JPH049811B2 - - Google Patents

Info

Publication number
JPH049811B2
JPH049811B2 JP24453585A JP24453585A JPH049811B2 JP H049811 B2 JPH049811 B2 JP H049811B2 JP 24453585 A JP24453585 A JP 24453585A JP 24453585 A JP24453585 A JP 24453585A JP H049811 B2 JPH049811 B2 JP H049811B2
Authority
JP
Japan
Prior art keywords
group
parts
weight
epoxy
coupling agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP24453585A
Other languages
Japanese (ja)
Other versions
JPS62101625A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP24453585A priority Critical patent/JPS62101625A/en
Publication of JPS62101625A publication Critical patent/JPS62101625A/en
Publication of JPH049811B2 publication Critical patent/JPH049811B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

〔産業䞊の利甚分野〕 本発明は、OH基含有フツ玠暹脂およびシラン
カツプリング剀を倉性反応せしめた倉性反応物を
倚官胜゚ポキシ化合物䞭に配合し、分散せしめお
なる耐ヒヌトサむクル性、耐湿性および耐熱性に
優れた半導䜓封止甚゚ポキシ暹脂組成物に関す
る。 〔埓来の技術およびその問題点〕 珟圚IC、LSIなどの半導䜓玠子をシリコヌン暹
脂たたぱポキシ暹脂などを甚いお封止する暹脂
封止法が広く採甚され、これらのなかでも゚ポキ
シ暹脂は比范的優れた気密性を䞎え、か぀安䟡で
あるこずから半導䜓封止甚暹脂ずしお汎甚されお
いる。 しかし、この゚ポキシ暹脂系により倧容量半導
䜓玠子を封止したばあいには硬化時の収瞮による
ストレスたたは内郚玠子ず゚ポキシ暹脂ずの膚匵
係数の差によ぀お生じるストレスなどにより玠子
のボンデむングワむダの倉圢、脱線の発生、たた
は玠子パツシペヌシペンのクラツクの原因ずな
る。そのためこれらのストレスを䜎枛せしめるた
めめめめめめに゚ポキシマトリツクス䞭に可撓性
付䞎剀を添加したりたたは膚匵係数を小さくする
ために無機充填剀の添加量を増倧せしめるなどの
方法により怜蚎されおいる。 しかるに可撓性付䞎剀の添加に察しおは、硬化
暹脂のガラス転移枩床を降䞋し、高枩領域での電
気特性および耐湿性に䜎䞋をもたらし、奜たしく
ない結果を生じるずいう欠点がある。 䞀方、無機充填剀の添加量を増倧し膚匵係数を
䜎枛せしめるには、80重量以䞊の添加量が必芁
であるが、このばあい暹脂組成物の溶融粘床が増
倧し流動性が著しく䜎䞋し玠子の封止に際し、さ
らに高圧成圢が必芁ずなる。たた、溶融粘床の増
倧により成圢時に金線流れや断線が生じ、奜たし
くない状態を生じる。 〔発明が解決しようずする問題点〕 本発明は、かかる問題点を解決するためになさ
れたもので、封止材料がもたらすストレスにより
玠子に損傷を䞎えない耐ヒヌトサむクル性、耐熱
性および耐湿性に優れ、しかもIC玠子成圢の䜜
業性が䜎䞋しない半導䜓封止甚゚ポキシ暹脂組成
物をうるこずを目的ずする。 〔問題点を解決するための手段〕 本発明は、 (a) テトラフルオロ゚チレンたたはトリフルオロ
クロロ゚チレンず、酢酞ビニルたたは酢酞ビニ
ルおよび炭玠数〜のオレフむン系炭化氎玠
ずを共重合せしめおえられた重合物の−COO
−基を加氎分解し、−OH基を導入したOH䟡が
10〜160mgKOHのフツ玠暹脂100重量郚お
よび䞀般匏 匏䞭、は、゚ポキシ基たたはアミノ基を含
む䟡の有機基、R1、R2およびR3は氎玠原子、
プニル基、炭玠数〜のアルキル基たたは
−OR基は氎玠原子たたは炭玠数〜の
アルキル基を瀺すであり、か぀R1、R2およ
びR3の少なくずも぀は−OR基であるで衚
わされるシランカツプリング剀0.1〜25重量郹
を倉性反応せしめおなる倉性反応物 (b) 倚官胜性゚ポキシ化合物および (c) プノヌルノボラツク暹脂 を配合した半導䜓封止甚゚ポキシ暹脂組成物であ
぀お、 倉性反応物の配合量重量郚が倚官胜性゚
ポキシ化合物の配合量重量郚およびプノ
ヌルノボラツク暹脂の配合量重量郚に察し
お、 0.02〜0.3 であり、 倉性反応物をそのたた、たたは倉性反応物を倚
官胜性゚ポキシ化合物たたはプノヌルノボラツ
ク暹脂ず混合たたは反応させたのち配合したこず
を特城ずする半導䜓封止甚゚ポキシ暹脂組成物に
関する。 〔䜜甚および実斜䟋〕 䞀般に、熱安定性に優れた䜎吞湿材料ずしお知
られおいるOH基含有フツ玠暹脂ずシランカツプ
リング剀ずの倉性反応により゚ポキシ暹脂マトリ
ツクスず反応しうる官胜基が導入された倉性反応
物がえられるが、該倉性反応物はえられる゚ポキ
シ暹脂組成物の熱安定性を䞎えるずずもにガラス
転移枩床をほずんど䜎䞋させずに䜎匟性率および
䜎吞湿率を䞎えるので耐熱性および耐湿性に優れ
た゚ポキシ暹脂組成物をうるこずができる。 本発明に甚いるOH基含有フツ玠暹脂はテトラ
フルオロ゚チレンたたはトリフルオロクロロ゚チ
レンず、酢酞ビニルたたは酢酞ビニルおよび炭玠
数〜であるオレフむン系炭化氎玠ずを共重合
せしめたものである。その数平均分子量は500〜
100000であるものが奜たしく、ずくにえられる゚
ポキシ暹脂組成物が優れた熱安定性を有するため
にはテトラフルオロ゚チレンたたはトリフルオロ
クロロ゚チレンず、酢酞ビニルたたは酢酞ビニル
および前蚘炭化氎玠ずを亀互重合せしめたものが
奜たしい。えられた重合物は酢酞ビニルの−
COO−基を加氎分解するこずによりOH基が導入
される。 前蚘数平均分子量は500未満のばあい、可撓化
が䞍十分ずなり、たた100000をこえるず、暹脂の
溶融粘床が高くなり、䜜業性がわるくなる。たた
前蚘炭化氎玠化合物は必芁に応じおプニル基、
アルキル基などを導入したものを䜿甚するこずも
できる。OH基含有フツ玠暹脂はOHが10〜160mg
KOHの範囲のものが䜿甚される。OH䟡が
10mgKOH未満のばあい゚ポキシマトリツク
スずの反応性に乏しく、OH䟡が160mgKOH
をこえるばあいシランカツプリング剀ずの倉性反
応の際に未反応で残぀たOH基は耐湿性などに悪
圱響を䞎える。 本発明に甚いるシランカツプリング剀は䞀般匏
 匏䞭、は、゚ポキシ基たたはアミノ基を含む
の有機基、R1、R2およびR3は氎玠原子、プニ
ル基、炭玠数〜のアルキル基たたは−OR基
は氎玠原子たたは炭玠数〜のアルキル基
を瀺すであり、か぀R1、R2およびR3の少なく
ずも぀は−OR基であるで衚わされる。 該シランカツプリング剀の具䜓䟋ずしおは、γ
−グリシドキシプロピルトリメトキシシラン、γ
−グリシドキシプロピルトリペントキシシラン、
γ−グリシドキシプロピルゞメチル゚トキシシラ
ン、γ−グリシドキシプロピルメチルゞ゚トキシ
シラン、β−−゚ポキシシクロヘキシル
゚チルトリメトキシシラン、−βアミノ゚チ
ルγ−アミノプロピルトリメトキシシランなど
があげられ、これらのものは単独あるいは皮以
䞊で甚いられる。OH基含有フツ玠暹脂ずシラン
カツプリング剀の倉性反応はたずえば、アセト
ン、酢酞゚チル、゚チルアルコヌルなどの溶剀䞭
で行なわれる。 このばあい、OH基含有フツ玠暹脂ずシランカ
ツプリング剀の混合比は、OH基含有フツ玠暹脂
100郚重量郚、以䞋同様に察し、シランカツ
プリング剀0.1〜25郚の範囲である。 OH基含有フツ玠暹脂およびシランカツプリン
グ剀を倉性反応させおえられた倉性反応物は、そ
ののち溶剀を陀去し、掗浄しお゚ポキシ暹脂䞭に
分散させるか、倚官胜性゚ポキシ化合物たたはフ
ェノヌルノボラツク暹脂を倉性反応物溶液䞭に分
散混合あるいは反応させたのちに溶剀を陀去しお
掗浄しお䜿甚する。 シランカツプリング剀の配合量は0.1郚未満の
ばあいには倉性反応が䞍充分であり、25郚をこえ
るずシランカツプリング剀単独の反応がおこり、
耐湿性に悪圱響を䞎える。 たた、OH基含有フツ玠暹脂の平均粒埄が50ÎŒ
以䞋であるばあい、ヘンシ゚ルミキサヌ䞉井
䞉池補䜜所補などを甚いおOH基含有フツ玠暹
脂100郚に察しおシランカツプリング剀0.1〜10郚
の範囲で盎接たたぱチルアルコヌルで垌釈しお
凊理する。 シランカツプリング剀の配合量が0.1郚未満で
は倉性反応が䞍充分であり、10郚をこえるず過剰
のシランカツプリング剀が耐湿性などに悪圱響を
およがす。 本発明に甚いる倚官胜性゚ポキシ化合物ずしお
ぱポキシ圓量が75〜250である、たずえばノボ
ラツク系゚ポキシ暹脂、ビスプノヌル系゚ポ
キシ暹脂、脂環族系゚ポキシ暹脂など皮々のタむ
プの゚ポキシ暹脂が䜿甚できるが、高枩特性の優
れたノボラツク系゚ポキシ暹脂の䜿甚が奜たし
く、これらの゚ポキシ暹脂は単独で䜿甚しおもよ
く、たた皮以䞊を䜵甚しおもよい。なおこれら
の゚ポキシ暹脂ずずもに、必芁に応じお臭玠化ノ
ボラツク系゚ポキシ暹脂、臭玠化ビスプノヌル
系゚ポキシ暹脂などの゚ポキシ暹脂の䜵甚も可
胜である。 本発明に甚いるプノヌルノボラツク暹脂ずし
おは、たずえばプノヌル、クレゟヌル、キシレ
ノヌル、ビスプノヌル、レゟルシンなどのよ
うなプノヌル系化合物ずホルムアルデヒドたた
はパラホルムルアルデヒドずを酞性觊媒䞋で瞮合
反応させるこずによりえられる。えられたプノ
ヌルノボラツク暹脂䞭には未反応化合物はIC玠
子の耐湿性および耐熱性の面から0.5以䞋であ
るのが奜たしい。 OH基含有フツ玠暹脂および䞀般匏 匏䞭、は、゚ポキシ基たたはアミノ基を含む
䟡の有機基、R1、R2およびR3は氎玠原子、フ
゚ニル基、炭玠数〜のアルキル基たたは−
OR基は氎玠原子たたは炭玠数〜のアル
キル基を瀺すであり、か぀R1、R2およびR3の
少なくずも぀は−OR基である で衚わされるシランカツプリング剀を倉性反応せ
しめおなる倉性反応物をそのたた、たたは倉性反
応物を倚官胜性゚ポキシ化合物たたはプノヌル
ノボラツク暹脂ず混合たたは反応させたのち配
合、調敎するこずにより、本発明の゚ポキシ暹脂
組成物がえられるが、倉性反応物の配合量郚
は、倚官胜゚ポキシ化合物の配合量郚およ
びプノヌルノボラツク暹脂の配合量郚に
察しお 〔〕0.02〜0.3 の範囲で配合する。0.02未満では䜎匟性率化が充
分でなく、たた0.3をこえるずえられる組成物の
流動性が䜎䞋する。 本発明の゚ポキシ暹脂組成物には必芁に応じお
無機質フむラヌ、硬化促進剀を添加しおもよい。 前蚘無機質フむラヌずしおは、たずえば結晶性
シリカ粉、溶融シリカ粉、アルミナ粉、タルク、
石英ガラス粉、炭酞カルシりム粉、ガラス繊維な
どがあげられるが、これら無機質フむラヌの添加
量は、本発明の゚ポキシ暹脂組成物に50〜80
重量、以䞋同様添加するのが奜たしい。50
未満では、線膚匵係数および硬化応力を充分に
䞋げるこずができず、IC玠子にクラツクの発生
などの問題が生じ、たた80をこえるず流動性が
䜎䞋し、䜜業性に問題が生じるので50〜80の範
囲内で芁求特性に応じた配合量を適宜調敎しお甚
いる。 前蚘硬化促進剀ずしおは、たずえば−メチル
むミダゟヌル、−゚チルむミダゟヌル、−メ
チル−−メチルむミダゟヌル、−ベンゞル−
−メチルむミダゟヌル、−ヘプタデシルむミ
ダゟヌル、−りンデシルむミダゟヌルなどのむ
ミダゟヌル系化合物や、−ゞメチルアミノメ
チルプノヌル、−トリスゞメチ
ルアミノメチルプノヌル、ベンゞルゞメチル
アミン、α−メチルベンゞルゞメチルアミン、ピ
ペリゞン、ゞメチルラりリルアミン、ゞアルキル
アミノメタノヌルアミン、テトラメチルグアニゞ
ン、−ゞメチルアミノ−−ヒドロキシプロパ
ン、、N′−ゞメチルピペラゞン、−メチル
モルホリン、ピペラゞン、−ゞメチルアミノ
メチルプノヌル、ヘキサメチレンテトラミ
ン、−ヒドロキシル゚チル−−ヘプタデシル
グリオキサリゞン、−ゞアザビシクロ
りンデセン−などの第玚アミ
ンおよびその他のアミン系化合物やむミダゟヌル
系化合物などがあげられる。 たた、䜿甚に際しおカヌボンブラツクなどの着
色剀、カルナりバワツクス、ポリ゚チレンワツク
スなどの離型剀や䞉酞化アンチモンなどの離燃
剀、γ−グリシロキシプロピルトリメトキシシラ
ンなどのカツプリング剀を添加しおもよい。 前蚘各皮成分は䞀般に䜿甚されおいる公知の混
合装眮、たずえばロヌル、ニヌダ、ラむカむ機、
ヘンシ゚ルミキサヌ䞉井䞉池補䜜所補などを
甚いお容易に調敎できる。 ぀ぎに本発明の゚ポキシ暹脂組成物を実斜䟋お
よび比范䟋をあげおさらに詳现に説明するが、本
発明はかかる実斜䟋のみに限定されるものではな
い。 実隓䟋  倉性反応物〜の補造 OH基含有フツ玠暹脂旭硝子(æ ª)補ルミフロ
ン、シランカツプリング剀、溶剀をそれぞれ第
衚の〜に瀺す組成ずなるように調敎し、コ
ルベン䞭に添加しお均䞀な組成ずなるように充分
に撹拌した。 ぀ぎにコルベンを50℃に加枩しお時間反応せ
しめたのち、溶剀を陀去し、氎掗しお倉性反応物
をえた。 実隓䟋  倉性反応物の補造 実隓䟋ず同様にしお第衚に瀺す組成ずな
るようにOH基含有フツ玠暹脂旭硝子(æ ª)補ルミ
フロン、シランカツプリング剀、溶剀を調敎し、
反応せしめたのち、クレゟヌルノボラツク系゚ポ
キシ暹脂゚ポキシ圓量190〜210および硬化
促進剀ずしお−ゞアザビシクロ
りンデセン−を添加し、さらにコルベンを
50℃に加枩しお時間反応せしめ、溶剀を陀去
し、氎掗しお倉性反応物をえた。 実隓䟋  倉性反応物の補造 実隓䟋ず同様にしお第衚のに瀺す組成ず
なるようにOH基含有フツ玠暹脂旭硝子(æ ª)補ル
ミフロン、シランカツプリング剀および溶剀を
調敎し、反応せしめたのち、プノヌルノボラツ
ク暹脂OH圓量100〜120をフレヌク状にし
お添加しお溶解させたのち、均䞀混合せしめ、溶
剀を陀去し、氎掗しお倉性反応物をえた。 実隓䟋  倉性反応物の補造 実隓䟋ず同様にしお第衚のに瀺す組成ず
なるようにOH基含有フツ玠暹脂旭硝子(æ ª)補ル
ミフロン、シランカツプリング剀および溶剀を
調敎し、反応せしめたのち、クレゟヌルノボラツ
ク系゚ポキシ暹脂゚ポキシ圓量190〜210を
フレヌク状にしお添加しお溶解させたのち、均䞀
混合せしめ、溶剀を陀去し、氎掗しお倉性反応物
をえた。 実隓䟋  倉性反応物の補造 第衚のに瀺す組成ずなるようにOH基含有
フツ玠暹脂旭硝子(æ ª)補ルミフロン、シランカ
ツプリング剀、溶剀および硬化促進剀をコルベン
䞭に添加し、均䞀な組成ずなるように充分に撹拌
した。 ぀ぎにコルベンを50℃に加枩しお時間反応せ
しめたのち、溶剀を陀去し、氎掗しお倉性反応物
をえた。 実隓䟋  倉性反応物の補造 OH基含有フツ玠暹脂旭硝子(æ ª)補ルミフロ
ンシランカツプリング剀を第衚の瀺す組成
ずなるように調敎したものをヘンシ゚ルミキサヌ
䞉井䞉池補䜜所補を甚いお衚面凊理を斜しお
倉性反応物をえた。 実隓䟋  倉性反応物の補造 第衚に瀺す組成ずなるようにOH基含有フ
ツ玠暹脂旭硝子(æ ª)補ルミフロン、シランカツ
プリング剀および溶媒を調敎し、シランカツプリ
ング剀を垌釈したものをヘンシ゚ルミキサヌ䞉
井䞉池補䜜所補を甚いお衚面凊理を斜しお倉性
反応物をえた。 実隓䟋  倉性反応物の補造 第衚に瀺された組成に硬化促進剀ずしお蒞
留氎を添加し、シランカツプリング剀ずしおγ−
グリシドキシプロピルトリメトキシシランを甚い
たほかは、実斜䟋ず同様にしお倉性反応物を
えた。
[Industrial Application Field] The present invention is a heat cycle resistant, moisture resistant product obtained by blending and dispersing a modified reaction product obtained by modifying an OH group-containing fluororesin and a silane coupling agent into a polyfunctional epoxy compound. The present invention relates to an epoxy resin composition for semiconductor encapsulation that has excellent properties and heat resistance. [Conventional technologies and their problems] Currently, resin encapsulation methods are widely used to encapsulate semiconductor elements such as ICs and LSIs using silicone resin or epoxy resin. Among these, epoxy resin is relatively superior. It is widely used as a resin for semiconductor encapsulation because it provides airtightness and is inexpensive. However, when a large-capacity semiconductor device is sealed with this epoxy resin system, the bonding wires of the device become deformed due to stress caused by shrinkage during curing or stress caused by the difference in expansion coefficient between the internal device and the epoxy resin. , causing derailment or cracks in the device packaging. Therefore, in order to reduce these stresses, we are investigating methods such as adding flexibility imparting agents to the epoxy matrix, or increasing the amount of inorganic fillers added to reduce the expansion coefficient. has been done. However, the addition of a flexibility-imparting agent has the drawback that it lowers the glass transition temperature of the cured resin, resulting in a decrease in electrical properties and moisture resistance in a high temperature range, resulting in unfavorable results. On the other hand, in order to increase the amount of inorganic filler added and reduce the expansion coefficient, it is necessary to add an amount of 80% by weight or more, but in this case, the melt viscosity of the resin composition increases and the fluidity decreases significantly. Further high-pressure molding is required to seal the element. Furthermore, the increase in melt viscosity causes wire flow and wire breakage during molding, resulting in unfavorable conditions. [Problems to be Solved by the Invention] The present invention has been made to solve these problems, and has heat cycle resistance, heat resistance, and moisture resistance that do not damage the element due to the stress caused by the sealing material. The purpose of the present invention is to provide an epoxy resin composition for semiconductor encapsulation that has excellent properties and does not reduce workability in molding IC elements. [Means for Solving the Problems] The present invention provides (a) copolymerization of tetrafluoroethylene or trifluorochloroethylene and vinyl acetate or vinyl acetate and an olefinic hydrocarbon having 2 to 5 carbon atoms; -COO of the polymer
The OH value obtained by hydrolyzing the - group and introducing the -OH group is
100 parts by weight of 10 to 160 mgKOH/g fluororesin and general formula (): (In the formula, Y is a monovalent organic group containing an epoxy group or an amino group, R 1 , R 2 and R 3 are hydrogen atoms,
a phenyl group, an alkyl group having 1 to 6 carbon atoms, or a -OR group (R represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms), and at least one of R 1 , R 2 and R 3 is - An epoxy for semiconductor encapsulation containing (b) a polyfunctional epoxy compound and (c) a phenol novolak resin, which is obtained by subjecting 0.1 to 25 parts by weight of a silane coupling agent represented by (OR group) to a modification reaction. A resin composition in which the amount A (parts by weight) of the modification reactant is relative to the amount B (parts by weight) of the polyfunctional epoxy compound and the amount C (parts by weight) of the phenol novolak resin. /(A+B+C)=0.02 to 0.3, and the modified reaction product is used as it is, or the modified reaction product is mixed or reacted with a polyfunctional epoxy compound or a phenol novolak resin and then blended. The present invention relates to an epoxy resin composition. [Operations and Examples] In general, a functional group capable of reacting with an epoxy resin matrix is introduced through a modification reaction between an OH group-containing fluororesin, which is known as a low moisture absorption material with excellent thermal stability, and a silane coupling agent. The modified reaction product provides thermal stability of the resulting epoxy resin composition, and also provides low elastic modulus and low moisture absorption without substantially lowering the glass transition temperature, so it has good heat resistance and moisture resistance. An epoxy resin composition with excellent properties can be obtained. The OH group-containing fluororesin used in the present invention is a copolymer of tetrafluoroethylene or trifluorochloroethylene and vinyl acetate or vinyl acetate and an olefinic hydrocarbon having 2 to 5 carbon atoms. Its number average molecular weight is 500~
100,000 is preferred, and in particular, in order for the resulting epoxy resin composition to have excellent thermal stability, tetrafluoroethylene or trifluorochloroethylene and vinyl acetate or vinyl acetate and the above hydrocarbon are alternately polymerized. Preferably. The obtained polymer is - of vinyl acetate.
An OH group is introduced by hydrolyzing the COO- group. If the number average molecular weight is less than 500, flexibility will be insufficient, and if it exceeds 100,000, the melt viscosity of the resin will increase and workability will deteriorate. Further, the hydrocarbon compound may optionally include a phenyl group,
It is also possible to use those into which an alkyl group or the like is introduced. OH group-containing fluororesin has 10 to 160 mg of OH
A range of KOH/g is used. OH value
If it is less than 10mgKOH/g, there is poor reactivity with the epoxy matrix, and the OH value is 160mgKOH/g.
If this is exceeded, the OH groups remaining unreacted during the modification reaction with the silane coupling agent will adversely affect moisture resistance. The silane coupling agent used in the present invention has the general formula (): (In the formula, Y is an organic group containing an epoxy group or an amino group, R 1 , R 2 and R 3 are a hydrogen atom, a phenyl group, an alkyl group having 1 to 6 carbon atoms, or an -OR group (R is a hydrogen atom) or an alkyl group having 1 to 5 carbon atoms, and at least one of R 1 , R 2 and R 3 is -OR group). Specific examples of the silane coupling agent include γ
-glycidoxypropyltrimethoxysilane, γ
- glycidoxypropyltripentoxysilane,
γ-glycidoxypropyldimethylethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, β-(3,4-epoxycyclohexyl)
Examples include ethyltrimethoxysilane, N-β (aminoethyl)γ-aminopropyltrimethoxysilane, and these can be used alone or in combination of two or more. The modification reaction between the OH group-containing fluororesin and the silane coupling agent is carried out in a solvent such as acetone, ethyl acetate, or ethyl alcohol. In this case, the mixing ratio of the OH group-containing fluororesin and the silane coupling agent is
The range is 0.1 to 25 parts of the silane coupling agent per 100 parts (parts by weight, hereinafter the same). The modified product obtained by modifying the OH group-containing fluororesin and the silane coupling agent is then either removed from the solvent, washed, and dispersed in an epoxy resin, or mixed with a polyfunctional epoxy compound or a phenolic compound. After dispersing and mixing or reacting the lacquer resin in the modified reaction product solution, the solvent is removed and the resin is washed before use. If the amount of the silane coupling agent is less than 0.1 part, the modification reaction will be insufficient, and if it exceeds 25 parts, the reaction of the silane coupling agent alone will occur.
Adversely affects moisture resistance. In addition, the average particle size of the OH group-containing fluororesin is 50 ÎŒm.
m or less, use a Henschel mixer (manufactured by Mitsui Miike Manufacturing Co., Ltd.) or the like to apply a silane coupling agent in the range of 0.1 to 10 parts to 100 parts of OH group-containing fluororesin directly or diluted with ethyl alcohol. Process. If the amount of the silane coupling agent is less than 0.1 part, the modification reaction will be insufficient, and if it exceeds 10 parts, the excess silane coupling agent will adversely affect moisture resistance. As the polyfunctional epoxy compound used in the present invention, various types of epoxy resins having an epoxy equivalent of 75 to 250 can be used, such as novolak epoxy resins, bisphenol A epoxy resins, and alicyclic epoxy resins. It is preferable to use novolac type epoxy resins which have excellent high temperature properties, and these epoxy resins may be used alone or in combination of two or more. In addition to these epoxy resins, epoxy resins such as brominated novolak epoxy resins and brominated bisphenol A epoxy resins can be used in combination, if necessary. The phenol novolak resin used in the present invention can be obtained by condensing a phenol compound such as phenol, cresol, xylenol, bisphenol A, resorcinol, etc. with formaldehyde or paraformaldehyde under an acidic catalyst. . The amount of unreacted compounds in the obtained phenol novolac resin is preferably 0.5% or less from the viewpoint of moisture resistance and heat resistance of the IC device. OH group-containing fluororesin and general formula (): (In the formula, Y is a monovalent organic group containing an epoxy group or an amino group, R 1 , R 2 and R 3 are a hydrogen atom, a phenyl group, an alkyl group having 1 to 6 carbon atoms, or -
A silane coupling agent represented by an OR group (R represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and at least one of R 1 , R 2 and R 3 is an -OR group) The epoxy resin composition of the present invention can be obtained by using the modified product obtained by the modification reaction as it is, or by mixing or reacting the modified product with a polyfunctional epoxy compound or a phenol novolak resin and then blending and adjusting it. is the amount A (parts) of the modification reactant
is blended in the range of A/[A+B+C]=0.02 to 0.3 with respect to the blending amount B (parts) of the polyfunctional epoxy compound and the blending amount C (parts) of the phenol novolak resin. If it is less than 0.02, the modulus of elasticity will not be sufficiently lowered, and if it exceeds 0.3, the fluidity of the composition will decrease. If necessary, an inorganic filler and a curing accelerator may be added to the epoxy resin composition of the present invention. Examples of the inorganic filler include crystalline silica powder, fused silica powder, alumina powder, talc,
Examples include quartz glass powder, calcium carbonate powder, glass fiber, etc., and the amount of these inorganic fillers added to the epoxy resin composition of the present invention is 50 to 80%.
(% by weight, the same applies hereinafter) is preferably added. 50
If it is less than 80%, the coefficient of linear expansion and curing stress cannot be lowered sufficiently, causing problems such as cracks in IC elements, and if it exceeds 80%, fluidity decreases, causing problems in workability. The blending amount is suitably adjusted within the range of 50 to 80% depending on the required properties. Examples of the curing accelerator include 2-methylimidazole, 2-ethylimidazole, 2-methyl-4-methylimidazole, and 1-benzyl-
Imidazole compounds such as 2-methylimidazole, 2-heptadecylimidazole, 2-undecylimidazole, 2-(dimethylaminomethyl)phenol, 2,4,6-tris(dimethylaminomethyl)phenol, benzyldimethylamine, α-Methylbenzyldimethylamine, piperidine, dimethyllaurylamine, dialkylaminomethanolamine, tetramethylguanidine, 2-dimethylamino-2-hydroxypropane, N,N'-dimethylpiperazine, N-methylmorpholine, piperazine, 2-( Tertiary amines and other amine compounds such as (dimethylaminomethyl)phenol, hexamethylenetetramine, 1-hydroxylethyl-2-heptadecylglyoxalidine, 1,8-diazabicyclo(5,4,0)undecene-7 and imidazole compounds. In addition, colorants such as carbon black, mold release agents such as carnauba wax and polyethylene wax, flame release agents such as antimony trioxide, and coupling agents such as γ-glysiloxypropyltrimethoxysilane may be added. good. The above-mentioned various components are mixed using commonly used mixing devices such as rolls, kneaders, laika machines, etc.
It can be easily adjusted using a Henschel mixer (manufactured by Mitsui Miike Seisakusho). Next, the epoxy resin composition of the present invention will be explained in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples. Experimental Example 1 (Production of modified reaction products A to I) OH group-containing fluororesin (Lumiflon manufactured by Asahi Glass Co., Ltd.), silane coupling agent, and solvent were adjusted to have the compositions shown in A to I in Table 1, respectively. The mixture was adjusted, added to a Kolben, and sufficiently stirred to obtain a uniform composition. Next, the Kolben was heated to 50°C and reacted for 5 hours, and then the solvent was removed and washed with water to obtain a modified reaction product. Experimental Example 2 (Manufacture of Modified Reactant J) In the same manner as Experimental Example 1, OH group-containing fluororesin (Lumiflon manufactured by Asahi Glass Co., Ltd.), silane coupling agent, and solvent were added so as to have the composition shown in Table 1 J. Adjust the
After the reaction, cresol novolac epoxy resin (epoxy equivalent: 190-210) and 1,8-diazabicyclo (5,4,
0) Add undecene-7 and further add Kolben
The mixture was heated to 50°C and reacted for 5 hours, the solvent was removed, and the mixture was washed with water to obtain a modified reaction product. Experimental Example 3 (Manufacture of Modified Reactant K) In the same manner as in Experimental Example 1, an OH group-containing fluororesin (Lumiflon manufactured by Asahi Glass Co., Ltd.), a silane coupling agent, and a composition shown in K in Table 1 were prepared. After adjusting the solvent and allowing the reaction to occur, phenol novolak resin (OH equivalent: 100-120) was added in the form of flakes and dissolved, the mixture was homogeneously mixed, the solvent was removed, and the modified reaction product was washed with water. I got it. Experimental Example 4 (Manufacture of Modified Reactant L) In the same manner as Experimental Example 1, an OH group-containing fluororesin (Lumiflon manufactured by Asahi Glass Co., Ltd.), a silane coupling agent, and a composition shown in K in Table 1 were prepared. After adjusting the solvent and allowing the reaction to occur, cresol novolak epoxy resin (epoxy equivalent: 190-210) is added in flakes and dissolved, homogeneously mixed, the solvent is removed, and the denaturation is carried out by washing with water. Reactant L was obtained. Experimental Example 5 (Manufacture of modified reaction product M) OH group-containing fluororesin (Lumiflon manufactured by Asahi Glass Co., Ltd.), silane coupling agent, solvent, and curing accelerator were mixed in a Kolben fluoride so as to have the composition shown in M in Table 1. and stirred thoroughly to obtain a uniform composition. Next, the Kolben was heated to 50°C and reacted for 1 hour, and then the solvent was removed and washed with water to obtain a modified reaction product. Experimental Example 6 (Production of Modified Reactant N) An OH group-containing fluororesin (Lumiflon manufactured by Asahi Glass Co., Ltd.) silane coupling agent was adjusted to have the composition shown in Table 1 N, and a Henschel mixer (Mitsui (manufactured by Miike Seisakusho) to obtain a modified reactant N. Experimental Example 7 (Manufacture of modified reaction product O) OH group-containing fluororesin (Lumiflon manufactured by Asahi Glass Co., Ltd.), silane coupling agent, and solvent were adjusted to have the composition shown in Table 1 O, and silane coupling agent was prepared. The diluted solution was subjected to surface treatment using a Henschel mixer (manufactured by Mitsui Miike Seisakusho) to obtain a modified reaction product O. Experimental Example 8 (Production of Modified Reactant P) Distilled water was added as a curing accelerator to the composition shown in Table 1 O, and γ- was added as a silane coupling agent.
A modified reaction product P was obtained in the same manner as in Example 7 except that glycidoxypropyltrimethoxysilane was used.

【衚】【table】

【衚】【table】

【衚】 実斜䟋〜20および比范䟋〜 第衚および第衚に瀺されるように倚官胜゚
ポキシ化合物、プノヌルノボラツク暹脂OH
䟡95〜115mgKOH、溶融シリカ粉末、硬
化促進剀、倉性反応物、カヌボンブラツク、カル
ナりバワツクス、䞉酞化アンチモンおよびγ−グ
リシドキシプロピルトリメトキシシランを調敎
し、70〜90℃の熱ロヌル間で分間混緎し、垞法
によりタブレツトを成圢した。 ぀ぎにえられたタブレツトを180℃、80Kgcm2、
分間の条件でトランスフア成圢し、175℃で
時間埌硬化を行ない、耐湿信頌性評䟡甚モニタヌ
チツプおよび各皮評䟡甚詊隓片を䜜補した。 耐湿詊隓はPCTPressure Cooker Test121
℃、気圧の条件䞋での䞍良発生時間を枬定し
た。 たた耐湿詊隓を行なう前に、260℃の半田济に
耐湿信頌性評䟡甚モニタヌチツプを30秒浞挬した
のち、液䜓チツ玠䞭に30秒間浞挬しおヒヌトシペ
ツクを䞎えたものも同時に耐湿詊隓を行な぀た。
その結果を第衚に瀺す。 たた、えられたタブレツトの物性ずしお、曲げ
匟性率、ガラス転移枩床、線膚匵係数、䜓積抵抗
率および流動性を各皮評䟡甚詊片を甚いお調べ
た。その結果を第衚に瀺す。
[Table] Examples 1 to 20 and Comparative Examples 1 to 4 As shown in Tables 2 and 3, polyfunctional epoxy compounds, phenol novolac resins (OH
70 to 90°C The mixture was kneaded for 7 minutes between heated rollers, and tablets were formed by a conventional method. The next tablet was heated to 180℃, 80Kg/cm 2 ,
Transfer molding was carried out for 1 minute and then heated to 175℃ for 8 hours.
After curing for a period of time, monitor chips for evaluating moisture resistance reliability and test pieces for various evaluations were prepared. Moisture resistance test is PCT (Pressure Cooker Test) 121
The failure occurrence time was measured under conditions of ℃ and 2 atm. In addition, before conducting the moisture resistance test, a monitor chip for evaluating moisture resistance reliability was immersed in a 260°C solder bath for 30 seconds, and then immersed in liquid silicon for 30 seconds and subjected to a heat shock. Summer.
The results are shown in Table 5. In addition, the physical properties of the obtained tablets were examined using various test specimens for evaluation of flexural modulus, glass transition temperature, coefficient of linear expansion, volume resistivity, and fluidity. The results are shown in Table 4.

【衚】【table】

【衚】【table】

【衚】【table】

【衚】【table】

【衚】【table】

【衚】【table】

〔発明の効果〕〔Effect of the invention〕

以䞊のように本発明の半導䜓封止甚゚ポキシ暹
脂組成物は優れた耐ヒヌトシペツク性、耐熱性、
耐湿性を有し、しかも流動性が倧きく倉らないの
でIC、LSIなどの半導䜓封止に奜適に䜿甚しうる
ずいう効果を奏する。
As described above, the epoxy resin composition for semiconductor encapsulation of the present invention has excellent heat shock resistance, heat resistance,
It has moisture resistance and does not change its fluidity significantly, so it can be used suitably for encapsulating semiconductors such as ICs and LSIs.

Claims (1)

【特蚱請求の範囲】  (a) テトラフルオロ゚チレンたたはトリフル
オロクロロ゚チレンず、酢酞ビニルたたは酢酞
ビニルおよび炭玠数〜のオレフむン系炭化
氎玠ずを共重合せしめおえられた重合物の−
COO−基を加氎分解し、−OH基を導入したOH
䟡が10〜160mgKOHのフツ玠暹脂100重量
郚および䞀般匏 匏䞭、は、゚ポキシ基たたはアミノ基を含
む䟡の有機基、R1、R2およびR3は氎玠原子、
プニル基、炭玠数〜のアルキル基たたは
−OR基は氎玠原子たたは炭玠数〜の
アルキル基を瀺すであり、か぀R1、R2およ
びR3の少なくずも぀は−OR基であるで衚
わされるシランカツプリング剀0.1〜25重量郹
を倉性反応せしめおなる倉性反応物 (b) 倚官胜性゚ポキシ化合物および (c) プノヌルノボラツク暹脂 を配合した半導䜓封止甚゚ポキシ暹脂組成物であ
぀お、 倉性反応物の配合量重量郚が倚官胜性゚
ポキシ化合物の配合量重量郚およびプノ
ヌルノボラツク暹脂の配合量重量郚に察し
お、 0.02〜0.3 であり、 倉性反応物をそのたた、たたは倉性反応物を倚
官胜性゚ポキシ化合物たたはプノヌルノボラツ
ク暹脂ず混合たたは反応させたのち配合したこず
を特城ずする半導䜓封止甚゚ポキシ暹脂組成物。
[Scope of Claims] 1 (a) A polymer obtained by copolymerizing tetrafluoroethylene or trifluorochloroethylene with vinyl acetate or vinyl acetate and an olefinic hydrocarbon having 2 to 5 carbon atoms -
OH which hydrolyzes COO- group and introduces -OH group
100 parts by weight of fluororesin having a value of 10 to 160 mgKOH/g and general formula (): (In the formula, Y is a monovalent organic group containing an epoxy group or an amino group, R 1 , R 2 and R 3 are hydrogen atoms,
a phenyl group, an alkyl group having 1 to 6 carbon atoms, or a -OR group (R represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms), and at least one of R 1 , R 2 and R 3 is - An epoxy for semiconductor encapsulation containing (b) a polyfunctional epoxy compound and (c) a phenol novolak resin, which is obtained by subjecting 0.1 to 25 parts by weight of a silane coupling agent represented by (OR group) to a modification reaction. A resin composition in which the amount A (parts by weight) of the modification reactant is relative to the amount B (parts by weight) of the polyfunctional epoxy compound and the amount C (parts by weight) of the phenol novolak resin. /(A+B+C)=0.02 to 0.3, and the modified reaction product is used as it is, or the modified reaction product is mixed or reacted with a polyfunctional epoxy compound or a phenol novolak resin and then blended. Epoxy resin composition.
JP24453585A 1985-10-29 1985-10-29 Epoxy resin composition for semiconductor sealing Granted JPS62101625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24453585A JPS62101625A (en) 1985-10-29 1985-10-29 Epoxy resin composition for semiconductor sealing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24453585A JPS62101625A (en) 1985-10-29 1985-10-29 Epoxy resin composition for semiconductor sealing

Publications (2)

Publication Number Publication Date
JPS62101625A JPS62101625A (en) 1987-05-12
JPH049811B2 true JPH049811B2 (en) 1992-02-21

Family

ID=17120139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24453585A Granted JPS62101625A (en) 1985-10-29 1985-10-29 Epoxy resin composition for semiconductor sealing

Country Status (1)

Country Link
JP (1) JPS62101625A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0618985B2 (en) * 1987-06-03 1994-03-16 信越化孊工業株匏䌚瀟 Epoxy resin composition

Also Published As

Publication number Publication date
JPS62101625A (en) 1987-05-12

Similar Documents

Publication Publication Date Title
KR100581988B1 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same
WO2004074344A1 (en) Epoxy resin composition and semiconductor device
JPH0496928A (en) Epoxy resin composition and semiconductor device
JPH0657740B2 (en) Epoxy resin composition for semiconductor encapsulation
KR100429363B1 (en) Epoxy resin composition for semiconductor device sealing
JP4628912B2 (en) Epoxy resin composition for sealing
JP2006213849A (en) Sealing resin composition and semiconductor sealing apparatus
JPH049811B2 (en)
KR100189095B1 (en) Epoxy resin compositions for sealing semiconductor precisely
JP3649540B2 (en) Epoxy resin composition
JPH0977958A (en) Epoxy resin composition and semiconductor device
JP2002241581A (en) Epoxy resin composition and semiconductor device
JPH10158360A (en) Epoxy resin composition
JPS62199612A (en) Epoxy resin composition for semiconductor sealing
JPH05206331A (en) Resin composition for sealing semiconductor
JPH08337634A (en) Epoxy resin composition and semiconductor device sealed therewith
JPH0820707A (en) Sealing epoxy resin composition
JPH01132651A (en) Epoxy resin composition for semiconductor sealing
JPS6241218A (en) Epoxy resin composition for sealing semiconductor
JP2732939B2 (en) Epoxy resin composition and semiconductor device sealed with the same
JP3365065B2 (en) Epoxy resin composition for sealing
JP4296820B2 (en) Epoxy resin composition and semiconductor device
JPH0730236B2 (en) Epoxy resin composition for semiconductor encapsulation
JP2643547B2 (en) Epoxy resin composition for semiconductor encapsulation
JP4379977B2 (en) Epoxy resin composition and semiconductor device