JPH04276593A - Superconductive magnetic shielding device - Google Patents

Superconductive magnetic shielding device

Info

Publication number
JPH04276593A
JPH04276593A JP6125191A JP6125191A JPH04276593A JP H04276593 A JPH04276593 A JP H04276593A JP 6125191 A JP6125191 A JP 6125191A JP 6125191 A JP6125191 A JP 6125191A JP H04276593 A JPH04276593 A JP H04276593A
Authority
JP
Japan
Prior art keywords
container
vessel
magnetic shielding
liquid nitrogen
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6125191A
Other languages
Japanese (ja)
Inventor
Kazutomo Hoshino
和友 星野
Atsushi Koike
淳 小池
Koichi Numata
幸一 沼田
Kazuhiko Kato
和彦 加藤
Hiroshi Ota
浩 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
RIKEN Institute of Physical and Chemical Research
Original Assignee
Mitsui Mining and Smelting Co Ltd
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd, RIKEN Institute of Physical and Chemical Research filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP6125191A priority Critical patent/JPH04276593A/en
Publication of JPH04276593A publication Critical patent/JPH04276593A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To use a magnetic shielding vessel having a zero-magnetic field space of a size practically usable and obtain a magnetic shielding device able to cool the magnetic shielding vessel at low cost without crack formation. CONSTITUTION:A superconductive magnetic shielding device is constituted of a cylindrical superconductive shielding vessel 1 having one closed end and the other open end and having a insertion hole 8 for a magnetic flux sensor in the center at the closed end, a temperature control vessel 3 containing the magnetic shielding vessel and charged inside with ceramic powder 2, a liquid nitrogen vessel 5 containing the temperature control vessel 3 and charged inside with liquid nitrogen 4, and a vacuum insulation vessel 6 of double walls containing the liquid nitrogen vessel 5. The insertion hole 8 for the magnetic flux sensor is also provided in the vacuum insulation vessel 6 of the outmost layer.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、超電導現象の内、磁束
を排除する性質を利用した磁気シールド装置に関し、特
に超電導体の臨界温度Tcが液体窒素温度77Kを越え
る酸化物高温超電導体で構成された磁気シールド容器を
内含した超電導磁気シールド装置に係る。
[Industrial Application Field] The present invention relates to a magnetic shielding device that utilizes the property of excluding magnetic flux among superconducting phenomena, and in particular is constructed of an oxide high-temperature superconductor whose critical temperature Tc exceeds the liquid nitrogen temperature of 77K. The present invention relates to a superconducting magnetic shielding device including a magnetic shielding container.

【0002】0002

【従来の技術およびその問題点】従来、超電導体は電気
抵抗ゼロと完全反磁性の性質を利用すれば理想的な磁気
シールド材料となることが知られている。しかし、従来
のNbやPbのような金属系超電導体は高価な液体ヘリ
ウムを冷却媒体として必要とすることから実用に供され
てはいない。また、液体ヘリウム冷却容器は通常2層構
造で外層は液体窒素冷却をしなければならず、また内層
も液体窒素で予冷する必要があり、容器自体も大きくな
り、取扱いも面倒である。このような点から従来の金属
系超電導体は磁気シールドに応用されていない。
BACKGROUND OF THE INVENTION Conventionally, it has been known that superconductors can be ideal magnetic shielding materials by utilizing their zero electrical resistance and perfect diamagnetic properties. However, conventional metal-based superconductors such as Nb and Pb are not put into practical use because they require expensive liquid helium as a cooling medium. Furthermore, liquid helium cooling containers usually have a two-layer structure, and the outer layer must be cooled with liquid nitrogen, and the inner layer must also be pre-cooled with liquid nitrogen, making the container itself large and cumbersome to handle. For these reasons, conventional metal-based superconductors have not been applied to magnetic shields.

【0003】最近発見された液体窒素温度で超電導にな
る高温酸化物超電導体を磁気シールドに応用することは
本件発明者らが系統的に研究中であり、種々の成果を得
てはいるが、実際に磁気シールド容器に応用できる大き
なゼロ磁場空間を得るだけの大きさの磁気シールド容器
例えば、直径32cm以上、深さ64cm以上で、重量
が70Kg以上もある大きなセラミック体を作製しなけ
ればならず、その作製は非常に困難であり、このような
大型の磁気シールド容器を熱衝撃によるクラックの発生
無しに冷却することも極めて困難なことである。
The inventors of the present invention are systematically researching the application of the recently discovered high-temperature oxide superconductor, which becomes superconducting at liquid nitrogen temperatures, to magnetic shielding, and have obtained various results. For example, a large ceramic body with a diameter of 32 cm or more, a depth of 64 cm or more, and a weight of 70 kg or more must be made to create a magnetic shield container large enough to obtain a large zero magnetic field space that can be actually applied to a magnetic shield container. , it is extremely difficult to manufacture such a large magnetically shielded container, and it is also extremely difficult to cool such a large magnetically shielded container without generating cracks due to thermal shock.

【0004】本発明は実用に利用できる大きさのゼロ磁
場空間を持つ磁気シールド容器を用い、しかもこの磁気
シールド容器を安価に且つクラックの発生無しに冷却し
得る磁気シールド装置を提供することを目的とするもの
である。
An object of the present invention is to provide a magnetic shielding device that uses a magnetically shielded container having a zero magnetic field space of a size that can be practically used, and that can cool the magnetically shielded container at low cost and without generating cracks. That is.

【0005】[0005]

【問題点を解決するための手段】本発明の超電導磁気シ
ールド装置は、一端閉口/一端開口の筒状で且つ閉口端
面の中央部に磁束計の嵌入口を有する超電導磁気シール
ド容器と、この磁気シールド容器を収納し内部にセラミ
ックス粉が充填された温度制御容器と、この温度制御容
器を収納し内部に液体窒素が充填された液体窒素容器と
、この液体窒素容器を収納する二重壁の真空断熱容器と
を具えて成り、前記磁束計の嵌入口が最外層の真空断熱
容器にも設けられて成るものである。また、本発明の超
電導磁気シールド装置は前記セラミックス粉がアルミナ
粉であり、この粉が磁気シールド容器の閉口端部の方が
開口端部の方より粒径の小さいものとすることができる
[Means for Solving the Problems] The superconducting magnetic shielding device of the present invention comprises a superconducting magnetic shielding container which has a cylindrical shape with one end closed and one end open and has an insertion opening for a magnetometer in the center of the closed end surface, and A temperature-controlled container that houses a shield container and is filled with ceramic powder, a liquid nitrogen container that houses this temperature-controlled container and is filled with liquid nitrogen, and a double-walled vacuum that houses this liquid nitrogen container. An insulating opening for the magnetometer is also provided in the outermost layer of the vacuum insulating container. Further, in the superconducting magnetic shielding device of the present invention, the ceramic powder may be alumina powder, and the particle size of this powder may be smaller at the closed end of the magnetic shielding container than at the open end.

【0006】本発明装置を図面を参照して以下に説明す
るが、本発明はこれに限定されるものではない。
The apparatus of the present invention will be explained below with reference to the drawings, but the present invention is not limited thereto.

【0007】図1において、1は酸化物超電導磁気シー
ルド容器であり、その形状は深さ/直径の比が1以上、
好ましくは2とするのがよい。これは開口端からの磁場
が漏れこんでくるために比が大きいほどシールド効果が
よくなる。また、容器底部は曲率を持たせてある。例え
ば、容器直径の1/2の半径の曲率を持たせる。これは
容器を作製する時の応力を緩和するためである。容器は
酸化物超電導体粉末を冷間静水圧プレス(CIP)によ
り圧力をかけて成型体を形成し、これを焼結して磁気シ
ールド容器1とする。この磁気シールド容器1の閉塞端
面の中央部に設ける磁束計の嵌入口8は最外層の真空断
熱容器の嵌入口が磁束計の挿入を可能とするように十分
な大きさを持たせる必要がある。これにより、上部の嵌
入口からSQUID磁束計を挿入し、下部の開口端部か
ら人間の頭をいれられる構造となる。
In FIG. 1, reference numeral 1 denotes an oxide superconducting magnetic shielding container, and its shape has a depth/diameter ratio of 1 or more;
Preferably it is 2. This is because the magnetic field from the open end leaks in, so the larger the ratio, the better the shielding effect. Further, the bottom of the container has a curvature. For example, the radius of curvature is 1/2 of the diameter of the container. This is to relieve stress when manufacturing the container. The container is made by pressurizing oxide superconductor powder by cold isostatic pressing (CIP) to form a molded body, and sintering this to form the magnetically shielded container 1. The insertion opening 8 for the magnetometer provided in the center of the closed end face of the magnetically shielded container 1 needs to be large enough to allow the insertion of the magnetometer into the insertion opening of the outermost vacuum insulation container. . This creates a structure in which a SQUID magnetometer can be inserted through the insertion opening at the top, and a human head can be inserted through the open end at the bottom.

【0008】磁気シールド容器1は内部にセラミックス
粉2、具体的にはアルミナ粉が充填された温度制御容器
3内に収納され、この温度制御容器3は内部に液体窒素
4が充填された液体窒素容器5内に収納され、さらにこ
の液体窒素容器5は二重壁の真空断熱容器6内に収納さ
れている。なお、二重壁の真空断熱容器6は適用する用
途によっては省略することができる。温度制御容器3は
銅やアルミニウム等の熱伝導性の良いもので形成する。 これにより、その外側の液体窒素容器5に液体窒素供給
孔7より液体窒素を供給した場合、上部と開口端側の温
度差を減らすことができる。また、この温度制御容器3
内に充填するアルミナ粉は開口端側にいくほど粒子の粗
いものを詰めるようにする。例えば、開口端側は2〜3
mmの粒子径、上部は0.1mmの粒子径にする。この
ようにすることにより、磁気シールド容器1の冷却に際
し、上下部の温度差を減少させることができ、重畳で1
00Kgもある大きな磁気シールド容器をクラックの発
生無しに臨界温度以下にまで冷却することができ、装置
内を無磁場空間とすることができる。
The magnetically shielded container 1 is housed in a temperature-controlled container 3 filled with ceramic powder 2, specifically alumina powder, and this temperature-controlled container 3 is filled with liquid nitrogen 4. The liquid nitrogen container 5 is housed in a double-walled vacuum insulated container 6. Note that the double-walled vacuum insulated container 6 may be omitted depending on the application. The temperature control container 3 is made of a material with good thermal conductivity such as copper or aluminum. Thereby, when liquid nitrogen is supplied from the liquid nitrogen supply hole 7 to the liquid nitrogen container 5 on the outside, the temperature difference between the upper part and the open end side can be reduced. In addition, this temperature control container 3
The alumina powder to be filled inside should have coarser particles toward the open end. For example, on the open end side, 2 to 3
The particle size is 0.1 mm, and the upper part is 0.1 mm. By doing this, it is possible to reduce the temperature difference between the upper and lower parts when cooling the magnetically shielded container 1.
A large magnetically shielded container weighing as much as 1,000 kg can be cooled to below the critical temperature without cracking, and the inside of the device can be made into a magnetic field-free space.

【0009】[0009]

【実施例1】超電導磁気シールド容器はBi系酸化物超
電導体の粉末(Bi−Pb−Sr−Ca−Cu−O)を
CIP成型後、焼成して作製した。この磁気シールド容
器の大きさは直径32cm、深さ64cm、厚さ2.5
cmであり、その重量は70Kgであった。また、磁束
計の嵌入口は直径12cmとした。
[Example 1] A superconducting magnetically shielded container was produced by CIP molding a Bi-based oxide superconductor powder (Bi-Pb-Sr-Ca-Cu-O) and then firing it. The size of this magnetically shielded container is 32 cm in diameter, 64 cm in depth, and 2.5 cm in thickness.
cm, and its weight was 70 kg. Moreover, the diameter of the insertion opening of the magnetometer was 12 cm.

【0010】図1に示される装置を用い、上記した大型
の磁気シールド容器を冷却した。冷却に要した液体窒素
の量は約500リッターであり、室温から液体窒素温度
まで冷却するのに12時間を要した。また、容器の上部
と開口端に熱電対を貼付て測温した。その結果、上部と
開口端との温度差は30K以下であった。
[0010] The above-described large magnetically shielded container was cooled using the apparatus shown in FIG. The amount of liquid nitrogen required for cooling was approximately 500 liters, and it took 12 hours to cool from room temperature to liquid nitrogen temperature. Additionally, thermocouples were attached to the top and open end of the container to measure the temperature. As a result, the temperature difference between the upper part and the open end was 30K or less.

【0011】このようにして冷却した超電導磁気シール
ド装置のシールド効果をSQUID磁束計を用いて測定
した。その結果、外部磁界強度0.5ガウス、周波数0
.2Hzの時、深さ/直径=1の位置で外部磁界は千分
の1に減少した。
The shielding effect of the superconducting magnetic shield device cooled in this way was measured using a SQUID magnetometer. As a result, the external magnetic field strength is 0.5 Gauss, and the frequency is 0.
.. At 2 Hz, the external magnetic field was reduced by a factor of 1,000 at the depth/diameter=1 position.

【0012】0012

【発明の効果】以上のように、本発明によれば、人の脳
から発する微少磁気の検出、小動物等から発する生体磁
気の検出、極めて微弱な磁性体の磁化率等を検出するの
に極めて好適な超電導磁気シールド装置が得られ、しか
も簡単な構成により磁気シールド容器を臨界温度以下に
まで容易に冷却することができ、初めて実用に供し得る
磁気シールド装置が提供される。
[Effects of the Invention] As described above, the present invention is extremely suitable for detecting minute magnetism emitted from the human brain, biomagnetism emitted from small animals, etc., and detecting the magnetic susceptibility of extremely weak magnetic materials. A suitable superconducting magnetic shielding device can be obtained, and a magnetic shielding container can be easily cooled down to a critical temperature or less with a simple configuration, and a magnetic shielding device that can be put to practical use for the first time is provided.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明に係る超電導磁気シールド装置の一例を
示す概略説明図である。
FIG. 1 is a schematic explanatory diagram showing an example of a superconducting magnetic shielding device according to the present invention.

【符号の説明】[Explanation of symbols]

1  磁気シールド容器 2  セラミックス粉 3  温度制御容器 4  液体窒素 5  液体窒素容器 6  真空断熱容器 7  液体窒素供給孔 8  磁束計の嵌入口 1 Magnetic shield container 2 Ceramic powder 3 Temperature controlled container 4. Liquid nitrogen 5. Liquid nitrogen container 6 Vacuum insulation container 7 Liquid nitrogen supply hole 8 Magnetometer insertion hole

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  一端閉口/一端開口の筒状で且つ閉口
端面の中央部に磁束計の嵌入口を有する超電導磁気シー
ルド容器と、この磁気シールド容器を収納し内部にセラ
ミックス粉が充填された温度制御容器と、この温度制御
容器を収納し内部に液体窒素が充填された液体窒素容器
と、この液体窒素容器を収納する二重壁の真空断熱容器
とを具えて成り、前記磁束計の嵌入口が最外層の真空断
熱容器にも設けられた超電導磁気シールド装置。
Claim 1: A superconducting magnetically shielded container having a cylindrical shape with one end closed and one end open and having a magnetometer fitting opening in the center of the closed end surface, and a temperature in which the magnetically shielded container is housed and the inside is filled with ceramic powder. A control container, a liquid nitrogen container that stores the temperature control container and is filled with liquid nitrogen, and a double-walled vacuum insulation container that stores the liquid nitrogen container; A superconducting magnetic shielding device is also installed in the outermost layer of the vacuum insulation container.
【請求項2】  前記セラミックス粉がアルミナ粉であ
り、この粉が磁気シールド容器の閉口端部の方が開口端
部の方より粒径の小さいものとする請求項1記載の超電
導磁気シールド装置。
2. The superconducting magnetic shielding device according to claim 1, wherein the ceramic powder is alumina powder, and the powder has a smaller particle size at a closed end of the magnetic shielding container than at an open end.
JP6125191A 1991-03-02 1991-03-02 Superconductive magnetic shielding device Pending JPH04276593A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6125191A JPH04276593A (en) 1991-03-02 1991-03-02 Superconductive magnetic shielding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6125191A JPH04276593A (en) 1991-03-02 1991-03-02 Superconductive magnetic shielding device

Publications (1)

Publication Number Publication Date
JPH04276593A true JPH04276593A (en) 1992-10-01

Family

ID=13165832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6125191A Pending JPH04276593A (en) 1991-03-02 1991-03-02 Superconductive magnetic shielding device

Country Status (1)

Country Link
JP (1) JPH04276593A (en)

Similar Documents

Publication Publication Date Title
Sharma Superconductivity: Basics and applications to magnets
Junod et al. Optimization of the specific heat jump at Tc and magnetic properties of the superconductor YBa2Cu3O7
EP0420698A2 (en) Superconducting magnetic shield
Lounasmaa et al. Specific heat of dysprosium metal between 0.4 and 4 K
Sastry et al. Possible role of Cu2+–Cu4+ pairs in the superconductivity of YBa2Cu3O7–x from electron spin resonance observations
Haga et al. Single crystal growth and anisotropic superconducting property of PuRhGa5
JPH04276594A (en) Superconductive magnetic shield device
JPH04276593A (en) Superconductive magnetic shielding device
Thompson et al. Very low-temperature search for superconductivity in semiconducting KTaO 3
JPH04276592A (en) Superconductive magnetic shielding device
Krusius et al. Properties of sintered copper powders and their application in a nuclear refrigerator with precise temperature control
JP3130618B2 (en) Superconducting magnetic shield container
Ikeda et al. Penetration depth and gap structure in the antiperovskite oxide superconductor Sr 3− x SnO revealed by μ SR
Fuwa et al. Ferromagnetic levitation and harmonic trapping of a milligram-scale yttrium iron garnet sphere
Giunchi The MgB2 bulk cylinders as magnetic shields for physical instrumentation
JPS63278385A (en) Magnetic shielding device
JPH05145274A (en) Superconducting magnetic-shielding apparatus
Ling Monofilament MgB₂ wires for MRI magnets
Huang Some aspects of high-temperature superconductors: a review
JPH0621441Y2 (en) Brain magnetic wave measurement device
WO1998006972A1 (en) Liquified gas cryostat
JPH0459682A (en) Ball of metal-covered superconductive oxide for magnetic shielding
König et al. Magnetic properties of Ag sinters and their possible impact on the coupling to liquid 3 He at very low temperatures
Collings et al. Possibility of critical field enhancement due to field penetration in high-T/sub c/sponges and thin films
JPH05281314A (en) Superconducting magnetic shield device and superconducting magnetic measuring instrument using it