JPH01282899A - Magnetic shield material using superconductive material - Google Patents

Magnetic shield material using superconductive material

Info

Publication number
JPH01282899A
JPH01282899A JP63111944A JP11194488A JPH01282899A JP H01282899 A JPH01282899 A JP H01282899A JP 63111944 A JP63111944 A JP 63111944A JP 11194488 A JP11194488 A JP 11194488A JP H01282899 A JPH01282899 A JP H01282899A
Authority
JP
Japan
Prior art keywords
superconducting
magnetic shielding
magnetic shield
base material
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63111944A
Other languages
Japanese (ja)
Inventor
Shinichiro Yahagi
慎一郎 矢萩
Akihiko Saito
斎藤 章彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP63111944A priority Critical patent/JPH01282899A/en
Publication of JPH01282899A publication Critical patent/JPH01282899A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To use Fe-Cr-Al system alloy as a shield material and give full play to magnetic shield performance by combining a lightweight unbulky shield material and a cooling means in which mounting and operation can comparatively easily be performed and cost is low. CONSTITUTION:Power of superconductive material of R-Ba-Cu-O system or Bi-Sr-Ca-Cu-O system is melted and jetted in a base material with the shape of required magnetic shield material and heat treatment is performed. The alphabetical letter R shows one kind or two kinds and more selected from Y and La system rare earth elements. The heat treatment material is cooled at the boiling point of liquid nitrogen or the temperature less than it to use. Fe-Cr-Al system alloy is used as the material of a base material. The thin film of molten and jetted superconductive material is treated by heat and shows superconductivity. Thereby magnetic shield performance is fully shown.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は、超電導材料を使用した磁気シールド装置のシ
ールド材に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field 1] The present invention relates to a shielding material for a magnetic shielding device using a superconducting material.

[従来の技術] 磁気シールドの最も一般的な手段は、純鉄やパーマロイ
のような透磁率の高い軟磁性材で、所要の形状のシール
ド状を用意することである。 たとえば5QLJID(
超電導量子干渉計)やジョセフソンコンピュータに関し
ては、地磁気をはじめとする外部磁界の影響を完全に遮
断するため、厚さ2mもの純鉄の壁を使用している。
[Prior Art] The most common means of magnetic shielding is to prepare a shield in a desired shape using a soft magnetic material with high magnetic permeability, such as pure iron or permalloy. For example, 5QLJID (
As for the superconducting quantum interferometer) and the Josephson computer, walls of pure iron as thick as 2 meters are used to completely block out the influence of external magnetic fields, including the earth's magnetism.

開発が進められているリニヤモーターカーでは、電磁コ
イルによる強い磁界が発生し、これが乗客のもつ電子装
置に影響を与える。 身近な電子装置にはデジタル時計
やラップトツブ型のパソコン、ワープロがあり、特別な
ものには心臓ペースメーカーなどがあって、前者はとも
かく、俊者の誤作動は人命にかかわる問題でおる。 従
って、リニヤモーターカーの実用化のためには、効果的
な磁気シールド手段の確立が必要である。 しかし、リ
ニヤモーターカーは磁気で浮上して高速で移動するもの
であるから、磁気シールド装置を不相当に重いものとす
るわけにはいかない。
In maglev trains, which are currently being developed, electromagnetic coils generate strong magnetic fields that affect passengers' electronic devices. Familiar electronic devices include digital clocks, laptop computers, and word processors, and special devices include cardiac pacemakers, and the former's malfunction is a life-threatening problem. Therefore, in order to put linear motor cars into practical use, it is necessary to establish effective magnetic shielding means. However, since a linear motor car is magnetically levitated and moves at high speed, the magnetic shielding device cannot be made excessively heavy.

近年注目を集めている超電導材料は、超電導状態におい
て完全反磁性を示すことが知られている。
Superconducting materials, which have attracted attention in recent years, are known to exhibit complete diamagnetic properties in the superconducting state.

上記の高透磁の軟磁性材では、磁束を材料自身で吸収す
るという機構により磁気シールドが行なわれる。 従っ
て強い磁界に対してシールドする場合や磁束の漏洩を完
全になくそうとする場合には、多量のシールド材が必要
である。 これに対し、超電導材料は外部からの磁束の
浸入を許さず、これを全部反射してしまうという作用を
もつから、比較的薄いものであっても、高い磁気シール
ド効果が1qられると期待できる。 ただし、超電導現
象を利用した磁気シールドを行なうには、超電導材料を
その臨界温度以下に冷却して超電導状態にしておく必要
がおることはいうまでもなく、磁気シールド装置として
は、シールド材と冷却手段とを一体にして考えなければ
ならない。
In the above-mentioned high permeability soft magnetic material, magnetic shielding is performed by a mechanism in which the material itself absorbs magnetic flux. Therefore, when shielding against a strong magnetic field or when attempting to completely eliminate leakage of magnetic flux, a large amount of shielding material is required. On the other hand, superconducting materials do not allow magnetic flux to enter from the outside and reflect all of it, so even if they are relatively thin, they can be expected to have a high magnetic shielding effect of 1q. However, in order to perform magnetic shielding using the superconducting phenomenon, it goes without saying that it is necessary to cool the superconducting material below its critical temperature and maintain it in a superconducting state. We must consider the means as one.

発明者らは、上記の考察にもとづき、超電導材料を使用
した軽くカサ高にならないシールド材と、比較的容易に
設置および運転ができてコストが低部な冷却手段とを組
み合わせてなる磁気シールド装置を発明し、別途提案し
た。 その装置は、シールド材として、R−Ba −C
1J −0系またはBi −Sr −Ca −CI −
0系の高温超電導材料を磁気シールド材の形状をもった
基材に溶射して、薄膜を形成したものを用い、液体窒素
の沸点またはそれより低い温度に冷却できる冷却手段を
組み合わせる。
Based on the above considerations, the inventors developed a magnetic shielding device that combines a lightweight shielding material made of superconducting material that does not become bulky, and a cooling means that is relatively easy to install and operate and is inexpensive. was invented and separately proposed. The device uses R-Ba-C as a shielding material.
1J-0 system or Bi-Sr-Ca-CI-
A thin film is formed by thermally spraying a 0-series high-temperature superconducting material onto a base material in the shape of a magnetic shielding material, and a cooling means capable of cooling the material to a temperature at or below the boiling point of liquid nitrogen is combined.

ところが、この発明に従う磁気シールド材を種々製造し
、シールド効果を測定しているうちに、期待どおりの性
能を示さないものがあることを経験した。
However, while manufacturing various magnetic shielding materials according to the present invention and measuring their shielding effects, it was discovered that some of them did not exhibit the expected performance.

(発明が解決しようとする課題] 本発明の目的は、上記の問題を解消し、超電導材料が本
来もっている磁気シールド性能を十分に発揮させること
のできる磁気シールド材を提供し、上記の発明の効果を
完全に中受できるようにすることにある。
(Problems to be Solved by the Invention) An object of the present invention is to provide a magnetic shielding material capable of solving the above-mentioned problems and fully exhibiting the magnetic shielding performance inherent to superconducting materials, and to solve the above-mentioned problems. The goal is to be able to completely receive the effects.

[課題を解決するための手段] 本発明の超電導材料を使用した磁気シールド装置は、R
−Ba −C1J−0系〔Rは、YおよびLa系希土類
元素からえらんだ1種または2種以上をあられし、Ba
は一部または全部をSrで首き換えることができ、かつ
この系にFを含むことができる。〕またはBi −Sr
 −Ca −Cu −0系の高温超電導材料の粉末を所
要の磁気シールド材の形状をもつ基材に溶則し、熱処理
を行なって超電導性をもたせたものを、液体窒素の沸点
またはそれより低い温度に冷却して使用する磁気シール
ド材において、基材の材料として、Fe −0r−1系
合金を使用したことを特徴とする。
[Means for solving the problem] A magnetic shielding device using the superconducting material of the present invention has R
-Ba -C1J-0 series [R is one or more selected from Y and La rare earth elements, Ba
can be partially or completely replaced with Sr, and F can be included in this system. ] or Bi-Sr
-Ca -Cu -0-based high temperature superconducting material powder is melted into a base material having the shape of the required magnetic shielding material, heat treated to give it superconductivity, and the powder is heated to a temperature lower than the boiling point of liquid nitrogen or lower. A magnetic shielding material used after being cooled to a temperature is characterized in that a Fe-0r-1 alloy is used as a base material.

Fe −Cr−Au系合金において、磁気シールド材の
基材材料として有用なのは、Cr:17〜26%および
l:2〜6%を含有し、残部が実質的に「Cからなる組
成のものである。 この組成範囲内で、電熱線の形で市
販されている(17〜21 ) Cr −(2〜4 )
 1−Fe合金があり、ふつうはこれで十分で必る。
Fe-Cr-Au alloys useful as base materials for magnetic shielding materials contain 17 to 26% Cr and 2 to 6% L, with the remainder consisting essentially of C. Within this composition range, (17-21) Cr-(2-4) is commercially available in the form of heating wires.
1-Fe alloy, which is usually sufficient.

溶射は、プラズマ溶射が好ましいが、ガス溶射でもよい
The thermal spraying is preferably plasma spraying, but gas spraying may also be used.

溶射した超電導材料の薄膜は、既知の方法で熱処理をす
ることにより、超電導性を示すようになる。
The thermally sprayed thin film of superconducting material becomes superconducting by heat-treating it by a known method.

[作 用] 溶射により超電導材料の薄膜を形成する基材としては、
成形の容易さや機械的強度などの観点から、金属が適当
である。
[Function] As a base material for forming a thin film of superconducting material by thermal spraying,
Metal is suitable from the viewpoint of ease of molding and mechanical strength.

ところが、溶射後の超電導材料は、熱処理をしてはじめ
て、超電導性が生じる。 熱処理は、たとえば950℃
×2時間、酸素雰囲気下に行なう。
However, the superconducting material after thermal spraying does not become superconducting until it is heat treated. Heat treatment is, for example, 950°C
x 2 hours in an oxygen atmosphere.

超電導材料が期待どおりの性能を発揮しない原因は、こ
の熱処理により基材が酸化され、生成した酸化物が超電
導材料に対し物理的および化学的に影響を与えこれを変
質させてしまうためと考えられる。
The reason why superconducting materials do not perform as expected is thought to be that the base material is oxidized by this heat treatment, and the generated oxides affect the superconducting materials physically and chemically, causing them to change in quality. .

本発明に従ってFe −Cr−A、ll系合金を基材に
使用すると、この合金は高温でも酸化性雰囲気に耐え、
表面にごく薄い酸化被膜をつくるだけでおり、この被膜
は物理的、化学的にきわめて安定であるから、基材上に
溶射された超電導材料に悪影響を及ぼさない。 従って
、その磁気シールド材としての性能の発揮を妨げること
がない。
When Fe-Cr-A, 11-based alloy is used as a base material according to the present invention, this alloy can withstand oxidizing atmosphere even at high temperatures,
Only a very thin oxide film is created on the surface, and this film is extremely stable physically and chemically, so it does not have any adverse effect on the superconducting material sprayed onto the substrate. Therefore, the performance as a magnetic shielding material is not hindered.

(実施例) Y203粉末(純度99.99%、平均粒径1.5μm
)、BaCO3粉末(純度99.9%、平均粒径1μT
rL)およびCuO粉末(純度99゜9%、平均粒径1
μm)を原料とし、重量でY203 : Ba O: 
Cu o=1.129:  3.386:  2.38
6の割合となるように配合して、乳鉢で混合した。
(Example) Y203 powder (purity 99.99%, average particle size 1.5 μm
), BaCO3 powder (purity 99.9%, average particle size 1 μT
rL) and CuO powder (purity 99°9%, average particle size 1
μm) as raw material, Y203: BaO: by weight
Cu o=1.129: 3.386: 2.38
The ingredients were mixed in a mortar.

混合物をアルミナ製のルツボに入れ、大気中で仮焼した
。 仮焼物を再度粉砕し、ポリビニルブチラール樹脂(
重合度700)の液を、仮焼物粉末1gに当り1.1m
の割合で加え、圧力1トン/ ctAのプレスで、幅9
#X長ざ50mX厚ざ7NIIの棒状体に成形した。
The mixture was placed in an alumina crucible and calcined in the air. The calcined material is crushed again and polyvinyl butyral resin (
1.1 m of liquid with a polymerization degree of 700) per 1 g of calcined powder
Add at the rate of
#X It was molded into a rod-shaped body with a length of 50 m and a thickness of 7 NII.

これを大気中950℃×16時間焼成し、黒色の焼結体
を得た。
This was fired in the air at 950°C for 16 hours to obtain a black sintered body.

この焼結体は、超電導臨界温度が92にであり、80K
における1000eの磁界中の磁化は4πI=−18G
であった。 完全な超電導体は4πI=−100Gであ
ることから、この焼結体に含まれている超電導物質の量
は18%ということになる。
This sintered body has a superconducting critical temperature of 92 and 80K.
The magnetization in a magnetic field of 1000e is 4πI=-18G
Met. Since a perfect superconductor has 4πI=-100G, the amount of superconducting material contained in this sintered body is 18%.

続いて、上記の焼結体をボールミルに入れて粉砕し、粒
径50〜150μ而にした。 この粉末を、強磁性体と
反磁性体とを分離する装置rDEMフィルター」 (大
同特殊14■¥A)にかけて超電導性をもつ粒子だけを
集め、50%以上に濃縮した。
Subsequently, the above sintered body was placed in a ball mill and pulverized to a particle size of 50 to 150 μm. This powder was passed through an rDEM filter, a device that separates ferromagnetic materials and diamagnetic materials (Daido Tokushu 14 ■ ¥A), to collect only the superconducting particles and concentrate them to more than 50%.

濃縮した粉末を、下記の溶射条件で100μmの厚さに
プラズマ溶射して、超電導材料の薄膜を形成した。
The concentrated powder was plasma sprayed to a thickness of 100 μm under the following spraying conditions to form a thin film of superconducting material.

溶射ガン:メテコ9MB (第一メテコ■製)ガ ス:
Ar (50,1!/hr)+−(7,9/hr)の混
合ガス 電   流:50OA 電   圧ニア5■ 溶射距離:150m 基材としては、18Cr−3△ρ−Feの組成の、厚さ
0.5mX内径50#×長ざ150mの円筒を使用した
Thermal spray gun: Metco 9MB (manufactured by Daiichi Metco) Gas:
Mixed gas of Ar (50,1!/hr)+-(7,9/hr) Current: 50OA Voltage near 5■ Thermal spraying distance: 150m The base material was 18Cr-3Δρ-Fe composition. A cylinder with a thickness of 0.5 m, an inner diameter of 50 #, and a length of 150 m was used.

溶射後、この円筒を炉に入れ、950’CX 2時間、
酸素雰囲気下に熱処理し、炉冷した。
After thermal spraying, this cylinder was placed in a furnace and heated at 950'CX for 2 hours.
It was heat treated in an oxygen atmosphere and cooled in a furnace.

図に示した構成の測定装置を用意した。 デユア−瓶2
内の液体窒素(図示してない)中に、上記の超電導材料
を溶射した円筒1を置き、その中にサーチコイル3を入
れ、発撮器Qscからの電気信号をアンプA11)で増
幅してヘルムホルツコイル4に印加し、サーチコイルの
出力をロックインアンプLn−Ampで検出して磁気シ
ールド効果をしらべた。
A measuring device with the configuration shown in the figure was prepared. Dua-Bottle 2
The cylinder 1 sprayed with the above-mentioned superconducting material is placed in liquid nitrogen (not shown) inside the cylinder, the search coil 3 is placed inside the cylinder 1, and the electric signal from the transmitter Qsc is amplified by the amplifier A11). The magnetic shielding effect was examined by applying the voltage to the Helmholtz coil 4 and detecting the output of the search coil using a lock-in amplifier Ln-Amp.

磁気シールド効果Ems[dB]は、下記の式により定
義される1直である。
The magnetic shielding effect Ems [dB] is one line defined by the following formula.

Ems[dB] =−201oge/e。Ems [dB] = -201 og/e.

〔式中、e□はシールドなしの場合、eはシールドした場合の、サーチコイル出力(mV )である。〕[In the formula, e□ is the search coil output (mV) when there is no shield, and e is the search coil output (mV) when it is shielded. ]

測定条件はつぎのとおりである。 The measurement conditions are as follows.

磁界の強さ: 1−1o =1 [Oe ](e□ =
5.7mV) 周波数: f=50 [Hz ] 比較のため、純鉄製で上記と同じ寸法の円筒上に超電導
材料を溶射したものもつくり、同じ条件でシールド効果
をしらべた。
Magnetic field strength: 1-1o = 1 [Oe] (e□ =
5.7 mV) Frequency: f = 50 [Hz] For comparison, a cylinder made of pure iron with the same dimensions as above was also made with a superconducting material sprayed on it, and the shielding effect was examined under the same conditions.

結果は、つぎのとおりである。The results are as follows.

シールド材 出力e シールド効果 (μV)   (dB) (実施例) Fe−Cr−AN合金  0.001   135(比
較例) 純   鉄       0.010     115
超電導材料の溶射を、下記の条件のガス溶射によって実
施した場合も、実質上これと同じ結果が得られた。
Shielding material Output e Shielding effect (μV) (dB) (Example) Fe-Cr-AN alloy 0.001 135 (Comparative example) Pure iron 0.010 115
Substantially the same results were obtained when the superconducting material was thermally sprayed by gas spraying under the following conditions.

溶射ガン:メチコロPn型(同前) ガ  スフ02+アセチレン 溶射距離:150m 溶射厚ざ:100μ′rrl(前記と同じ)[発明の効
果] 本発明の超電導材料を使用した磁気シールド材によれば
、前記した発明の効果、すなわち、従来の高透磁率材料
を用いた重くカサ高なシールド材を使わず軽量かつ小型
のシールド材で効果的な磁気シールドが行なえ、冷却は
液化窒素で足り、冷却手段は建設も運転も容易であって
、コストが低部であるという利益を、十分に引き出すこ
とができる。
Thermal spraying gun: Meticolo Pn type (same as above) Gasfu 02 + acetylene spraying distance: 150m Spraying thickness: 100μ'rrl (same as above) [Effects of the invention] According to the magnetic shielding material using the superconducting material of the present invention, The effects of the invention described above are that effective magnetic shielding can be achieved with a lightweight and small shielding material without using the conventional heavy and bulky shielding material made of high magnetic permeability material, and liquefied nitrogen is sufficient for cooling. It is easy to construct and operate, and can take full advantage of its low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、本発明の磁気シールド材の性能を試験するため
の装置を、概念的に示した図である。 1・・・超電導材料を溶射した円筒 2・・・デユア−瓶 3・・・サーチコイル 4・・・ヘルムホルツコイル Osc・・・発振器 Amp・・・アンプ Ln−Amp・・・ロックインアンプ 特許出願人   大同特殊鋼株式会社 代理人  弁理士  須 賀 総 夫 Amρ
The drawing is a diagram conceptually showing an apparatus for testing the performance of the magnetic shielding material of the present invention. 1... Cylinder sprayed with superconducting material 2... Dual bottle 3... Search coil 4... Helmholtz coil Osc... Oscillator Amp... Amplifier Ln-Amp... Lock-in amplifier patent application Person Daido Steel Co., Ltd. Agent Patent Attorney Souo Suga Amρ

Claims (2)

【特許請求の範囲】[Claims] (1)R−Ba−Cu−O系〔Rは、YおよびLa系希
土類元素からえらんだ1種または2種以上をあられし、
Baは一部または全部をSrで置き換えることができ、
かつこの系にFを含むことができる。〕またはBi−S
r−Ca−Cu−O系の高温超電導材料の粉末を所要の
磁気シールド材の形状をもつ基材に溶射し、熱処理を行
なつて超電導性をもたせたものを、液体窒素の沸点また
はそれより低い温度に冷却して使用する超電導材料を用
いた磁気シールド材において、基材の材料として、Fe
−Cr−Al系合金を使用したことを特徴とする磁気シ
ールド材。
(1) R-Ba-Cu-O system [R is one or more selected from Y and La rare earth elements,
Ba can be partially or completely replaced with Sr,
Moreover, F can be included in this system. ] or Bi-S
Powder of r-Ca-Cu-O-based high-temperature superconducting material is thermally sprayed onto a base material having the shape of the required magnetic shielding material, and heat-treated to give it superconductivity. In magnetic shielding materials using superconducting materials that are cooled to low temperatures, Fe is used as the base material.
- A magnetic shielding material characterized by using a Cr-Al alloy.
(2)基材の材料として、Cr:17〜26%およびA
l:2〜6%を含有し、残部が実質上Feからなる合金
を使用した請求項1の磁気シールド材。
(2) As the material of the base material, Cr: 17-26% and A
2. The magnetic shielding material according to claim 1, comprising an alloy containing 2 to 6% of L, with the remainder substantially consisting of Fe.
JP63111944A 1988-05-09 1988-05-09 Magnetic shield material using superconductive material Pending JPH01282899A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63111944A JPH01282899A (en) 1988-05-09 1988-05-09 Magnetic shield material using superconductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63111944A JPH01282899A (en) 1988-05-09 1988-05-09 Magnetic shield material using superconductive material

Publications (1)

Publication Number Publication Date
JPH01282899A true JPH01282899A (en) 1989-11-14

Family

ID=14574060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63111944A Pending JPH01282899A (en) 1988-05-09 1988-05-09 Magnetic shield material using superconductive material

Country Status (1)

Country Link
JP (1) JPH01282899A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02125855A (en) * 1988-11-02 1990-05-14 Mitsubishi Metal Corp Manufacture of superconducting ceramic film by plasma flame

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02125855A (en) * 1988-11-02 1990-05-14 Mitsubishi Metal Corp Manufacture of superconducting ceramic film by plasma flame

Similar Documents

Publication Publication Date Title
Sastry et al. Possible role of Cu2+–Cu4+ pairs in the superconductivity of YBa2Cu3O7–x from electron spin resonance observations
Rauchschwalbe et al. Superconductivity in a mixed-valent system: CeRu 3 Si 2
Li et al. Oxidation characteristics and magnetic properties of iron ultrafine particles
JPH07111213A (en) Composite body of high-temperature superconducting bulk body and coil magnet
Roberge et al. Improvements of’’in situ’’multifilamentary Nb3Sn superconducting wires
Wang et al. High temperature superconducting magnetic levitation
Nakamura et al. Mössbauer Effect and Neutron Diffraction of Fe65 (Ni1− xMnx) 35 Alloys
JPH01282899A (en) Magnetic shield material using superconductive material
Takei et al. Magnetic and superconducting properties of the cubic perovskite YRh3B
JPH01282898A (en) Magnetic shield device using superconductive material
US5126319A (en) Magnetic material having superconductive properties at room temperature and a method of preparation of the same
Mei et al. Magnetic properties of GdBa 2 Cu 3 O 7− x in the normal and superconducting states
Yamagata et al. Highly sensitive magnetic sensor made with a superconducting Y-Ba-Cu-O thick film
US3805119A (en) Superconductor
Gillespie et al. THE MAGNETIC PROPERTIES OF CONCENTRATED Pt‐Ni ALLOYS IN THE ORDERED AND DISORDERED STATES
JP2651018B2 (en) High magnetic field magnet
JPS63234569A (en) Magnetic shielding material
US3684495A (en) Superconducting alloy
IL85461A (en) Malleable superconductor composite containing silver or silver-like materials
JP2624828B2 (en) Magnetometer and method for detecting deterioration of metal material using the same
JPS63318800A (en) Magnetic field shielding material
JPH0529787A (en) Magnetic shield
Sill et al. Magnetic properties of RAlGa compounds
JPH0816026B2 (en) Manufacturing method of superconducting material
JPH057096A (en) Magnetic shielding material for ferro-magnetic field