fe)0.1〜0.2重量%、銅(Cu)0.05〜0.15重量%、クロム(Cr)0.12重量%の中から選択された一つ以上の元素;酸素(O)0.10〜0.15重量%;炭素(C)0.006〜0.010重量%;ケイ素(Si)0.006〜0.010重量%;イオウ(S)0.0005〜0.0020重量%;及びジルコニウム残部(Zr)を含むジルコニウム合金組成物を提供する。   To achieve the above object, the present invention provides niobium (Nb) 0.8-1.8 wt%; tin (Sn) 0.38-0.50 wt%; and / or iron (Fe) 0.1 One or more elements selected from -0.2 wt%, copper (Cu) 0.05-0.15 wt%, chromium (Cr) 0.12 wt%; oxygen (O) 0.10 0.15 wt%; carbon (C) 0.006 to 0.010 wt%; silicon (Si) 0.006 to 0.010 wt%; sulfur (S) 0.0005 to 0.0020 wt%; and zirconium A zirconium alloy composition comprising the balance (Zr) is provided.

以下、本発明を詳しく説明する。
本発明は、ジルコニウム合金組成物を含む。
The present invention will be described in detail below.
The present invention includes a zirconium alloy composition.

本発明のジルコニウム合金組成物は、好ましくは、ニオブ0.8〜1.8重量%;銅0.05〜0.15重量%;酸素0.10〜0.15重量%;炭素0.006〜0.010重量%;ケイ素0.006〜0.010重量%;イオウ0.0005〜0.0020重量%;及びジルコニウム残部を含む。   The zirconium alloy composition of the present invention preferably comprises 0.8 to 1.8 wt% niobium; 0.05 to 0.15 wt% copper; 0.10 to 0.15 wt% oxygen; 0.006 to carbon 0.010 wt%; silicon 0.006 to 0.010 wt%; sulfur 0.0005 to 0.0020 wt%; and zirconium balance.

また、本発明のジルコニウム合金組成物は、ニオブ0.8〜1.8重量%;スズ0.38〜0.50重量%;酸素0.10〜0.15重量%;炭素0.006〜0.010重量%;ケイ素0.006〜0.010重量%;イオウ0.0005〜0.0020重量%;及びジルコニウム残部を含む。   Further, the zirconium alloy composition of the present invention comprises niobium 0.8 to 1.8% by weight; tin 0.38 to 0.50% by weight; oxygen 0.10 to 0.15% by weight; carbon 0.006 to 0%. 0.010% by weight; silicon 0.006-0.010% by weight; sulfur 0.0005-0.0020% by weight; and zirconium balance.

本発明のジルコニウム合金組成物において、該組成物はニオブ0.8〜1.8重量%;スズ0.38〜0.50重量%;酸素0.10〜0.15重量%;炭素0.006〜0.010重量%;ケイ素0.006〜0.010重量%;イオウ0.0005〜0.0020重量%;及びジルコニウム残部を含んだ組成以外に鉄0.1〜0.2重量%、銅0.05〜0.15重量%及びクロム0.12重量%中から選択された一つ以上の元素をさらに含むことができ、鉄0.1〜0.2重量%、銅0.05〜0.15重量%及びクロム0.12重量%の中から選択された一つ以上の元素をさらに含むことがより好ましい。   In the zirconium alloy composition of the present invention, the composition comprises niobium 0.8 to 1.8 wt%; tin 0.38 to 0.50 wt%; oxygen 0.10 to 0.15 wt%; carbon 0.006 -0.010 wt%; silicon 0.006-0.010 wt%; sulfur 0.0005-0.0020 wt%; and iron 0.1-0.2 wt% in addition to the composition containing zirconium balance, copper One or more elements selected from 0.05 to 0.15% by weight and chromium 0.12% by weight may be further included, iron 0.1 to 0.2% by weight, copper 0.05 to 0% More preferably, it further comprises one or more elements selected from 15% by weight and 0.12% by weight chromium.

本発明のジルコニウム合金組成物において、最終真空熱処理条件を最適に調節することにより、本発明による再結晶度が40〜70%範囲内に維持された上記のジルコニウム合金組成物を利用して耐クリープ性が非常に優れたジルコニウム合金を製造することができる。   In the zirconium alloy composition of the present invention, creep resistance is improved by using the above-described zirconium alloy composition in which the recrystallization degree is maintained within the range of 40 to 70% by optimally adjusting the final vacuum heat treatment conditions. Zirconium alloys with very good properties can be produced.

以下では本発明の合金組成物に使われた各合金元素の役目及び組成比の限定理由を詳細に説明する。   Hereinafter, the role of each alloy element used in the alloy composition of the present invention and the reason for limiting the composition ratio will be described in detail.

ニオブ(Nb)は、ジルコニウム合金の腐食抵抗性を向上させる役目をする。しかし、固溶度(約0.3〜0.6%)以上添加する場合には、析出物の組成と大きさを必ず制御することにより耐食性向上を期待することができる。固溶度以上Nbを添加すれば、析出強化による機械的特性にも良い効果があることが知られている。しかし、Nbの濃度が高くなって析出物が多量形成される場合、合金性能は熱処理条件に非常に敏感である。それで、本発明ではNbの含量を1.8重量%以下に限定して、0.8〜1.8重量%の範囲で含有されることが好ましい。   Niobium (Nb) serves to improve the corrosion resistance of the zirconium alloy. However, when the solid solubility (about 0.3 to 0.6%) or more is added, the corrosion resistance can be improved by always controlling the composition and size of the precipitate. It is known that if Nb is added at a solid solubility or higher, the mechanical properties by precipitation strengthening are also good. However, when the Nb concentration is high and a large amount of precipitates are formed, the alloy performance is very sensitive to heat treatment conditions. Therefore, in the present invention, the Nb content is preferably limited to 1.8% by weight or less, and is preferably contained in the range of 0.8 to 1.8% by weight.

スズ(Sn)は、ジルコニウム合金において、α相安定化元素として知られていて、固溶強化による機械的強度を向上させる作用をする。しかし、Snをまったく添加しなければ、LiOH腐食条件では非常に早い加速現象を現わしたりする。したがって、本発明でSnは、Nbの含量によって調節され耐食性減少に大きい影響を与えない0.38〜0.50重量%の範囲で含有することが好ましい。   Tin (Sn) is known as an α-phase stabilizing element in a zirconium alloy, and acts to improve mechanical strength by solid solution strengthening. However, if Sn is not added at all, a very rapid acceleration phenomenon appears under LiOH corrosion conditions. Therefore, in the present invention, Sn is preferably contained in the range of 0.38 to 0.50% by weight, which is controlled by the Nb content and does not significantly affect the corrosion resistance reduction.

鉄(Fe)は、合金の耐食性向上のために添加される主要元素で、本発明では0.05〜0.2重量%の範囲で添加することが好ましいが、0.1〜0.2重量%の範囲で含有することがより好ましい。   Iron (Fe) is a main element added to improve the corrosion resistance of the alloy. In the present invention, it is preferably added in the range of 0.05 to 0.2% by weight, but 0.1 to 0.2% by weight. It is more preferable to contain in the range of%.

クロム(Cr)は、Feと同じく合金の耐食性を増加させる主要元素で、本発明での好ましいCrの含量は、0.05〜0.2重量%の範囲であり、0.12重量%で含有することがより好ましい。   Chromium (Cr) is the main element that increases the corrosion resistance of the alloy like Fe, and the preferred Cr content in the present invention is in the range of 0.05 to 0.2% by weight, and is contained at 0.12% by weight. More preferably.

銅(Cu)は、Fe、Crと同じく合金の耐食性向上のために添加される主要元素で、特に微量添加した時の効果が優れている。したがって、本発明では0.05〜0.2重量%の範囲に限定するが、0.05〜0.15重量%の範囲で含有することがより好ましい。   Copper (Cu), like Fe and Cr, is a main element added for improving the corrosion resistance of the alloy, and is particularly effective when added in a trace amount. Therefore, in the present invention, it is limited to the range of 0.05 to 0.2% by weight, but it is more preferable to contain it in the range of 0.05 to 0.15% by weight.

酸素(O)は、固溶強化による機械的強度と耐クリープ性向上に寄与する役目をする。しかし、過度な量が添加されると加工上の問題を起こすため、本発明では1000〜1500ppm(0.1〜0.15重量%)範囲で含有することが好ましい。   Oxygen (O) plays a role of contributing to improvement of mechanical strength and creep resistance by solid solution strengthening. However, if an excessive amount is added, processing problems are caused. Therefore, in the present invention, it is preferably contained in the range of 1000 to 1500 ppm (0.1 to 0.15% by weight).

炭素(C)とケイ素(Si)は、水素吸収性を減らして腐食速度の遷移時間を遅延させる。また、耐食性と関連ある不純物元素で60〜100ppm(0.006〜0.010重量%)範囲で含有することが好ましい。   Carbon (C) and silicon (Si) reduce the hydrogen absorption and delay the transition time of the corrosion rate. Moreover, it is preferable to contain in the range of 60-100 ppm (0.006-0.010 weight%) with the impurity element relevant to corrosion resistance.

イオウ(S)は、30ppm以下では腐食特性に影響を及ぼさずに耐クリープ性向上に寄与する不純物元素である。イオウを0.0020重量%以上添加すればクリープ変形量はこれ以上減少しない。したがって、本発明で耐クリープ性を向上させるために添加するSは、6〜20ppm(0.0006〜0.0020重量%)範囲で含有することが好ましい。   Sulfur (S) is an impurity element that contributes to the improvement of creep resistance without affecting the corrosion characteristics at 30 ppm or less. If sulfur is added in an amount of 0.0020% by weight or more, the amount of creep deformation does not decrease any more. Therefore, it is preferable to contain S added in order to improve creep resistance in the present invention in a range of 6 to 20 ppm (0.0006 to 0.0020 wt%).

本発明の耐クリープ性が優れたジルコニウム合金は、再結晶度を40乃至70%の範囲に調節することにより製造できる。   The zirconium alloy having excellent creep resistance according to the present invention can be produced by adjusting the recrystallization degree to a range of 40 to 70%.

本発明の耐クリープ性が優れたジルコニウム合金は、本発明分野で通常的な方法で製造可能であるが、より好ましくは、β−熱処理と冷間加工を実施した後、再結晶度を40〜70%に調節しながら最終熱処理を行なうことにより製造できる。   The zirconium alloy having excellent creep resistance according to the present invention can be produced by a conventional method in the field of the present invention. More preferably, after performing β-heat treatment and cold working, the recrystallization degree is 40 to 40. The final heat treatment can be performed while adjusting to 70%.

本発明のジルコニウム合金組成物の詳細な製造方法は、上記本発明の組成を持つそれぞれのジルコニウム合金インゴットをβ領域で鍛造(forging)を行なって鋳塊組職を破壊する工程;合金組成を均質化するためにβ領域で溶体化熱処理を行なった後、急冷するβ−焼入れ(β−quenching)工程、ここで該β−焼入れ工程は基材金属内の析出物を均一に分布させて大きさを制御するために行なわれる;上記β−焼入れ(β−quenching)された材料を熱間圧延する工程;4回にわたる冷間加工と冷間加工間の真空熱処理を行なう工程;及び再結晶度を40〜70%に調節しながら最終真空熱処理を実施する工程から成り立つ。耐クリープ性を向上させるための上記最終真空熱処理工程は、金属の再結晶度モニターリングを通じて、該再結晶度が40〜70%になるように470℃〜570℃の温度範囲で3〜8時間行なうことが好ましい。   The detailed manufacturing method of the zirconium alloy composition of the present invention includes the step of forging each zirconium alloy ingot having the composition of the present invention in the β region to destroy the ingot structure; Β-quenching process in which solution heat treatment is performed in the β region and then rapidly cooled, and the β-quenching process is performed by uniformly distributing precipitates in the base metal. A step of hot rolling the β-quenched material; a step of performing a vacuum heat treatment between four cold working operations and a recrystallization degree; It consists of a step of performing the final vacuum heat treatment while adjusting to 40 to 70%. The final vacuum heat treatment step for improving the creep resistance is performed in the temperature range of 470 ° C. to 570 ° C. for 3 to 8 hours through the metal recrystallization degree monitoring so that the recrystallization degree is 40 to 70%. It is preferable to do so.

本発明のジルコニウム合金組成物は、その再結晶度を40〜70%に調節して耐クリープ性を向上させることができる。それで、本発明によるジルコニウム合金組成物は、優れた耐クリープ性を持つ。このように、クリープ変形を最小化することで既存の常用材料より安全性と経済性を倍加させることができる。したがって、本発明によるジルコニウム合金組成物は、軽水炉及び重水炉型原子力発電所の原子炉心内で核燃料被覆管、支持格子及び構造物材料として有用に使用することができる。また、本発明によるジルコニウム合金組成物を上記のような構造物の材料に使用することで、高燃焼度/長周期運転の原子炉心で核燃料棒の健全性を確保することができる。   The zirconium alloy composition of the present invention can improve the creep resistance by adjusting the recrystallization degree to 40 to 70%. Therefore, the zirconium alloy composition according to the present invention has excellent creep resistance. Thus, by minimizing creep deformation, safety and economy can be doubled compared to existing conventional materials. Therefore, the zirconium alloy composition according to the present invention can be usefully used as a nuclear fuel cladding tube, a supporting grid, and a structural material in the reactor cores of light water reactors and heavy water reactor type nuclear power plants. Further, by using the zirconium alloy composition according to the present invention as the material of the structure as described above, it is possible to ensure the soundness of the nuclear fuel rod in a high burnup / long cycle operation nuclear core.

以下、本発明を実施例によってさらに詳しく説明する。但し、下記の実施例は本発明を例示するためのもので、本発明の範囲が下記実施例によって制限されたり限定されたりするものではない。
実施例
Hereinafter, the present invention will be described in more detail by way of examples. However, the following examples are for illustrating the present invention, and the scope of the present invention is not limited or limited by the following examples.
Example

実施例1〜13:ジルコニウム合金の製造
Nbの含量を0.8%から1.8%まで、Nb含量を変化させた実施例合金4種((1)Zr−0.8%Nb−0.07%Cu−0.14%O−0.008%C−0.008%Si−0.002%S、(2)Zr−1.1%Nb−0.07%Cu−0.14%O−0.008%C−0.008%Si−0.002%S、(3)Zr−1.5%Nb−0.07%Cu−0.14%O−0.008%C−0.008%Si−0.002%S、(4)Zr−1.8%Nb−0.07%Cu−0.14%O−0.008%C−0.008%Si−0.002%S);
Examples 1 to 13: Production of Zirconium Alloy Four Example Alloys ((1) Zr-0.8% Nb-0.Nb) with Nb Content Changed from 0.8% to 1.8% 07% Cu-0.14% O-0.008% C-0.008% Si-0.002% S, (2) Zr-1.1% Nb-0.07% Cu-0.14% O -0.008% C-0.008% Si-0.002% S, (3) Zr-1.5% Nb-0.07% Cu-0.14% O-0.008% C-0. 008% Si-0.002% S, (4) Zr-1.8% Nb-0.07% Cu-0.14% O-0.008% C-0.008% Si-0.002% S );

Zr−1.5%Nb−0.4%Sn合金((5)Zr−1.5%Nb−0.4%Sn−0.14%O−0.008%C−0.008%Si−0.002%S); Zr-1.5% Nb-0.4% Sn alloy ((5) Zr-1.5% Nb-0.4% Sn-0.14% O-0.008% C-0.008% Si- 0.002% S);

上記、Zr−1.5%Nb−0.4%Sn合金に、Cu、Fe、Cr中の一つ以上の元素を添加した実施例合金4種((6)Zr−1.5%Nb−0.4%Sn−0.1%Cu−0.14%O−0.008%C−0.008%Si−0.002%S、(7)Zr−1.5%Nb−0.4%Sn−0.1%Fe−0.14%O−0.008%C−0.008%Si−0.002%S、(8)Zr−1.5%Nb−0.4%Sn−0.1%Cu−0.1%Fe−0.14%O−0.008%C−0.008%Si−0.002%S、(9)Zr−1.5%Nb−0.4%Sn−0.2%Fe−0.1%Cr−0.14%O−0.008%C−0.008%Si−0.002%S);及び   Example alloy 4 types ((6) Zr-1.5% Nb-) in which one or more elements in Cu, Fe and Cr are added to the Zr-1.5% Nb-0.4% Sn alloy. 0.4% Sn-0.1% Cu-0.14% O-0.008% C-0.008% Si-0.002% S, (7) Zr-1.5% Nb-0.4 % Sn-0.1% Fe-0.14% O-0.008% C-0.008% Si-0.002% S, (8) Zr-1.5% Nb-0.4% Sn- 0.1% Cu-0.1% Fe-0.14% O-0.008% C-0.008% Si-0.002% S, (9) Zr-1.5% Nb-0.4 % Sn-0.2% Fe-0.1% Cr-0.14% O-0.008% C-0.008% Si-0.002% S);

イオウの添加量を0.0005%から0.005%に変化させた実施例合金4種((10)Zr−1.1%Nb−0.07%Cu−0.14%O−0.008%C−0.008%Si−0.0005%S、(11)Zr−1.1%Nb−0.07%Cu−0.14%O−0.008%C−0.008%Si−0.0010%S、(12)Zr−1.1%Nb−0.07%Cu−0.14%O−0.008%C−0.008%Si−0.0020%S、(13)Zr−1.1%Nb−0.07%Cu−0.14%O−0.008%C−0.008%Si−0.0050%S)の総13種の実施例合金組成を下記の表1に整理した(ここで、%は重量%を意味する)。   Example Alloys 4 in which the amount of sulfur added was changed from 0.0005% to 0.005% ((10) Zr-1.1% Nb-0.07% Cu-0.14% O-0.008 % C-0.008% Si-0.0005% S, (11) Zr-1.1% Nb-0.07% Cu-0.14% O-0.008% C-0.008% Si- 0.0010% S, (12) Zr-1.1% Nb-0.07% Cu-0.14% O-0.008% C-0.008% Si-0.0020% S, (13) Zr-1.1% Nb-0.07% Cu-0.14% O-0.008% C-0.008% Si-0.0050% S) The results are summarized in Table 1 (where “%” means “% by weight”).

Figure 2006214001
Figure 2006214001

上記の組成のジルコニウム合金を溶解してインゴットを溶解し、インゴット内の鋳塊組職を破壊しようと、1000〜1200℃のβ領域で鍛造を行なった。また、1015〜1075℃で溶体化熱処理を行なって合金元素をより均一に分布させた後、急冷してβ−急冷組職(マルテンサイト;martensite)を得た。β−焼入れした材料は、590℃で圧下率70%で熱間圧延した後、50%圧下率で1次冷間加工を行なった後、570〜580℃で3時間真空熱処理を行なった。真空熱処理した試験片は、3回の冷間加工を行なって冷間加工間の中間熱処理は、570℃で2時間真空で行なった。その次に、最終熱処理は、510℃で3〜8時間行なってジルコニウム合金板材形態試験片を製造した。また、再結晶度によるクリープ特性を評価するための一部実施例合金(実施例2、3、7、8、9)は、470℃から570℃まで20℃間隔で最終熱処理温度を変えて板材形態試験片を製造した。   Forging was performed in a β region of 1000 to 1200 ° C. in order to melt the ingot by melting the zirconium alloy having the above composition and destroy the ingot structure in the ingot. Further, a solution heat treatment was performed at 1015 to 1075 ° C. to distribute the alloy elements more uniformly, and then rapidly cooled to obtain a β-rapidly cooled organization (martensite). The β-quenched material was hot-rolled at 590 ° C. with a reduction rate of 70%, subjected to primary cold working at a 50% reduction rate, and then subjected to vacuum heat treatment at 570 to 580 ° C. for 3 hours. The test piece subjected to the vacuum heat treatment was subjected to cold working three times, and the intermediate heat treatment between the cold work was performed in vacuum at 570 ° C. for 2 hours. Next, the final heat treatment was performed at 510 ° C. for 3 to 8 hours to produce a zirconium alloy sheet material specimen. Further, some examples of the alloys (Examples 2, 3, 7, 8, and 9) for evaluating the creep characteristics depending on the recrystallization degree were obtained by changing the final heat treatment temperature from 470 ° C. to 570 ° C. at intervals of 20 ° C. Morphological specimens were manufactured.

本発明では、熱処理温度と時間を適切に調節して再結晶度を40〜70%の範囲内に維持するようにした。再結晶度は、透過電子顕微鏡を使用して撮影した数枚(最小5枚以上)の基材金属微細組職写真をイメージ分析機(image analyzer)で分析して平均値をとった。その結果を図1に示した。図1は、ジルコニウム合金を製造する過程で最終熱処理温度を変えた時の熱処理温度による再結晶度の変化を示すものである。同一時間で熱処理温度を増加させれば再結晶度は、S曲線に沿って増加する傾向を示した。   In the present invention, the recrystallization degree is maintained within the range of 40 to 70% by appropriately adjusting the heat treatment temperature and time. The recrystallization degree was averaged by analyzing several (minimum 5 or more) base metal fine texture photographs taken using a transmission electron microscope with an image analyzer. The results are shown in FIG. FIG. 1 shows the change in recrystallization degree depending on the heat treatment temperature when the final heat treatment temperature is changed in the course of producing a zirconium alloy. When the heat treatment temperature was increased in the same time, the recrystallization degree tended to increase along the S curve.

実験例1:化学的組成分析
本発明による実施例合金13種と基準合金ジルカロイ−4から試料を採取して化学的組成を分析した。その結果を下記の表2に示した。
Experimental Example 1: Chemical composition analysis Samples were sampled from 13 kinds of example alloys according to the present invention and the reference alloy Zircaloy-4, and their chemical compositions were analyzed. The results are shown in Table 2 below.

Figure 2006214001
Figure 2006214001

表2に見られるように、分析値は表1に示した名目値(nominal value)と非常によく一致した。したがって、すべての実施例用合金の合金組成は、試験目的にかなうようによく制御されていることが分かる。   As can be seen in Table 2, the analytical values agreed very well with the nominal values shown in Table 1. Accordingly, it can be seen that the alloy compositions of all the alloys for the examples are well controlled to meet the test purpose.

実験例2:ジルコニウム合金の再結晶度によるクリープ試験
実施例2〜3及び実施例7〜9によって製造した合金のクリープ変形量を調べるために350℃で試験片に120MPaの一定荷重を加えて、192時間クリープ試験を行なった。その結果を図2に示した。
Experimental Example 2: Creep Test by Recrystallization Degree of Zirconium Alloy In order to examine the amount of creep deformation of the alloys manufactured according to Examples 2-3 and 7-9, a constant load of 120 MPa was applied to the test piece at 350 ° C. The creep test was conducted for 192 hours. The results are shown in FIG.

クリープ変形量は、再結晶度が増加するにつれて減少する傾向が現われ、再結晶度が40〜70%の範囲ですべての実施例合金は最小のクリープ変形量を示した。しかし、再結晶度がこの範囲を過ぎるとクリープ変形量はむしろ、若干増加する傾向を示した。ジルコニウム合金のクリープ特性は、基材組職内に存在する転位分布と密接な関係を持っていることを示していた。すなわち、再結晶度が中間程度(約40〜70%)進行される時にクリープ変形に対する抵抗性は最も優れていた。   The amount of creep deformation tended to decrease as the recrystallization degree increased, and all of the example alloys showed the minimum amount of creep deformation when the recrystallization degree was in the range of 40 to 70%. However, the amount of creep deformation tended to slightly increase when the recrystallization degree exceeded this range. The creep properties of the zirconium alloy have been shown to have a close relationship with the dislocation distribution present in the substrate structure. That is, the resistance to creep deformation was most excellent when the recrystallization degree progressed to an intermediate level (about 40 to 70%).

実験例3:合金元素の含量によるクリープ試験
実施例1〜13によって製造された合金13種に対する再結晶度と該合金のクリープ変形率を調べるために、350℃で試験片に120MPaの一定荷重を加えて192時間と7200時間のクリープ試験を行なった結果を下記の表3に示した。
Experimental Example 3: Creep Test Depending on Alloy Element Content In order to investigate the recrystallization degree and the creep deformation rate of the 13 types of alloys manufactured in Examples 1 to 13, a constant load of 120 MPa was applied to the test piece at 350 ° C. In addition, the results of creep tests of 192 hours and 7200 hours are shown in Table 3 below.

Figure 2006214001
Figure 2006214001

表3に見られるように、Nbの添加含量を0.8〜1.8重量%の範囲で変化させた実施例1〜4による組成を持つ合金のクリープ変形率は、二つの試験条件(192時間、7200時間)において0.22〜0.31%、0.48〜0.62%で、既存の常用材料であるジルカロイ−4(Zircaloy−4)より低かった。   As can be seen from Table 3, the creep deformation rate of the alloys having compositions according to Examples 1 to 4 in which the Nb addition content was changed in the range of 0.8 to 1.8% by weight was measured under the two test conditions (192). The time was 0.22 to 0.31% and 0.48 to 0.62% in time (7200 hours), which was lower than the existing common material Zircaloy-4 (Zircaloy-4).

また、実施例5〜9による組成を持つ、Zr−1.5%Nb−0.4%Sn系合金は、Snの添加によってより優れた耐クリープ性を示していた。   Moreover, the Zr-1.5% Nb-0.4% Sn-based alloy having the composition according to Examples 5 to 9 showed more excellent creep resistance by the addition of Sn.

イオウ添加がクリープ特性に及ぼす影響を調べるために本発明の実施例10〜13による組成を持つ合金のクリープ変形量を観察した。上記表3の結果に見られるように、イオウの添加量が増加するによってクリープ変形量は減少する傾向がはっきり示され、イオウを0.002重量%添加すればクリープ変形量はそれ以上減少しなかった。耐クリープ性向上のために添加するイオウは、0.0006〜0.0020重量%の範囲で最も効果的であることを示していることが分かった。   In order to investigate the effect of sulfur addition on the creep characteristics, the amount of creep deformation of the alloys having the compositions according to Examples 10 to 13 of the present invention was observed. As can be seen from the results in Table 3 above, it is clearly shown that the amount of creep deformation decreases as the amount of sulfur added increases. If 0.002% by weight of sulfur is added, the amount of creep deformation does not decrease any more. It was. Sulfur added to improve creep resistance has been shown to be most effective in the range of 0.0006 to 0.0020% by weight.

上記表3に示されたすべての実施例1〜13の合金13種の再結晶度は、40〜70%の範囲に存在していることが分かる。再結晶度が該範囲に存在すれば、既存のジルカロイ−4よりも最小160%以上耐クリープ性を向上させることができることが分かった。   It can be seen that the recrystallization degrees of all 13 alloys of Examples 1 to 13 shown in Table 3 are in the range of 40 to 70%. It has been found that if the recrystallization degree is within this range, the creep resistance can be improved by 160% or more as compared with the existing Zircaloy-4.

上記で詳しく見たように、本発明によるジルコニウム合金は、再結晶度を40〜70%に維持するように最終熱処理温度と時間を制御して、優れた耐クリープ性を持つようにしたことで、既存の常用核燃料被覆管材料であるジルカロイ−4より耐クリープ性が優れている。また、本発明で提示した再結晶度は、優れたクリープ特性を持つジルコニウム合金製造に充分に活用することができ、耐クリープ性向上に大きく寄与することができる。   As seen in detail above, the zirconium alloy according to the present invention has excellent creep resistance by controlling the final heat treatment temperature and time so as to maintain the recrystallization degree at 40 to 70%. The creep resistance is superior to that of Zircaloy-4 which is an existing conventional nuclear fuel cladding tube material. In addition, the recrystallization degree presented in the present invention can be fully utilized for the production of a zirconium alloy having excellent creep characteristics, and can greatly contribute to the improvement of creep resistance.

したがって、本発明によるジルコニウム合金は、高燃焼度/長周期の運転条件でクリープ変形を最小化することにより安全性と経済性を倍加させることができ、なおかつ健全性を維持することができるので軽水炉及び重水炉型原子力発電所原子炉心内で核燃料被覆管、支持格子及び炉内構造物などに非常に有用に使用でき、従来の核燃料被覆管材料で使われたジルカロイ−4に取って代わることができる。   Therefore, the zirconium alloy according to the present invention can double safety and economy by minimizing creep deformation under high burnup / long cycle operating conditions, and can maintain soundness. It can be very useful for nuclear fuel cladding tubes, support grids and in-core structures, etc. in the reactor core of heavy water reactor nuclear power plant, and can replace Zircaloy-4 used in conventional nuclear fuel cladding material. it can.

本発明の一実施例によるジルコニウム合金の再結晶度を現わしたグラフである。3 is a graph showing the recrystallization degree of a zirconium alloy according to an embodiment of the present invention. 本発明の実施例によるジルコニウム合金の再結晶度によるクリープ変形率を示したグラフである。3 is a graph showing a creep deformation ratio according to a recrystallization degree of a zirconium alloy according to an embodiment of the present invention.

Claims (5)

ニオブ0.8〜1.8重量%;銅0.05〜0.15重量%;酸素0.10〜0.15重量%;炭素0.006〜0.010重量%;ケイ素0.006〜0.010重量%;イオウ0.0005〜0.0020重量%;及びジルコニウム残部を含むジルコニウム合金組成物。   Niobium 0.8-1.8 wt%; Copper 0.05-0.15 wt%; Oxygen 0.10-0.15 wt%; Carbon 0.006-0.010 wt%; Silicon 0.006-0 A zirconium alloy composition comprising: 0.001 wt%; sulfur 0.0005-0.0020 wt%; and zirconium balance. ニオブ0.8〜1.8重量%;スズ0.38〜0.50重量%;酸素0.10〜0.15重量%;炭素0.006〜0.010重量%;ケイ素0.006〜0.010重量%;イオウ0.0005〜0.0020重量%;及びジルコニウム残部を含むジルコニウム合金組成物。   Niobium 0.8-1.8 wt%; Tin 0.38-0.50 wt%; Oxygen 0.10-0.15 wt%; Carbon 0.006-0.010 wt%; Silicon 0.006-0 A zirconium alloy composition comprising: 0.001 wt%; sulfur 0.0005-0.0020 wt%; and zirconium balance. 上記組成物の他に、鉄0.05〜0.2重量%、銅0.05〜0.2重量%及びクロム0.05〜0.2重量%の中から選択された一つ以上の元素をさらに含むことを特徴とする、請求項2に記載のジルコニウム合金組成物。   In addition to the above composition, one or more elements selected from 0.05 to 0.2% by weight of iron, 0.05 to 0.2% by weight of copper and 0.05 to 0.2% by weight of chromium The zirconium alloy composition according to claim 2, further comprising: 上記組成物の他に、鉄0.1〜0.2重量%、銅0.05〜0.15重量%及びクロム0.12重量%の中から選択された一つ以上の元素をさらに含むことを特徴とする、請求項2に記載のジルコニウム合金組成物。   In addition to the above composition, the composition further comprises one or more elements selected from 0.1 to 0.2% by weight of iron, 0.05 to 0.15% by weight of copper and 0.12% by weight of chromium. The zirconium alloy composition according to claim 2, wherein: 上記ジルコニウム合金組成物の再結晶度が、40乃至70%の範囲に調節されたことを特徴とする、請求項1乃至請求項4のいずれか一項に記載のジルコニウム合金組成物。 The zirconium alloy composition according to any one of claims 1 to 4, wherein a recrystallization degree of the zirconium alloy composition is adjusted to a range of 40 to 70%.
JP2005161111A 2005-02-07 2005-06-01 Zirconium alloy composition with excellent creep resistance Expired - Fee Related JP4099493B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050011362A KR100733701B1 (en) 2005-02-07 2005-02-07 Zr-based Alloys Having Excellent Creep Resistance

Publications (2)

Publication Number Publication Date
JP2006214001A true JP2006214001A (en) 2006-08-17
JP4099493B2 JP4099493B2 (en) 2008-06-11

Family

ID=36498864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005161111A Expired - Fee Related JP4099493B2 (en) 2005-02-07 2005-06-01 Zirconium alloy composition with excellent creep resistance

Country Status (5)

Country Link
US (1) US20060177341A1 (en)
EP (1) EP1688508B1 (en)
JP (1) JP4099493B2 (en)
KR (1) KR100733701B1 (en)
CN (1) CN1818111B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010515826A (en) * 2007-01-16 2010-05-13 ウェスティングハウス エレクトリック スウェーデン アーベー Spacer grid for fuel rod positioning
JP2014077152A (en) * 2012-10-09 2014-05-01 Tohoku Univ Zr ALLOY AND ITS MANUFACTURING METHOD
JP2014518330A (en) * 2011-06-16 2014-07-28 ウエスチングハウス・エレクトリック・カンパニー・エルエルシー Zirconium alloy with excellent corrosion resistance and creep resistance by final heat treatment
JP2015014049A (en) * 2006-12-01 2015-01-22 アレヴァ エヌペ Zirconium alloy resistant to shadow corrosion for boiling water nuclear reactor fuel assembly component, component made of the alloy, fuel assembly, and use thereof
JP2018514650A (en) * 2015-04-14 2018-06-07 ケプコ ニュークリア フューエル カンパニー リミテッド Zirconium alloy having excellent corrosion resistance and creep resistance, and method for producing the same

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10221475B2 (en) 2004-03-23 2019-03-05 Westinghouse Electric Company Llc Zirconium alloys with improved corrosion/creep resistance
KR20060123781A (en) * 2004-03-23 2006-12-04 웨스팅하우스 일렉트릭 컴패니 엘엘씨 Zirconium alloys with improved corrosion resistance and method for fabricating zirconium alloys with improved corrosion resistance
US9284629B2 (en) 2004-03-23 2016-03-15 Westinghouse Electric Company Llc Zirconium alloys with improved corrosion/creep resistance due to final heat treatments
SE530673C2 (en) * 2006-08-24 2008-08-05 Westinghouse Electric Sweden Water reactor fuel cladding tube used in pressurized water reactor and boiled water reactor, comprises outer layer of zirconium based alloy which is metallurgically bonded to inner layer of another zirconium based alloy
KR100831578B1 (en) * 2006-12-05 2008-05-21 한국원자력연구원 Zirconium alloy compositions having excellent corrosion resistance for nuclear applications and preparation method thereof
FR2909798A1 (en) * 2006-12-11 2008-06-13 Areva Np Sas Designing fuel assembly, useful for light-water nuclear reactor comprising structural components of zirconium alloy, comprises calculating uniaxial constraints using traction/compression and choosing the alloys
CN101665886B (en) * 2008-09-04 2011-06-22 中国核动力研究设计院 High temperature overheated steam corrosion resistant zirconium alloy material
CN102140596B (en) * 2011-01-12 2012-11-21 苏州热工研究院有限公司 Zirconium-based alloy used for nuclear reactor
CN102230108A (en) * 2011-06-30 2011-11-02 苏州热工研究院有限公司 Zirconium alloy material for nuclear reactor fuel can
CN102268571A (en) * 2011-06-30 2011-12-07 苏州热工研究院有限公司 Zirconium alloy material
CN102230109B (en) * 2011-06-30 2013-06-12 苏州热工研究院有限公司 Zirconium alloy material for nuclear reactor
CN102251151A (en) * 2011-06-30 2011-11-23 苏州热工研究院有限公司 Zirconium alloy material applied to nuclear reactor
KR101378066B1 (en) 2012-02-28 2014-03-28 한국수력원자력 주식회사 Zirconium alloys for nuclear fuel cladding, having a superior corrosion resistance by reducing the amount of alloying elements, and the preparation method of zirconium alloys nuclear fuel claddings using thereof
KR20130098618A (en) 2012-02-28 2013-09-05 한국원자력연구원 Zirconium alloys for nuclear fuel claddings having a superior oxidation resistance in the reactor accident conditions, zirconium alloy nuclear fuel claddings prepared by using thereof and method of preparing the same
CN104745875A (en) * 2013-12-30 2015-07-01 上海核工程研究设计院 Zirconium alloy material for light water reactor under higher burnup
CN105018794A (en) * 2015-07-09 2015-11-04 上海大学 Zirconium/niobium/copper/bismuth alloy for fuel cladding of nuclear power plant
AR110991A1 (en) 2018-02-21 2019-05-22 Comision Nac De Energia Atomica Cnea CIRCONY ALLOYS WITH IMPROVED CORROSION RESISTANCE AND SERVICE TEMPERATURE FOR USE IN THE COATING OF FUEL AND STRUCTURAL PARTS OF THE NUCLEAR REACTOR CORE
CN110904359A (en) * 2019-12-18 2020-03-24 佛山科学技术学院 Corrosion-resistant zirconium alloy
CN112458337B (en) * 2020-04-13 2022-02-18 国核宝钛锆业股份公司 Zirconium alloy and preparation method of zirconium alloy profile

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4649023A (en) * 1985-01-22 1987-03-10 Westinghouse Electric Corp. Process for fabricating a zirconium-niobium alloy and articles resulting therefrom
US5196163A (en) * 1986-07-29 1993-03-23 Mitsubishi Materials Corporation Highly corrosion-resistant zirconium alloy for use as nuclear reactor fuel cladding material
US4963323A (en) * 1986-07-29 1990-10-16 Mitsubishi Kinzoku Kabushiki Kaisha Highly corrosion-resistant zirconium alloy for use as nuclear reactor fuel cladding material
US4863685A (en) * 1987-04-23 1989-09-05 General Electric Company Corrosion resistant zirconium alloys
FR2624136B1 (en) * 1987-12-07 1992-06-05 Cezus Co Europ Zirconium TUBE, BAR OR SHEET IN ZIRCONIUM ALLOY, RESISTANT TO BOTH UNIFORM CORROSION AND NODULAR CORROSION AND METHOD OF MANUFACTURE THEREOF
FR2626291B1 (en) * 1988-01-22 1991-05-03 Mitsubishi Metal Corp ZIRCONIUM-BASED ALLOY FOR USE AS A FUEL ASSEMBLY IN A NUCLEAR REACTOR
DE3805124A1 (en) * 1988-02-18 1989-08-31 Siemens Ag CORE REACTOR FUEL ELEMENT
DE3817938A1 (en) * 1988-05-26 1989-11-30 Wacker Chemie Gmbh METHOD FOR PURIFYING CHLORINE FROM A 1.2-DICHLORETHANE PYROLYSIS
US4879093A (en) * 1988-06-10 1989-11-07 Combustion Engineering, Inc. Ductile irradiated zirconium alloy
US5024809A (en) * 1989-05-25 1991-06-18 General Electric Company Corrosion resistant composite claddings for nuclear fuel rods
US5026516A (en) * 1989-05-25 1991-06-25 General Electric Company Corrosion resistant cladding for nuclear fuel rods
US5125985A (en) * 1989-08-28 1992-06-30 Westinghouse Electric Corp. Processing zirconium alloy used in light water reactors for specified creep rate
US5080861A (en) * 1990-07-25 1992-01-14 Combustion Engineering, Inc. Corrosion resistant zirconium alloy
US5211774A (en) 1991-09-18 1993-05-18 Combustion Engineering, Inc. Zirconium alloy with superior ductility
SE9103052D0 (en) * 1991-10-21 1991-10-21 Asea Atom Ab Zirconium-based alloys carry components in nuclear reactors
US5244514A (en) 1992-02-14 1993-09-14 Combustion Engineering, Inc. Creep resistant zirconium alloy
US5254308A (en) 1992-12-24 1993-10-19 Combustion Engineering, Inc. Zirconium alloy with improved post-irradiation properties
US5560790A (en) * 1993-03-04 1996-10-01 A.A. Bochvar All-Russian Inorganic Materials Research Institute Zirconium-based material, products made from said material for use in the nuclear reactor core, and process for producing such products
US5366690A (en) * 1993-06-18 1994-11-22 Combustion Engineering, Inc. Zirconium alloy with tin, nitrogen, and niobium additions
FR2737335B1 (en) * 1995-07-27 1997-10-10 Framatome Sa TUBE FOR NUCLEAR FUEL ASSEMBLY AND METHOD FOR MANUFACTURING SUCH A TUBE
FR2747397B1 (en) * 1996-04-16 1998-07-10 Cezus Co Europ Zirconium ZIRCONIUM-BASED ALLOY RESISTANT TO CREEP AND CORROSION BY WATER AND VAPOR, MANUFACTURING PROCESS, AND USE IN A NUCLEAR REACTOR
KR100286871B1 (en) * 1998-10-21 2001-04-16 장인순 Zirconium alloy composition with excellent corrosion resistance and mechanical properties
FR2776821B1 (en) * 1998-03-31 2000-06-02 Framatome Sa METHOD OF MANUFACTURING A TUBE FOR ASSEMBLY OF NUCLEAR FUEL
KR100334252B1 (en) * 1999-11-22 2002-05-02 장인순 Niobium-containing zirconium alloys for nuclear fuel cladding
US20040018491A1 (en) * 2000-10-26 2004-01-29 Kevin Gunderson Detection of nucleic acid reactions on bead arrays
KR100382997B1 (en) * 2001-01-19 2003-05-09 한국전력공사 Method of Manufacturing A Tube and A Sheet of Niobium-containing Zirconium Alloys for High Burn-up Nuclear Fuel
KR100461017B1 (en) * 2001-11-02 2004-12-09 한국수력원자력 주식회사 Method for preparing niobium-containing zirconium alloys for nuclear fuel cladding tubes having the excellent corrosion resistance

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015014049A (en) * 2006-12-01 2015-01-22 アレヴァ エヌペ Zirconium alloy resistant to shadow corrosion for boiling water nuclear reactor fuel assembly component, component made of the alloy, fuel assembly, and use thereof
JP2010515826A (en) * 2007-01-16 2010-05-13 ウェスティングハウス エレクトリック スウェーデン アーベー Spacer grid for fuel rod positioning
JP2014518330A (en) * 2011-06-16 2014-07-28 ウエスチングハウス・エレクトリック・カンパニー・エルエルシー Zirconium alloy with excellent corrosion resistance and creep resistance by final heat treatment
JP2014077152A (en) * 2012-10-09 2014-05-01 Tohoku Univ Zr ALLOY AND ITS MANUFACTURING METHOD
JP2018514650A (en) * 2015-04-14 2018-06-07 ケプコ ニュークリア フューエル カンパニー リミテッド Zirconium alloy having excellent corrosion resistance and creep resistance, and method for producing the same

Also Published As

Publication number Publication date
JP4099493B2 (en) 2008-06-11
US20060177341A1 (en) 2006-08-10
EP1688508A1 (en) 2006-08-09
EP1688508B1 (en) 2014-01-01
KR100733701B1 (en) 2007-06-28
CN1818111A (en) 2006-08-16
KR20060090128A (en) 2006-08-10
CN1818111B (en) 2010-12-22

Similar Documents

Publication Publication Date Title
JP4099493B2 (en) Zirconium alloy composition with excellent creep resistance
JP5933640B2 (en) Zirconium alloy resistant to shadow corrosion for parts of boiling water reactor nuclear fuel assemblies, parts made of the alloys, nuclear fuel assemblies, and uses thereof
JP2914457B2 (en) ZIRLO type material
US20100128834A1 (en) Zirconium alloys with improved corrosion resistance and method for fabricating zirconium alloys with improved corrosion resistance
KR100261666B1 (en) Composition of zirconium alloy having low corrosion rate and high strength
CN103898362A (en) Zirconium-based alloy for water-cooled nuclear reactor
KR100261665B1 (en) Composition of zirconium alloy having high corrosion resistance and high strength
JPH11101887A (en) Zirconium alloy for use in aqueous environment subject to high fluence, corrosion-resistant nuclear reactor component, structural nuclear fuel assembly parts, and nuclear reactor fuel rod cladding consisting of the alloy
JP4982654B2 (en) Zirconium alloy with improved corrosion resistance and method for producing zirconium alloy with improved corrosion resistance
CN103898367A (en) Zirconium-based alloy for nuclear reactor core
JP5982474B2 (en) Zirconium-based alloy manufacturing method
KR100754477B1 (en) Zr-based Alloys Having Excellent Creep Resistance
US9725791B2 (en) Zirconium alloys with improved corrosion/creep resistance due to final heat treatments
CN103898360A (en) Zirconium alloy for nuclear reactor core
KR100286871B1 (en) Zirconium alloy composition with excellent corrosion resistance and mechanical properties
KR101341135B1 (en) Zirconium alloy having excellent mechanical properties and corrosion resistance for nuclear fuel rod cladding tube
US4530727A (en) Method for fabricating wrought components for high-temperature gas-cooled reactors and product
KR101088111B1 (en) Zirconium alloy compositions having excellent corrosion resistance and creep resistance
JP2005171278A (en) Steel material and its manufacturing method
JPH10183278A (en) High corrosion resistant zirconium alloy
JPH04160138A (en) Manufacture of high corrosion resistant zirconium alloy
JPH0331438A (en) High corrosion resistant zirconium alloy for nuclear reactor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080317

R150 Certificate of patent or registration of utility model

Ref document number: 4099493

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees