JPH0498899A - Magnetic shielding device - Google Patents

Magnetic shielding device

Info

Publication number
JPH0498899A
JPH0498899A JP2216666A JP21666690A JPH0498899A JP H0498899 A JPH0498899 A JP H0498899A JP 2216666 A JP2216666 A JP 2216666A JP 21666690 A JP21666690 A JP 21666690A JP H0498899 A JPH0498899 A JP H0498899A
Authority
JP
Japan
Prior art keywords
oxide superconductor
space
magnetic field
shielding device
surrounded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2216666A
Other languages
Japanese (ja)
Inventor
Hitoshi Yoshida
均 吉田
Hitoshi Sakai
均 酒井
Minoru Matsui
實 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2216666A priority Critical patent/JPH0498899A/en
Publication of JPH0498899A publication Critical patent/JPH0498899A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To realize a practical shielding device taking the material of the cooling case of an oxide superconductor into consideration by a method wherein a space magnetically shielded as surrounded with the oxide superconductor is surrounded with material whose residual magnetic field is 10<-2> Gauss or below. CONSTITUTION:In a magnetic shielding device provided with an oxide superconductor 1, a space surrounded with the oxide superconductor 1 is magnetically shielded owing to the Meissner effect or the diammagnetism of the superconductor 1, but practically the space concerned is surrounded with the inner wall of a cooling case 2 which puts the superconductor 1 in a superconductive state. If the inner wall of the cooling case, a fixing device located in the space concerned, and the like are formed of ferromagnetic material prominent in residual magnetic field or material whose residual magnetic field is 10<-2> Gauss or above, they function as magnetic sources of a very small magnetic field and generate magnetic noises in a space of very weak magnetic field. Therefore, that taking the material of the cooling case of an oxide superconductor into consideration as above is important to make a magnetic shielding device provided with the oxide superconductor 1 excellent in practical use, in result the measurement of very weak magnetism such as biomagnetism can be improved in accuracy.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁気シールド装置に関し、更に詳しくは少なく
とも酸化物超電導体と冷却容器とからなる磁気シールド
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetic shielding device, and more particularly to a magnetic shielding device comprising at least an oxide superconductor and a cooling container.

〔従来の技術〕[Conventional technology]

従来、磁気シールドのためにパーマロイ、フェライト等
の強磁性体により囲まれた空間が利用されている。また
、近年、研究開発が盛んな超電導体の反磁性を利用した
磁気シールド装置等も多く提案されている。例えば、特
開平1−134998号公報では、磁気シールドする空
間の最内側に超電導体を配置することが提案され、また
、出願人は、特願平1−97197号にて、遮蔽する磁
気源に対し、磁気源側より基板−超電導層の順で少なく
とも2層を有する磁気シールド筒を提案した。
Conventionally, a space surrounded by a ferromagnetic material such as permalloy or ferrite has been used for magnetic shielding. Furthermore, in recent years, many magnetic shielding devices have been proposed that utilize the diamagnetic properties of superconductors, which have been actively researched and developed. For example, in Japanese Patent Application Laid-Open No. 1-134998, it was proposed to place a superconductor at the innermost side of a space to be magnetically shielded, and in Japanese Patent Application No. 1-97197, the applicant proposed On the other hand, we proposed a magnetic shield cylinder having at least two layers in the order of substrate and superconducting layer from the magnetic source side.

一方、広い分野での利用が注目されている酸化物超電導
体は臨界温度が高いとはいえ、超電導特性を発現させる
ためには液体窒素等による冷却が必要であり、磁気シー
ルド装置に適用する場合でも冷却容器が必須となる。
On the other hand, although oxide superconductors, which are attracting attention for use in a wide range of fields, have a high critical temperature, they require cooling with liquid nitrogen, etc. in order to develop superconducting properties, and when applied to magnetic shielding devices. However, a cooling container is required.

〔発明が解決しようとする課!!] しかしながら、実用的磁気シールド装置に関する開発は
未だなされていないのが現状であり、冷却容器まで含め
た検討はされていない。
[The problem that the invention attempts to solve! ! ] However, the current situation is that no development has been made regarding a practical magnetic shielding device, and consideration including cooling containers has not been made.

本発明は、酸化物超電導体を用いて磁気シールドするた
め、酸化物超電導体の冷却容器を含めて検討し、実用的
な磁気シールド装置の提供を目的とする。
The present invention aims to provide a practical magnetic shielding device by considering a cooling container for the oxide superconductor in order to perform magnetic shielding using an oxide superconductor.

[課題を解決するための手段] 本発明によれば、少なくとも酸化物超電導体及び冷却容
器からなる磁気シールド装置において、酸化物超電導体
で囲まれ磁気遮蔽される空間が残留磁場IO)ガウス以
下の材料で囲まれて構成されていることを特徴とする磁
気シールド装置が提供される。
[Means for Solving the Problems] According to the present invention, in a magnetic shielding device consisting of at least an oxide superconductor and a cooling container, a space surrounded by the oxide superconductor and magnetically shielded has a residual magnetic field of IO) Gauss or less. A magnetic shielding device is provided, characterized in that it is surrounded by a material.

本発明において、酸化物超電導体で囲まれ磁気遮蔽され
る空間とは、通常、冷却容器の内壁により囲まれた空間
をいう。即ち、酸化物超電導体は一般に冷却容器内に配
置され、磁気シールド空間は、冷却容器の内壁により囲
まれた空間となる。
In the present invention, a space surrounded by an oxide superconductor and magnetically shielded usually refers to a space surrounded by an inner wall of a cooling container. That is, the oxide superconductor is generally placed in a cooling container, and the magnetically shielded space is a space surrounded by the inner wall of the cooling container.

例えば、有底二重層円筒体を冷却容器とすれば、円筒状
の酸化物超電導体は、冷却容器の液体窒素等の冷却媒体
が保持される外環状部と内環状部とから形成される空間
に配置され、磁気シールド空間は内環状部の内壁で囲ま
れた部分に相当する。
For example, if a bottomed double-layer cylinder is used as a cooling container, the cylindrical oxide superconductor will have a space formed by an outer annular part and an inner annular part in which a cooling medium such as liquid nitrogen of the cooling container is held. The magnetically shielded space corresponds to a portion surrounded by the inner wall of the inner annular portion.

更に、本発明においては、上記磁気遮蔽される空間内に
設置される検査装置や被検査体の搬入・保持・固定用各
種装置等が残留磁場10−2ガウス以下の材料で構成さ
れることを意味するものである。
Furthermore, in the present invention, the inspection equipment installed in the magnetically shielded space and various devices for carrying in, holding and fixing the object to be inspected, etc. are made of materials with a residual magnetic field of 10-2 Gauss or less. It means something.

酸化物超電導体を用いた磁気シールド′装置は、基本的
には酸化物超電導体のマイスナー効果の反磁性により酸
化物超電導体により囲まれた空間が磁気シールドされる
が、実際には上記したように超電導特性を発現させるた
めの冷却容器の内壁により囲まれた空間が磁気遮蔽され
ることになる。
In a magnetic shielding device using an oxide superconductor, the space surrounded by the oxide superconductor is basically magnetically shielded due to the diamagnetic property of the Meissner effect of the oxide superconductor, but in reality, as described above, The space surrounded by the inner wall of the cooling container for developing superconducting properties is magnetically shielded.

本発明においては、冷却容器内壁部やその空間内の固定
装置等を残留磁場が顕著である鉄、5US430等室温
での強磁性体や、インコネル600等液体窒素温度での
強磁性体で構成することはもとより、更にまた、例えば
、5US310 5US304.  インコネル625
、インコロイ825、ハステロイ等の通常非磁性体とさ
れる材料であっても、地磁気により磁化され10−’〜
10−2ガウスの残留磁場を有し、これ等の残留磁場が
10−2ガウスより大きな材料で冷却容器内壁部やその
空間内の固定装置等を構成すると、微小磁場の磁気源と
なり、極低磁場空間での磁気ノイズを発生することを知
見したものであり、酸化物超電導体による磁気シールド
装置をより実用性の高いものとし、生体磁気等の弱磁気
の測定の精度を高めるものである。
In the present invention, the inner wall of the cooling container and the fixing device within the space are made of iron, which has a significant residual magnetic field, a ferromagnetic material at room temperature such as 5US430, or a ferromagnetic material at liquid nitrogen temperature such as Inconel 600. Of course, furthermore, for example, 5US310 5US304. inconel 625
Even materials that are normally considered non-magnetic, such as Incoloy 825 and Hastelloy, are magnetized by the earth's magnetism and have a magnetic field of 10-'~
If the inner wall of the cooling container or the fixing device in the space is made of a material with a residual magnetic field of 10-2 Gauss, it will become a magnetic source of a minute magnetic field, This finding has revealed that magnetic noise is generated in a magnetic field space, making magnetic shielding devices using oxide superconductors more practical and improving the accuracy of measuring weak magnetism such as biomagnetism.

本発明において、残留磁場が10−2ガウス以下の材料
としては、ガラス、樹脂、カーボン、セラミックス、プ
ラスチックス、鉄系またはニッケル系を除く金属等が挙
げられる。
In the present invention, materials having a residual magnetic field of 10 −2 Gauss or less include glass, resin, carbon, ceramics, plastics, and metals other than iron-based or nickel-based.

酸化物超電導体の超電導特性を発現させる冷却容器は、
一般に真空断熱容器とすることが断熱効率上量も好まし
く、断熱空間として真空状態を保持すると共に、液体窒
素等の冷媒保持部分は冷媒の存在下の極低温で充分な強
度を有するものでなくてはならない。従って、冷却容器
の内壁を構成する材料としては、特にCu、 AI、黄
銅、A1合金、Ti及び繊維強化プラスチック(FRP
)が好ましく、更にその他発泡スチロール等断熱材とし
て公知の樹脂や発泡材を組合わせ併用するのが好適であ
る。この場合、内壁のみでなく冷却容器全体をFRP、
Cuまたは黄銅により構成し、更に発泡スチo−ルヤn
1itr膜等のスーパーインスレイジョンを内装させて
もよい。また、磁気源側に相当する外壁部等は、特に上
記材料に限定されることがな(強磁性体で構成してもよ
く、内壁部のみ上記の残留磁場が10−”ガウス以下の
材料で構成することもできる。また、10−”ガウス以
下の材料を2種以上組合わせて用いてもよく、適用条件
に合わせて適宜選択することができる。
The cooling container that develops the superconducting properties of oxide superconductors is
In general, it is preferable to use a vacuum insulated container in terms of insulation efficiency, and in addition to maintaining a vacuum state as an insulating space, the part that holds a refrigerant such as liquid nitrogen must have sufficient strength at extremely low temperatures in the presence of a refrigerant. Must not be. Therefore, the materials constituting the inner wall of the cooling container include Cu, AI, brass, A1 alloy, Ti, and fiber reinforced plastic (FRP).
) is preferred, and it is also preferred to use a combination of other resins and foam materials known as heat insulating materials such as expanded polystyrene. In this case, not only the inner wall but the entire cooling container is made of FRP.
Constructed of Cu or brass, and further made of foamed steel.
A super insufflation such as a 1 itr film may be provided inside. In addition, the outer wall portion, etc. corresponding to the magnetic source side is not limited to the above-mentioned material (it may be made of ferromagnetic material, and only the inner wall portion is made of a material with the above-mentioned residual magnetic field of 10-” Gauss or less). In addition, two or more types of materials with a diameter of 10-'' Gauss or less may be used in combination, and can be appropriately selected depending on the application conditions.

小型或いは研究等の実験室で使用する磁気シールド装置
の冷却容器は、真空断熱空間を設けることなしにAIや
A1合金で冷却容器を形成し、その外周部を断熱材で被
覆して構成する簡易型とすることもできる。
The cooling container of a magnetic shielding device used in small-scale or research laboratories is a simple structure in which the cooling container is formed of AI or A1 alloy without providing a vacuum insulation space, and the outer periphery of the cooling container is covered with a heat insulating material. It can also be a mold.

また、磁気シールド空間内の固定装置等の材料としては
、測定器の設置・固定や、生体等被検査体の搬入・固定
するため、固定保持に耐えうる強度を要し、Cu、 A
I、黄銅、A1合金、Ti、木材、ガラス、カーボン及
びプラスチックスが好ましく、常温での測定では木材を
使用することもできる。
In addition, the materials for the fixing devices in the magnetically shielded space need to be strong enough to withstand the fixing and holding of measuring instruments and the transportation and fixing of living bodies and other test objects, such as Cu, A, etc.
I, brass, A1 alloy, Ti, wood, glass, carbon, and plastics are preferred, and wood can also be used for measurements at room temperature.

また、測定器からの信号処理や照明用材料としてはガラ
ス等の光ファイバーを用いることもできる。
Moreover, optical fibers such as glass can also be used as materials for signal processing from the measuring instrument and illumination.

特に、被検査体に近接する磁気シールド内の装置は、残
留磁場が1O−5ガウス以下のCu、 AI、木材、ガ
ラス及びプラスチックスで構成するのが好ましく、更に
好ましくは、木材、ガラス、プラスチックスで構成する
のがよい。
In particular, the device in the magnetic shield close to the object to be inspected is preferably constructed of Cu, AI, wood, glass, and plastics with a residual magnetic field of 1O-5 Gauss or less, and more preferably wood, glass, and plastics. It is better to configure the

本発明において、酸化物超電導体は上記した冷却容器の
冷却媒体保持部内に配置されるが、酸化物超電導体とし
ては、酸化物超電導体のバルク体を用いてもよいし、ま
た、金属等の基板上に酸化物超電導層を積層した酸化物
超電導積層体を用いることもできる。
In the present invention, the oxide superconductor is placed in the cooling medium holding part of the cooling container described above, but a bulk body of the oxide superconductor may be used as the oxide superconductor, or a metal or the like may be used as the oxide superconductor. An oxide superconducting laminate in which oxide superconducting layers are stacked on a substrate can also be used.

酸化物超電導体として酸化物超電導積層体を用いる場合
には、八g、 Cu、黄銅またはTiを基板として接合
材にガラスを用いるのが好ましい。例えば、積層体の層
配列形態が、磁気源側から酸化物超電導層−Ag層また
は酸化物超電導層−Ag層−ガラス層−Cu/または黄
銅層となるように配置するのが好ましい。また、酸化物
超電導層が磁気源の反対側即ち冷却容器の内壁部側の最
内層となる配置の配列形態を採る場合には、基板等の材
料は特に制限されるものでない。
When using an oxide superconducting laminate as the oxide superconductor, it is preferable to use 8g, Cu, brass, or Ti as the substrate and glass as the bonding material. For example, it is preferable that the layer arrangement of the laminate is oxide superconducting layer-Ag layer or oxide superconducting layer-Ag layer-glass layer-Cu/or brass layer from the magnetic source side. Further, when the oxide superconducting layer is arranged as the innermost layer on the side opposite to the magnetic source, that is, on the inner wall side of the cooling container, the material of the substrate etc. is not particularly limited.

本発明において、冷却容器に1O−2ガウス以下の材料
を用いた場合に、酸化物超電導積層体が上記のような冷
却容器の内壁部側の最内層とならない積層配列形態を採
るときには、酸化物超電導体基板にもlo−2ガウス以
下の材料を用いることにより、磁気シールド装置内の磁
気ノイズを極めて小さくすることができる。冷却容器材
料と酸化物超電導積層基板材料を共にlo−2ガウス以
下の材料を用いるか否かは、磁気シールドの用途等使用
条件に合わせて適宜選択することができる。
In the present invention, when a material with a thickness of 1O-2 Gauss or less is used for the cooling container and the oxide superconducting laminate adopts a stacked arrangement form in which it is not the innermost layer on the inner wall side of the cooling container as described above, the oxide superconducting By using a material with lo-2 Gauss or less for the superconductor substrate as well, magnetic noise within the magnetic shielding device can be made extremely small. Whether or not to use materials with lo-2 Gauss or less for both the cooling container material and the oxide superconducting laminated substrate material can be appropriately selected depending on the usage conditions such as the application of the magnetic shield.

本発明における酸化物超電導体としては、特に限定され
るものでなく、例えば、M−Ba−Cu−0系化合物で
、HがSc、Y、及びLa、 Eu、 Gd、 Er、
 Yb、Lu等のランクニドから選ばれる一種以上の希
土類元素を含む多層ペロブスカイト構造を有する希土類
系酸化物超電導体、また例えばBizSrzCalCu
zOXやBi、5rzCazCu−JOXに代表される
組成を有するビスマス系(Bi系)超電導体等いずれの
酸化物超電導体でもよい。
The oxide superconductor in the present invention is not particularly limited, and is, for example, an M-Ba-Cu-0 based compound in which H is Sc, Y, La, Eu, Gd, Er,
A rare earth oxide superconductor having a multilayer perovskite structure containing one or more rare earth elements selected from rank nitrides such as Yb and Lu, and also, for example, BizSrzCalCu.
Any oxide superconductor may be used, such as a bismuth-based (Bi-based) superconductor having a composition represented by zOX, Bi, or 5rzCazCu-JOX.

〔実施例] 以下、本発明を実施例により詳細に説明する。〔Example] Hereinafter, the present invention will be explained in detail with reference to Examples.

但し、本発明は下記実施例により制限されるものでない
However, the present invention is not limited to the following examples.

[酸化物超電導体Aの製造1 外径1100aφで、高さ450■、厚さ500μmの
Ag製円筒体の外表面に、BizSrzCa、Cu20
1を含有するスラリーをスプレー塗布してBi系超電導
層を形成し、酸素雰囲気中、890℃で30分間部分溶
融した後、850℃まで冷却速度1’c/分で徐冷し、
850°Cで15時間結晶化した。その後、窒素雰囲気
に変え、400℃で10時間熱処理して酸化物超電導体
Aを得た。得られた酸化物超電導体Aの層系超電導層は
300μmであった。
[Production of oxide superconductor A 1 BizSrzCa, Cu20 was applied to the outer surface of an Ag cylinder with an outer diameter of 1100aφ, a height of 450mm, and a thickness of 500μm.
1 was spray-coated to form a Bi-based superconducting layer, partially melted at 890°C for 30 minutes in an oxygen atmosphere, and then gradually cooled to 850°C at a cooling rate of 1'c/min.
Crystallization was performed at 850°C for 15 hours. Thereafter, the atmosphere was changed to nitrogen, and oxide superconductor A was obtained by heat treatment at 400° C. for 10 hours. The layered superconducting layer of the obtained oxide superconductor A was 300 μm.

[酸化物超電導体Bの製造l YBa2Cu3O7仮焼粉末をスプレードライヤにより
平均粒径50μmに造粒し、金型ブレスにより円筒体状
に仮成形した後、2.5t/cdの圧力で静水圧プレス
成形した。得られた成形体を酸素雰囲気中、960°C
で6時間焼成後、500 ’Cまで冷却速度冷却速度1
67分で徐冷し、500°Cで10時間熱処理して、内
径100mmφ、高さ450mm、厚さ8mの円筒焼成
体の酸化物超電導体Bを得た。
[Manufacture of oxide superconductor B] YBa2Cu3O7 calcined powder was granulated to an average particle size of 50 μm using a spray dryer, preformed into a cylindrical shape using a mold press, and then hydrostatically pressed at a pressure of 2.5 t/cd. Molded. The obtained molded body was heated at 960°C in an oxygen atmosphere.
After baking for 6 hours at 500'C, cooling rate 1
It was slowly cooled for 67 minutes and heat-treated at 500° C. for 10 hours to obtain an oxide superconductor B in the form of a cylindrical fired body with an inner diameter of 100 mmφ, a height of 450 mm, and a thickness of 8 m.

[酸化物超電導体Cの製造1 外径200mφ、高さ600閣、厚さ1.5閣のインコ
ネル625製の円筒基体の内側に、ガラスを含有した溶
媒をスプレー法にて塗布した後、塗布面全体を厚さ30
0μmのへg箔で覆い、Ag箔をインコネル基体に機械
的に圧迫した状態のまま、大気中、900°Cで2時間
焼成してAg箔を円筒基体内周面に焼付けた。また、A
g箔同士の突き合わせ部分は、TIG溶接により接合し
て基体の全内周面をAg箔で被覆した。次いで、Ag箔
上にBizSr、Ca、Cu2O3を含有するスラリー
をスプレー塗布してBi系超電導層を形成し、酸素雰囲
気中、890”Cで30分間部分溶融した後、850°
c′l!:で冷却速度1”C/分で徐冷し、850℃で
15時間結晶化した。その後、窒素雰囲気として400
°Cで10時間熱処理して酸化物超電導体Cを得た。得
られた酸化物超電導体CのBi系超電導層は300μm
であった。
[Production of oxide superconductor C 1 After applying a glass-containing solvent to the inside of a cylindrical base made of Inconel 625 with an outer diameter of 200 mφ, a height of 600 mm, and a thickness of 1.5 mm by a spray method, Thickness of the entire surface is 30
The cylindrical substrate was covered with a Heg foil of 0 μm, and baked in the air at 900° C. for 2 hours while the Ag foil was mechanically pressed against the Inconel substrate to bake the Ag foil onto the inner peripheral surface of the cylindrical substrate. Also, A
The abutting portions of the G foils were joined by TIG welding, and the entire inner peripheral surface of the base was covered with Ag foil. Next, a slurry containing BizSr, Ca, and Cu2O3 was spray-coated onto the Ag foil to form a Bi-based superconducting layer, and after partially melting at 890"C for 30 minutes in an oxygen atmosphere, the slurry was heated at 850°C.
c′l! : was slowly cooled at a cooling rate of 1"C/min and crystallized at 850°C for 15 hours. Thereafter, the
Oxide superconductor C was obtained by heat treatment at °C for 10 hours. The Bi-based superconducting layer of the obtained oxide superconductor C has a thickness of 300 μm.
Met.

[酸化物超電導体りの製造] 外径100wφ、高さ600閣、厚さ1.5−のインコ
ネル625製の円筒基体の外周面に、上記酸化物超電導
体Cを得たのと同様の方法によりAg箔を焼付け、更に
300μmのBi系超電導層を形成して酸化物超電導体
りを得た。
[Manufacture of oxide superconductor C] The same method as that used to obtain the above oxide superconductor C was applied to the outer peripheral surface of a cylindrical base made of Inconel 625 with an outer diameter of 100 wφ, a height of 600 mm, and a thickness of 1.5 mm. An oxide superconductor was obtained by baking the Ag foil and further forming a 300 μm Bi-based superconducting layer.

[冷却容器の製造I Cu製の外径210a+m、厚さ15+a+aの外環状
部と、外径95■、厚さ5園の内環状部からなる有底の
二重環状体の真空断熱容器[冷却容器al 、AI製の
外径300m、厚さ20mの外環状部と、外径90m、
厚さ10m5+の内環状部からなる有底の二重環状体で
、外表面及び内表面を発泡スチロールで被覆した簡易型
断熱容器[冷却容器b]及び5US304製の外径30
0閤、厚さ20−の外環状部と、外径90m、厚さ10
+ssO内環状部からなる有底の二重環状体の真空断熱
容器[冷却容器c1 をそれぞれ製造した。
[Manufacture of Cooling Container I Vacuum insulation container with a bottomed double annular body consisting of an outer annular part made of Cu with an outer diameter of 210 a + m and a thickness of 15 + a + a, and an inner annular part with an outer diameter of 95 cm and a thickness of 5 mm [Cooling] Container al, an outer annular part made of AI with an outer diameter of 300 m and a thickness of 20 m, an outer diameter of 90 m,
A simple insulated container [cooling container b] which is a bottomed double annular body consisting of an inner annular part with a thickness of 10m5+ and whose outer and inner surfaces are covered with polystyrene foam, and an outer diameter of 30 made of 5US304.
The outer annular part has a diameter of 90 m and a thickness of 10 m.
A vacuum insulated container [cooling container c1] having a bottomed double annular body consisting of an inner annular portion of +ssO was manufactured.

実施例1〜5及び比較例1〜3 第1図に断面説明図を示した磁気シールド装置内の磁気
ノイズを測定した。第1図において、酸化物超電導体1
は、二重環状円筒体冷却容器2の外壁部3と内壁部4と
で形成された冷却媒体保持部内5に、液体窒素6を注入
した後、液体窒素中に浸漬設置した。その後、冷却容器
内壁部により囲まれた磁気遮蔽空間7内に三軸のSQU
ID(Superconducting Quantu
m Interference Device:超電導
量子干渉素子)磁束計8により周波数4〜100Hzの
交番磁場を測定し、測定した交番磁場の最大値を磁気ノ
イズとした。その結果を第1表に示した。
Examples 1 to 5 and Comparative Examples 1 to 3 Magnetic noise in the magnetic shielding device whose cross-sectional view is shown in FIG. 1 was measured. In FIG. 1, an oxide superconductor 1
After injecting liquid nitrogen 6 into the cooling medium holding part 5 formed by the outer wall 3 and inner wall 4 of the double annular cylindrical cooling container 2, the container was immersed in the liquid nitrogen. After that, a triaxial SQU is placed in the magnetically shielded space 7 surrounded by the inner wall of the cooling container.
ID (Superconducting Quantum)
m Interference Device: Superconducting quantum interference device) An alternating magnetic field with a frequency of 4 to 100 Hz was measured using a magnetometer 8, and the maximum value of the measured alternating magnetic field was defined as magnetic noise. The results are shown in Table 1.

なお、酸化物超電導体と冷却容器とは、上記で製造した
ものを、それぞれ第1表に示した組合わせで用いた。
The oxide superconductors and cooling containers manufactured above were used in the combinations shown in Table 1.

第1表 上記実施例及び比較例より、10−”ガウス以下の材料
を用いた冷却容器と酸化物超電導体との組合わせにおい
ては、磁気ノイズが1O−4ガウス以下と極めて小さい
。また、酸化物超電導層が冷却容器の内壁側の最内層で
ない配列形態で、且つ基体がインコネル625の酸化物
超電導体りを用いた場合でも、冷却容器内壁が残留磁場
10−”ガウス以下のAIであれば(実施例5)では、
磁気ノイズがlo−4と他の実施例に比し大きくなるが
、比較例3の5US304を用いた冷却容器との組合わ
せに比せば、磁気ノイズの小さいことが顕著であること
が分かる。
Table 1 From the above Examples and Comparative Examples, in the combination of a cooling container and an oxide superconductor using a material of 10-" Gauss or less, the magnetic noise is extremely small, 1O-4 Gauss or less. Even if the oxide superconducting layer is not the innermost layer on the inner wall side of the cooling vessel and the substrate is an oxide superconductor of Inconel 625, if the inner wall of the cooling vessel has an AI with a residual magnetic field of 10-'' Gauss or less, In (Example 5),
It can be seen that although the magnetic noise is larger than that of lo-4 and other examples, the magnetic noise is significantly smaller than that of the combination with the cooling container using 5US304 of Comparative Example 3.

〔発明の効果] 本発明の磁気シールド装置は、酸化物超電導体と冷却装
置との組合わせにおいて、残留磁場がIO4ガウス以下
の材料を用いて囲まれた空間を形成することにより、空
間内の磁気ノイズを極めて小さいすることができ、実用
性が高く、工業的に有用である。
[Effects of the Invention] The magnetic shielding device of the present invention, in a combination of an oxide superconductor and a cooling device, forms a space surrounded by a material with a residual magnetic field of IO4 Gauss or less, thereby reducing the amount of energy within the space. Magnetic noise can be made extremely small, making it highly practical and industrially useful.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例である磁気シールド装置の
断面説明図である。
FIG. 1 is an explanatory cross-sectional view of a magnetic shielding device that is an embodiment of the present invention.

Claims (2)

【特許請求の範囲】[Claims] (1)少なくとも酸化物超電導体及び冷却容器からなる
磁気シールド装置において、酸化物超電導体で囲まれ磁
気遮蔽される空間が残留磁場10^−^2ガウス以下の
材料で囲まれて構成されていることを特徴とする磁気シ
ールド装置。
(1) In a magnetic shielding device consisting of at least an oxide superconductor and a cooling container, the space surrounded by the oxide superconductor and magnetically shielded is surrounded by a material with a residual magnetic field of 10^-^2 Gauss or less. A magnetic shielding device characterized by:
(2)前記空間がAg,Al、Al合金、Cu、黄銅、
Ti、プラスチック、カーボン、木材及びガラスの1種
または2種以上の材料で囲まれて構成されている請求項
(1)記載の磁気シールド装置。
(2) The space is made of Ag, Al, Al alloy, Cu, brass,
2. The magnetic shielding device according to claim 1, wherein the magnetic shielding device is surrounded by one or more of Ti, plastic, carbon, wood, and glass.
JP2216666A 1990-08-17 1990-08-17 Magnetic shielding device Pending JPH0498899A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2216666A JPH0498899A (en) 1990-08-17 1990-08-17 Magnetic shielding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2216666A JPH0498899A (en) 1990-08-17 1990-08-17 Magnetic shielding device

Publications (1)

Publication Number Publication Date
JPH0498899A true JPH0498899A (en) 1992-03-31

Family

ID=16692025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2216666A Pending JPH0498899A (en) 1990-08-17 1990-08-17 Magnetic shielding device

Country Status (1)

Country Link
JP (1) JPH0498899A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9595897B2 (en) 2014-10-31 2017-03-14 Fanuc Corporation Motor control device for controlling current phase on dq/three-phase coordinates

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63261763A (en) * 1987-04-20 1988-10-28 Hitachi Ltd Superconducting magnetic shield
JPS63278385A (en) * 1987-05-11 1988-11-16 Furukawa Electric Co Ltd:The Magnetic shielding device
JPS6457700A (en) * 1987-08-28 1989-03-03 Hitachi Ltd Magnetic shielding device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63261763A (en) * 1987-04-20 1988-10-28 Hitachi Ltd Superconducting magnetic shield
JPS63278385A (en) * 1987-05-11 1988-11-16 Furukawa Electric Co Ltd:The Magnetic shielding device
JPS6457700A (en) * 1987-08-28 1989-03-03 Hitachi Ltd Magnetic shielding device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9595897B2 (en) 2014-10-31 2017-03-14 Fanuc Corporation Motor control device for controlling current phase on dq/three-phase coordinates

Similar Documents

Publication Publication Date Title
Sastry et al. Possible role of Cu2+–Cu4+ pairs in the superconductivity of YBa2Cu3O7–x from electron spin resonance observations
JPH0498899A (en) Magnetic shielding device
Clem Superconducting magnetic shielding for SQUID-based systems operating in low fields
Gubser et al. Multilayer Nb 3 Sn superconducting shields
US5126319A (en) Magnetic material having superconductive properties at room temperature and a method of preparation of the same
JPH04795A (en) Magnetic shielding plate
JPH0529787A (en) Magnetic shield
JPH05114796A (en) Magnetic shielding case
JPH01110799A (en) Manufacture of superconductive magnetic shielding material
JPS63278385A (en) Magnetic shielding device
JPS63313897A (en) Magnetic shielding body
JP2781837B2 (en) Magnetic field stabilization method and magnetic field stabilizer
JPH043998A (en) Magnetic shield plate
JPH04119675A (en) Magnetic shielding superconductive tile and manufacture thereof
JPH0269997A (en) Ceramic superconductive magnetic shield and manufacture of the same
JPS63261763A (en) Superconducting magnetic shield
JPH04276593A (en) Superconductive magnetic shielding device
Giunchi The MgB2 bulk cylinders as magnetic shields for physical instrumentation
JP2512142B2 (en) Superconducting magnetic shield cylinder
JP2512141B2 (en) Superconducting magnetic shield cylinder
JPH02275779A (en) Superconducting ceramic composite material
JPH01282899A (en) Magnetic shield material using superconductive material
JPH07193391A (en) Magnetic shield box
JPH0410498A (en) Magnetic shield plate
JPH07122885A (en) Superconducting magnetic shielding device