JPH049403A - Manufacture of precise metal parts with powder compacting - Google Patents

Manufacture of precise metal parts with powder compacting

Info

Publication number
JPH049403A
JPH049403A JP11021390A JP11021390A JPH049403A JP H049403 A JPH049403 A JP H049403A JP 11021390 A JP11021390 A JP 11021390A JP 11021390 A JP11021390 A JP 11021390A JP H049403 A JPH049403 A JP H049403A
Authority
JP
Japan
Prior art keywords
powder
metal powder
organic binder
reduction
metal parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11021390A
Other languages
Japanese (ja)
Other versions
JP3073217B2 (en
Inventor
Naoto Ogasawara
直人 小笠原
Takao Kasai
隆夫 河西
Shigeru Saito
茂 斎藤
Kenichi Yoshioka
憲一 吉岡
Kenji Kurimura
栗村 健治
Masami Hoshi
政美 星
Seiichi Nakamura
誠一 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14529933&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH049403(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP02110213A priority Critical patent/JP3073217B2/en
Publication of JPH049403A publication Critical patent/JPH049403A/en
Application granted granted Critical
Publication of JP3073217B2 publication Critical patent/JP3073217B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To stabilize fluidity at the time of compacting and dimension of a sintered body and to easily obtain the sintered body having density near the true density by using metal powder composed of one or more kinds of metals controlled with oxygen content and having single and uniform spherical shape and uniform particle size distribution. CONSTITUTION:The metal powder having single and uniform spherical shape and uniform particle size distribution and about 0.5 - 60wt% oxygen content (the total oxygen content in the metal powder in terms of element analysis value) and about 1 - 7% reduction reducing ratio (wt. reducing ratio in the case of heating under hydrogen reduction atmosphere), and produced by controlling reduction ratio in producing process for the metal powder is used. One or more kinds of this metal powder and organic binder are mixed and the organic binder is sufficiently removed from a green compact formed of this mixed material to the desired shape, and after reducing the above metal powder, the main sintering is executed to obtain a precise metal parts.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、粉末成形による精密金属部品の製造方法に関
するもので、さらに詳細には、焼結した粒子構成体とし
て精密金属部品を製造するため、金属粉末と有機バイン
ダーとを混合し、この混合体を所望の形状に成形した後
、この成形体から有機バインダーを除去し、成形体を構
成している金属粉末を還元し、純金属として焼結するこ
とにより、真密度に近い焼結体を得ることを特徴とする
精密金属部品の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing precision metal parts by powder compaction, and more particularly to a method for manufacturing precision metal parts as a sintered particle structure. After mixing metal powder and an organic binder and molding this mixture into a desired shape, the organic binder is removed from the molded body, the metal powder constituting the molded body is reduced, and it is sintered as a pure metal. The present invention relates to a method for manufacturing precision metal parts, which is characterized by obtaining a sintered body with close to true density by sintering.

〔従来の技術〕[Conventional technology]

最近、金属粉末またはセラミックス粉末を用(・た各種
焼結部品が、一般工業材料から精密機械部品、電子部品
、電気部品、自動車部品などの分野で広く利用されるよ
うになってきた。これに伴い、これら部品の寸法精崖や
物性、・−2形状等について、かなり厳しい要求がなさ
れるようになってきた。
Recently, various sintered parts using metal powder or ceramic powder have become widely used in fields such as general industrial materials, precision mechanical parts, electronic parts, electrical parts, and automobile parts. Accordingly, quite strict requirements have been made regarding the exact dimensions, physical properties, shape, etc. of these parts.

現在広く行われているスプレードライヤーによる成形用
粉体の製造、その後のラバープレスによる焼結用成形物
の製造は、工程が極めて複雑であり、さらに歩留まりが
非常に悪いという問題があるのみならず、複雑な形状を
有する成形物が得られないと(・う欠点を有している。
The production of powder for molding using a spray dryer and the subsequent production of molded products for sintering using a rubber press, which is currently widely practiced, not only has the problems of extremely complicated processes and extremely low yields. However, it has the disadvantage that a molded product with a complicated shape cannot be obtained.

このような要求、問題に対処するために、金属粉末また
はセラミックス粉末に、適当な樹脂を添加して熱可塑性
を与え、これを射出成形法により成形し、ついでこの成
形体中に含まれる樹脂を加熱分解除去後、本焼成を行い
、所望の金属またはセラミックス粉末射出成形部品を得
る方法がいくつか提案され、また実施されている(たと
えば、特公昭51−29170号、特開昭55−113
510号、特開昭55−113511号各公報)0これ
らの方法では、射出成形時において、成形体にクラック
が入らないことはもちろんであるほか、得られた成形体
から、いかにクランクや膨れ、変形を起こさずに、短時
間で樹脂であるところの有機バインダーを除去すること
を問題としている。
In order to deal with these demands and problems, a suitable resin is added to metal powder or ceramic powder to give it thermoplasticity, which is then molded by injection molding, and then the resin contained in this molded body is Several methods have been proposed and implemented to obtain desired metal or ceramic powder injection molded parts by carrying out main firing after thermal decomposition and removal (for example, Japanese Patent Publication No. 51-29170, Japanese Patent Application Laid-Open No. 55-113).
510, Japanese Patent Application Laid-Open No. 55-113511) 0 These methods not only prevent cracks from forming in the molded product during injection molding, but also prevent cracks, bulges, and The problem is to remove the organic binder, which is a resin, in a short time without causing deformation.

しかし、これらの問題が解決しても、本発明の目的であ
る、粉末成形を用いて真密度に近い焼結体を得ることを
特徴とする精密金属部品の製造は困難である。
However, even if these problems are solved, it is difficult to manufacture precision metal parts characterized by obtaining a sintered body with close to true density using powder compaction, which is the object of the present invention.

また、一般に金属粉末は、平均粒径を小さくすると酸素
量が増大し、この酸素量を減少させるために還元処理を
付すと、平均粒径は大きくなる傾向を示し、構成単位粒
子同士の凝結成は凝集が発生する。従来法では、金属粉
末中の純度を重視して、実質的に球形状でなく、平均−
形状でも酸素量の低い金属粉末が用いられていた。
Additionally, in metal powders, in general, when the average particle size is reduced, the amount of oxygen increases, and when reduction treatment is applied to reduce this amount of oxygen, the average particle size tends to increase, resulting in agglomeration of constituent unit particles. agglomeration occurs. In the conventional method, emphasis is placed on the purity of the metal powder, and the shape is not substantially spherical, but the average -
In terms of shape, metal powder with a low oxygen content was used.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来、粉末成形には機械的粉砕法、還元法、電解法、カ
ルボニル法、ガスアトマイズ法、水アトマイズ法等によ
り製造された金属粉末が用いられている。粉末成形に用
いられる金属粉末は、単一且つ均一球状形であり、均一
粒度分布を有した粉末であることが望まれている。特に
、この粉末特性は、粉末成形法の一つである粉末射出成
形法に強く望まれている。その理由は、金属粉末と有機
バインダーとの混合体の成形時における流れ性と、これ
に依存する焼結体寸法の安定化にある。
Conventionally, metal powders produced by a mechanical pulverization method, a reduction method, an electrolytic method, a carbonyl method, a gas atomization method, a water atomization method, etc. have been used for powder compaction. It is desired that the metal powder used for powder compaction has a single and uniform spherical shape and a uniform particle size distribution. In particular, this powder property is strongly desired for powder injection molding, which is one of the powder molding methods. The reason for this is the flowability of the mixture of metal powder and organic binder during molding, and the stabilization of the dimensions of the sintered body depending on this.

しかし、現在粉末成形に用いられている金属粉末は、そ
れぞれの構成単位粒子が互いに凝結成は凝集し、実質的
に球形状ではない。たとえば、特開昭57−16103
号公報の実施例1に示されるI ncoタイプ123ニ
ッケル粉は、実質的に球状ではなく、スパイク状の凝球
状であり、酸素量が0.15wt%以下であるため、金
属粉末表面が活性であり、構成単位粒子が互いに凝結成
は凝集し、実質的に球形状ではない。この様な金属粉末
を用いても、流れ性や焼結体寸法の安定化は困難であり
、本発明の目的である、粉末成形を用いて真密度に近い
焼結体を得ることを特徴とする精密金属部品の製造は困
難である。
However, in the metal powder currently used for powder compacting, each constituent unit particle coagulates or aggregates with each other, and is not substantially spherical. For example, JP-A-57-16103
The Inco type 123 nickel powder shown in Example 1 of the publication is not substantially spherical but has a spike-like agglomerated spherical shape, and the oxygen content is 0.15 wt% or less, so the surface of the metal powder is not active. However, the constituent unit particles coagulate with each other and do not have a substantially spherical shape. Even if such metal powder is used, it is difficult to stabilize the flowability and the dimensions of the sintered body, and the purpose of the present invention is to obtain a sintered body with close to true density using powder compaction. Manufacturing precision metal parts is difficult.

また、特開昭58−153702号公報に示される金属
と酸素から成る金属化合物を用いると、酸素量が非常に
多く、金属化合物粉末の内部にも酸素が存在するため、
焼結前の還元処理に時間がかかり、工業的に必ずしも満
足し得る方法とは言℃・酸く、本発明の目的である、粉
末成形を用(・て真密度に近い焼結体を得ることを特徴
とする精密金属部品の製造は困難である。
Furthermore, when a metal compound consisting of a metal and oxygen as disclosed in JP-A-58-153702 is used, the amount of oxygen is very large and oxygen is present inside the metal compound powder.
The reduction treatment before sintering takes time and is not necessarily an industrially satisfactory method, so it is difficult to obtain a sintered body with close to true density using powder compaction, which is the purpose of the present invention. It is difficult to manufacture precision metal parts characterized by this.

つまり、流れ性と焼結体寸法の安定化を可能にする単一
且つ均−球状形であり、均一粒度分布を有した粉末を用
い、真密度に近い焼結体を得ることが可能である精密金
属部品の製造方法の提供が強く望まれていた。
In other words, it is possible to obtain a sintered body with close to true density by using powder that has a uniform particle size distribution and a single, uniformly spherical shape that allows for stable flowability and sintered body dimensions. There was a strong desire to provide a method for manufacturing precision metal parts.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者は、かかる点に鑑み、金属粉末として、単一且
つ均−球状形であり、均一粒度分布を有した粉末を用い
、成形時における流れ性と焼結体の寸法を安定化させ、
容易に真密度に近い焼結体を得ることが可能である精密
金属部品の製造方法を見出すことを目的として、鋭意研
究、検討した結果、酸素量を制御した1種または2種以
上よりなる金属粉末を用い、この酸素量を制御した金属
粉末と有機バインダーとを混合し、この混合体を所望の
形状に成形した後、この成形体から有機バインダーを十
分に除去し、成形体を構成している酸素量を制御した金
属粉末を本焼結前に還元し、本焼結することにより、前
記目的を達成し得ることを見出した。
In view of this, the present inventor uses a powder having a single, uniformly spherical shape and a uniform particle size distribution as the metal powder to stabilize the flowability during molding and the dimensions of the sintered body,
With the aim of finding a manufacturing method for precision metal parts that can easily produce a sintered body with a density close to true density, we have conducted intensive research and studies to find a metal made of one or more types with a controlled amount of oxygen. Using a powder, the metal powder with a controlled amount of oxygen and an organic binder are mixed, this mixture is molded into a desired shape, and then the organic binder is sufficiently removed from this molded body to form a molded body. It has been found that the above object can be achieved by reducing the metal powder with a controlled amount of oxygen before main sintering and performing main sintering.

本発明に用いる金属粉末とは、単一且つ均−球状形であ
り、均一粒度分布を有し、金属粉末の製造工程において
還元量を制御し、酸素量が065wt%〜6.0wt%
であり、好ましくは、1.0wt%〜3.0wt%で、
還元減少率が1%〜7%であり、好ましくは、2%〜3
%に制御した1種または2種以上よりなる金属粉末であ
り、合金粉末でも良い。
The metal powder used in the present invention has a single, uniformly spherical shape, and has a uniform particle size distribution, and the amount of reduction is controlled in the manufacturing process of the metal powder, and the amount of oxygen is 0.65 wt% to 6.0 wt%.
and preferably from 1.0 wt% to 3.0 wt%,
The reduction reduction rate is 1% to 7%, preferably 2% to 3%.
It is a metal powder made of one or more kinds controlled at %, and may be an alloy powder.

ここで酸素量とは、金属粉末の元素分析値であり、金属
粉末中の全酸素量をしめすものである。また、還元減少
量とは、水素還元雰囲気で金属粉末を加熱した場合の重
量減少量であり、酸素以外の窒素、吸着水などを含めた
ものである。金属粉末の平均粒径は、10μm以下であ
り、好ましくは、5μm以下である。
The oxygen content here is an elemental analysis value of the metal powder, and indicates the total oxygen content in the metal powder. Further, the reduction amount is the weight reduction amount when the metal powder is heated in a hydrogen reducing atmosphere, and includes nitrogen other than oxygen, adsorbed water, and the like. The average particle size of the metal powder is 10 μm or less, preferably 5 μm or less.

本発明に用いる有機バインダーは、公知の有機バインダ
ーである。具体的には、用いる金属粉末の焼結温度以下
、好ましくは仮焼温度以下で90%以上が除去される各
有機バインダー成分であり、たとえばエチレン−酢酸ビ
ニル共重合体、ポリエチレン、アタクチックポリプロピ
レン、ポリスチレン、ポリブチルメタクリレート、パラ
フィンワックス、カルナバワックス等である。
The organic binder used in the present invention is a known organic binder. Specifically, each organic binder component is removed at least 90% below the sintering temperature of the metal powder used, preferably below the calcination temperature, such as ethylene-vinyl acetate copolymer, polyethylene, atactic polypropylene, These include polystyrene, polybutyl methacrylate, paraffin wax, carnauba wax, etc.

本発明において、金属粉末と有機バインダーとの混合は
、公知の方法により行われる。具体的には、金属粉末と
有機バインダーとを、加圧式ニーダ−で溶融混練するこ
とにより、効率良く均質な混合体を形成することができ
、一定の流れ性、および一定の重量、密度を保有した混
合体を得ることができる。
In the present invention, the metal powder and the organic binder are mixed by a known method. Specifically, by melting and kneading metal powder and organic binder in a pressure kneader, it is possible to efficiently form a homogeneous mixture that has a certain flowability and a certain weight and density. It is possible to obtain a mixture of

本発明における均質な混合体の成形は、射出成形機等を
用いて公知の方法により、所望の形状の成形体を得る。
The homogeneous mixture in the present invention is molded by a known method using an injection molding machine or the like to obtain a molded product in a desired shape.

この時、単一且つ均−球状形であり、均一粒度分布を有
した金属粉末と有機バインダーとの均質な混合体を用い
ることにより、安定した成形を行うことが可能となる。
At this time, by using a homogeneous mixture of a metal powder and an organic binder that has a single, uniformly spherical shape and a uniform particle size distribution, stable molding can be performed.

本発明における有機バインダーの除去は、公知の方法に
より行う。この時、有機バインダーの除去率は90%以
上が好ましく、さらに好ましくは95%以上である。ま
た、有機バインダー除去時の雰囲気は、不活性雰囲気が
好ましいが、水素雰囲気でも良く、両雰囲気を用いても
良い。
The organic binder in the present invention is removed by a known method. At this time, the removal rate of the organic binder is preferably 90% or more, more preferably 95% or more. Furthermore, the atmosphere during removal of the organic binder is preferably an inert atmosphere, but may also be a hydrogen atmosphere, or both atmospheres may be used.

本発明において、金属粉末の製造工程において還元量を
制御し、酸素量が0.5wt%〜6.0wt%であり、
好ましくは、1.0wt%〜3.0wt%で、還元減少
率が1%〜7%であり、好ましくは、2%〜3%に制御
した1種または2種以上よりなる金属粉末の還元処理は
、金属粉末の本焼結温度以下、好ましくは金属粉末の仮
焼温度以下で、還元雰囲気炉中で行われる。この時、金
属粉末表面を覆っている有機バインダーは90%以上が
除去され、構成体中の空隙率が増加し、構成体表面およ
び内部の金属表面は、実質的に還元雰囲気に晒されるこ
とになり、積極的な還元処理を行うことが可能になる。
In the present invention, the amount of reduction is controlled in the manufacturing process of metal powder, and the amount of oxygen is 0.5 wt% to 6.0 wt%,
Reduction treatment of metal powder consisting of one or more metal powders, preferably controlled to 1.0 wt% to 3.0 wt%, with a reduction reduction rate of 1% to 7%, preferably 2% to 3%. is carried out in a reducing atmosphere furnace at a temperature below the main sintering temperature of the metal powder, preferably below the calcination temperature of the metal powder. At this time, more than 90% of the organic binder covering the metal powder surface is removed, the porosity in the structure increases, and the structure surface and internal metal surface are substantially exposed to a reducing atmosphere. This makes it possible to carry out aggressive reduction processing.

したがって、金属粉末の還元処理工程前に、有機バイン
ダーが100%除去されていることが好ましい。この金
属粉末の還元処理工程によリ、金属粉末は、実質的に純
金属粉末となる。この金属の還元処理工程は、有機バイ
ングー除去工程で行うことも可能である。
Therefore, it is preferable that 100% of the organic binder be removed before the metal powder reduction treatment step. Through this reduction treatment process of the metal powder, the metal powder becomes substantially pure metal powder. This metal reduction treatment step can also be performed in the organic binder removal step.

本発明における焼結は、金属粉末に応じた所定雰囲気下
で、所定の焼結温度で行う。この焼結工程において、1
0%未満の有機バインダーが残余として存在している場
合には、還元雰囲気中で、仮焼温度以下または本焼結温
度以下で、有機バインダーを除去すると同時に、金属粉
末に対する還元処理を付した後、所定の焼結温度で焼結
を行う。
Sintering in the present invention is performed at a predetermined sintering temperature under a predetermined atmosphere depending on the metal powder. In this sintering process, 1
If less than 0% organic binder is present as a residual, the organic binder is removed in a reducing atmosphere at a temperature below the calcination temperature or below the main sintering temperature, and at the same time, the metal powder is subjected to a reduction treatment. , sintering is performed at a predetermined sintering temperature.

以上に示した金属粉末を用い、各工程を実施することで
、成形時における流れ性と焼結体の寸法を安定化させ、
真密度に近い焼結体を得ることができる精密金属部品の
製造を可能にした。
By performing each process using the metal powder shown above, the flowability during molding and the dimensions of the sintered body are stabilized,
This has made it possible to manufacture precision metal parts that can produce sintered bodies with close to true density.

〔実施例〕〔Example〕

以下に実施例をあげて本発明の効果を示すが、本発明は
、これに限定されるものではない。
The effects of the present invention will be shown below with reference to Examples, but the present invention is not limited thereto.

(実施例 1) 金属粉末として、酸素量を0.7wt%、還元減少量を
2.62wt%(1000℃−30分)に制御した粉末
密度が7604g/cI11であり、〒均粒径134μ
mの単一且つ均−球状形で、均一粒度分布を有した鉄粉
末を用い、有機バインダーとして、エチレン−酢酸ビニ
ル共重合体、ポリブチルメタクリレート、ポリスチレン
、ワックス、ジブチルフタレートの混合有機バインダー
を9部配合した。
(Example 1) As a metal powder, the powder density was 7604 g/cI11 when the oxygen amount was controlled to 0.7 wt% and the reduction reduction amount was controlled to 2.62 wt% (1000 ° C. - 30 minutes), and the average particle size was 134 μ
An iron powder having a single, uniformly spherical shape and a uniform particle size distribution was used as an organic binder, and a mixed organic binder of ethylene-vinyl acetate copolymer, polybutyl methacrylate, polystyrene, wax, and dibutyl phthalate was used as an organic binder. Parts were mixed.

鉄粉末と混合有機バインダーとを加圧式ニーダ−を用い
て、130℃、4 Kg f /cnlで十分に溶融混
合し、しかる後に、この混合物?ベレット化した。
The iron powder and the mixed organic binder are thoroughly melted and mixed at 130° C. and 4 Kg f /cnl using a pressure kneader, and then this mixture is mixed. Made into a beret.

このベレットを射出成形機により、ノズル温度150℃
、射出圧力1t/c己、金型温度30’Cにて直径10
印、厚さ2■の円柱状の成形体を成形した。この成形体
を窒素雰囲気にて、所定の昇温プログラムにより室温か
ら450 ’Cまで8時間かげて有機バインダーを除去
した。この時、有機バインダーの除去率は、95%であ
った。また、有機バインダーの除去処理を行った成形体
の表面を観察したが、クラックや膨れ、変形は全く認め
られなかった。次にこの成形体の焼成を、水素還元雰囲
気中において、室温から600 ’Cまで1時間で昇温
加熱し、残余の有機バインダー5%を完全に除去すると
同時に、鉄粉末の還元処理を行った。
This pellet is molded using an injection molding machine at a nozzle temperature of 150°C.
, injection pressure 1t/c self, mold temperature 30'C, diameter 10
A cylindrical molded body with a thickness of 2 cm was molded. The organic binder was removed from the molded body by heating it from room temperature to 450'C for 8 hours in a nitrogen atmosphere according to a predetermined heating program. At this time, the removal rate of the organic binder was 95%. Furthermore, when the surface of the molded article after the organic binder removal treatment was observed, no cracks, blisters, or deformations were observed. Next, this molded body was heated in a hydrogen reducing atmosphere from room temperature to 600'C in 1 hour to completely remove 5% of the remaining organic binder, and at the same time, the iron powder was reduced. .

その後600℃から1300℃まで1時間で昇温加熱し
、この昇温過程の焼結温度以下で、更に鉄粉末の還元処
理を行い、実質的に純鉄とした。その後1400℃で3
時間保持して焼結体を得た。
Thereafter, the iron powder was heated from 600° C. to 1300° C. in 1 hour, and the iron powder was further reduced at a temperature below the sintering temperature during this heating process to obtain substantially pure iron. Then 3 at 1400℃
A sintered body was obtained by holding for a certain period of time.

この焼結体の相対密度は99.5%と従来品よりも非常
に高い値であった。また、金属粉末と有機バインダーと
の混合体の流れ性について、その再現性をフローテスタ
ーを用いて検討したが、流れ値の大きな振れはなく、安
定していた。
The relative density of this sintered body was 99.5%, which was a much higher value than conventional products. Furthermore, the reproducibility of the flowability of the mixture of metal powder and organic binder was examined using a flow tester, and the flow value was stable without large fluctuations.

(比較例 1) 金属粉末として、一般に用いられている、酸素量を0.
04wt%、還元減少量を0.17wt%(1000℃
−30分)に制御した粉末密度が7.824 g/cr
aであり、平均粒径4.40μmの凝結および凝集粉を
含む不均一形状の鉄粉を用いた。有機バインダー溶融混
合、成形、有機バインダー除去、還元処理および焼成は
、実施例1と同様にして行った。この様にして得られた
焼結体の相対密度は90.3%と低(・値であった。ま
た、金属粉末と有機バインダーとの混合体の流れ性の再
現性をフローテスターを用いて検討したところ、大きな
振れを確認し。
(Comparative Example 1) Oxygen content, which is commonly used as metal powder, is 0.
04wt%, reduction reduction amount 0.17wt% (1000℃
-30 minutes) powder density was 7.824 g/cr
a, and non-uniformly shaped iron powder containing coagulated and agglomerated powder with an average particle size of 4.40 μm was used. Organic binder melt mixing, molding, organic binder removal, reduction treatment, and baking were performed in the same manner as in Example 1. The relative density of the sintered body obtained in this way was as low as 90.3%.In addition, the reproducibility of the flowability of the mixture of metal powder and organic binder was tested using a flow tester. When we looked into it, we found a large swing.

た。Ta.

(実施例 2) 金属粉末中の酸素量と還元減少量が異なる2種類の鉄粉
を用(・て、焼結温度に対する焼結体の相対密度との関
係を検討した。実施例1に示される酸素量’40.7w
t%、還元減少量を2.62wt%(1000℃−30
分)に制御した粉末密度が7.604 glC艷であり
、平均粒径134μmの単〜且つ均−球状形で、均一粒
度分布を有した鉄粉末と、実施例2に示される一般に用
いられている、酸素量を0.04wt%、還元減少量を
0.17wt%(1000°C−30分)に制御した粉
末密度が7.824 g /cotであり、平均粒径4
.40μmの凝結および凝集粉を含む不均一形状の鉄粉
とを用い、焼結温度のみを種々変えて、その他は実施例
1と同様にして、相対密度の異なる焼結体を得た。これ
らの結果を第1図に示した。比較例1に示される一般に
用いられている鉄粉を用いた場合には、純鉄の融点が1
535℃であることから、相対密度99%以、Fの安定
状態の焼結体を得るためには、】450℃以上の焼結温
度が必要となり、実質的な焼結温度範囲は70℃程度し
かな℃・。また、たとえ1450℃以上の焼結温度で相
対密度99%以上の安定状態の焼結体を得ても、粒界の
粗大化による表面荒れが激しく、精密金属部品として使
用]ることはできな(・。これに対して、本発明による
実施例1に示される鉄粉を用いた場合には、相対密度9
9%以上の安定状態の焼結体は、一般に用いら才Iてい
る焼結温度1300℃より遥かに低い1100℃でも得
ることが可能である。したがって、本発明による実施例
1に示される鉄粉を用いた場合には、相対密度99%以
上の安定状態の焼結体を従来より低温度で、しかも広い
焼結温度範囲で得ることが可能である。つまり、精密金
属部品を高密度で再現性良く、且つ寸法精度良く製造す
るためには、本発明は非常に効果的である。
(Example 2) The relationship between the relative density of the sintered body and the sintering temperature was investigated using two types of iron powder with different amounts of oxygen and reduction reduction amounts in the metal powder. Amount of oxygen '40.7w
t%, reduction reduction amount 2.62wt% (1000℃-30
Iron powder with a powder density controlled at 7.604 glC and an average particle size of 134 μm, uniformly spherical in shape, and with a uniform particle size distribution, and a commonly used iron powder as shown in Example 2. The powder density was 7.824 g/cot when the oxygen content was controlled to 0.04 wt% and the reduction reduction amount was controlled to 0.17 wt% (1000°C-30 minutes), and the average particle size was 4.
.. Sintered bodies with different relative densities were obtained in the same manner as in Example 1 except that only the sintering temperature was varied, using iron powder of non-uniform shape including coagulated and agglomerated powder of 40 μm. These results are shown in FIG. When the commonly used iron powder shown in Comparative Example 1 is used, the melting point of pure iron is 1.
Since the temperature is 535°C, in order to obtain a stable sintered body of F with a relative density of 99% or more, a sintering temperature of 450°C or higher is required, and the actual sintering temperature range is about 70°C. Only ℃・. Furthermore, even if a stable sintered body with a relative density of 99% or higher is obtained at a sintering temperature of 1450°C or higher, the surface will be severely roughened due to coarsening of grain boundaries, making it impossible to use it as precision metal parts. (・.On the other hand, when the iron powder shown in Example 1 according to the present invention is used, the relative density is 9
A sintered body in a stable state of 9% or more can be obtained even at a sintering temperature of 1100°C, which is much lower than the commonly used sintering temperature of 1300°C. Therefore, when using the iron powder shown in Example 1 according to the present invention, it is possible to obtain a stable sintered body with a relative density of 99% or more at a lower temperature than before and over a wide sintering temperature range. It is. In other words, the present invention is very effective for manufacturing precision metal parts with high density, good reproducibility, and good dimensional accuracy.

また、工業的見地から考えれば、焼結温度の低温化は、
部品製造コストの削減につながり、非常に効果的である
Also, from an industrial perspective, lowering the sintering temperature is
This leads to a reduction in parts manufacturing costs and is extremely effective.

(実施例 3) 実施例1に示される酸素量を0.7wt%、還元減少量
を2.62wt%(1000°C−30分)に制御した
粉末密度が7.604g/ctであり、平均粒径134
μmの単一且つ均一球状形で、均一粒度分布を有した鉄
粉末を用い、実施例1と同様にして1000個の焼成体
を得た。第2図に1000個の焼結体の寸法測定結果を
、外径の狙い値に対するバラツキ度合いとして示した。
(Example 3) The powder density shown in Example 1 was controlled to 0.7 wt% and the reduction reduction amount to 2.62 wt% (1000°C - 30 minutes), and the average powder density was 7.604 g/ct. Particle size 134
1000 fired bodies were obtained in the same manner as in Example 1 using iron powder having a single and uniform spherical shape of μm and a uniform particle size distribution. FIG. 2 shows the results of dimension measurements of 1000 sintered bodies as the degree of variation in outer diameter with respect to the target value.

焼結体の寸法の振れは少なく、再現性良く、寸法精度に
優れた焼結体を得ることができる。
It is possible to obtain a sintered body with small dimensional fluctuations, good reproducibility, and excellent dimensional accuracy.

(比較例 2) 比較例1に示される酸素量を0.04wt%、還元減少
量を0.17wt%(10,00°C−30分)に制御
した粉末密度が7.824g/caであり、平均粒径4
40μmの凝結および凝集粉を含む不均一形状の鉄粉を
用い、実施例1と同様にして1000個の焼成体を得た
。第3図に1000個の焼結体の寸法測定結果を、外径
の狙い値に対するバラツキ度合いとして示した。第2図
と比較して、焼結体の寸法の振れは大きく、再現性良く
、寸法精度に優れた焼結体を得ることができない。
(Comparative Example 2) The powder density shown in Comparative Example 1 was controlled to 0.04 wt% and the reduction reduction amount to 0.17 wt% (10,00°C-30 minutes), and the powder density was 7.824 g/ca. , average particle size 4
1000 fired bodies were obtained in the same manner as in Example 1 using non-uniformly shaped iron powder containing coagulated and agglomerated powder of 40 μm. FIG. 3 shows the results of dimension measurements of 1000 sintered bodies as the degree of variation in outer diameter with respect to the target value. Compared to FIG. 2, the dimensional variation of the sintered body is large, making it impossible to obtain a sintered body with good reproducibility and excellent dimensional accuracy.

(実施例 4) 金属粉末として、酸素量を1.96wt%、還元減少け
゛を3.90wt%(5009C−3時間)に制御した
粉末密度が7.603 g 1ctAであり、平均粒径
12.4μmの単一且つ均一球状形で、均一粒度分布を
有したFe−50wt%Co合金粉末を用い、有機バイ
ンダー、溶融混合、成形、有機バインダー除去、および
還元処理は、実施例1と同様にして行い、焼結は、水素
還元雰囲気中で室温から600°Cまで1時間、600
℃から700°Cまで1時間、700℃から1400℃
まで3時間で昇温した後、1400℃で3時間保持し、
室温まで2時間で炉冷した。この様にして得られた焼結
体の相対密度は95.5%であった。
(Example 4) As a metal powder, the powder density was 7.603 g 1 ctA with the oxygen content controlled to 1.96 wt% and the reduction reduction value controlled to 3.90 wt% (5009C-3 hours), and the average particle size was 12. Fe-50wt%Co alloy powder having a single and uniform spherical shape of 4 μm and a uniform particle size distribution was used, and the organic binder, melt mixing, molding, organic binder removal, and reduction treatment were performed in the same manner as in Example 1. The sintering was performed from room temperature to 600°C for 1 hour at 600°C in a hydrogen reducing atmosphere.
℃ to 700℃ for 1 hour, 700℃ to 1400℃
After raising the temperature to 1,400℃ for 3 hours,
The mixture was cooled down to room temperature in a furnace for 2 hours. The relative density of the sintered body thus obtained was 95.5%.

(比較例 3) 金属粉末として、酸素量を0.26wt%、還元減少量
を0.16wt%(500℃−3時間)に制御した粉末
密度が8.15 g /clであり、平均粒径11.3
7μmの単一且つ均一球状形で、均一粒度分布を有した
Fe−50wt%Co合金粉末を用い、有機バインダー
、溶融混合、成形、有機バインダー除去、還元処理、お
よび焼成は、実施例4と同様にして行った。この様にし
て得られた焼結体の相対密度は875%と実施例4に比
べて低い値であった。
(Comparative Example 3) As a metal powder, the powder density was 8.15 g / cl with the oxygen amount controlled to 0.26 wt% and the reduction reduction amount to 0.16 wt% (500 ° C. for 3 hours), and the average particle size 11.3
Fe-50wt%Co alloy powder with a single and uniform spherical shape of 7 μm and a uniform particle size distribution was used, and the organic binder, melt mixing, molding, organic binder removal, reduction treatment, and firing were the same as in Example 4. I went there. The relative density of the sintered body thus obtained was 875%, a value lower than that of Example 4.

〔発明の効果〕〔Effect of the invention〕

以上実施例及び比較例の結果から、本発明である、酸素
量を制御した1種または2種以上よりなる、単一且つ均
一球状形であり、均一粒度分布を有した金属粉末を用い
、この酸素量を制御した金属粉末と有機バインダーとを
混合し、この混合体を所望の形状に成形した後、この成
形体から有機バインダーを寸分に除去し、成形体を構成
している酸素量を制御した金属粉末を本焼結前に還元し
温度を低下させることにより部品製造コストの削減も可
能にした。つまり、従来法に比べ、高い焼結体密度と高
い寸法精度を有する精密金属部品を安定に製造する方法
を見出すことができた。
From the results of the Examples and Comparative Examples above, it is clear that the metal powder of the present invention, which is composed of one or more types with controlled oxygen content, has a single and uniform spherical shape, and has a uniform particle size distribution, Metal powder with a controlled amount of oxygen and an organic binder are mixed, this mixture is molded into the desired shape, and then the organic binder is removed from the molded object in small pieces to control the amount of oxygen that makes up the molded object. By reducing the metal powder and lowering the temperature before main sintering, it is also possible to reduce the cost of manufacturing parts. In other words, we have found a method for stably manufacturing precision metal parts with higher sintered body density and higher dimensional accuracy than conventional methods.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、焼結温度と焼結体の相対密度との関係を示し
たので、・印は本発明の鉄粉末であり、○印は従来使用
されている鉄粉末を示したものである。 第2図は、本発明の鉄粉末を用いて、1000個の焼結
体を製造した場合の、外径の狙い値に対するバラツキ度
合いを、寸法精度と個数との関係で示したものである。 第3図は、従来使用されている鉄粉末を用いて、100
0個の焼結体を製造した場合の、外径の狙い値に対する
バラツキ度合いを、寸法精度と個数との関係で示したも
のである。 相ダ・1宮度(0/。)
Figure 1 shows the relationship between the sintering temperature and the relative density of the sintered body, so the * mark is the iron powder of the present invention, and the ○ mark is the conventionally used iron powder. . FIG. 2 shows the degree of variation in the outer diameter with respect to the target value in relation to the dimensional accuracy and the number of sintered bodies when 1000 sintered bodies were manufactured using the iron powder of the present invention. Figure 3 shows that 100
The degree of variation in the outer diameter with respect to the target value when 0 sintered bodies are manufactured is shown in terms of the relationship between dimensional accuracy and the number of sintered bodies. Aida 1 Miyado (0/.)

Claims (6)

【特許請求の範囲】[Claims] (1)焼結した粒子構成体として精密金属部品を製造す
るため、酸素量を制御した1種または2種以上よりなる
金属粉末を用いることを特徴とする粉末成形による精密
金属部品の製造方法。
(1) A method for manufacturing precision metal parts by powder compaction, which is characterized by using metal powder made of one or more types with a controlled amount of oxygen in order to manufacture precision metal parts as a sintered particle structure.
(2)金属粉末の製造工程において還元量を制御し、酸
素量が0.5wt%〜6.0wt%であり、還元減少率
が1%〜7%に制御した1種または2種以上よりなる金
属粉末を用いることを特徴とする粉末成形による精密金
属部品の製造方法。
(2) Consists of one or more types in which the amount of reduction is controlled in the manufacturing process of metal powder, the amount of oxygen is 0.5 wt% to 6.0 wt%, and the reduction reduction rate is controlled to 1% to 7%. A method for manufacturing precision metal parts by powder molding, characterized by using metal powder.
(3)焼結した粒子構成体として精密金属部品を製造す
るため、酸素量を制御した1種または2種以上よりなる
金属粉末と、有機バインダーとを混合し、均質な混合体
を形成する工程[1]と、この混合体を所望の形状の成
形体に成形する工程[2]と、前記工程で得た成形体か
ら有機バインダーを除去する工程[3]と、前記工程[
3]で得た成形体を構成している酸素量を制御した1種
または2種以上よりなる金属粉末を還元する工程[4]
と、前記工程[4]で得た成形体を焼結する工程[5]
とにより、真密度に近い焼結体を得ることを特徴とする
粉末成形による精密金属部品の製造方法。
(3) In order to manufacture precision metal parts as a sintered particle structure, a process of mixing metal powder consisting of one or more types with a controlled amount of oxygen and an organic binder to form a homogeneous mixture. [1], a step of molding this mixture into a molded object of a desired shape [2], a step of removing the organic binder from the molded object obtained in the step [3], and the step [
Step [4] of reducing the metal powder composed of one or more kinds with a controlled amount of oxygen, which constitutes the compact obtained in step [3].
and a step [5] of sintering the molded body obtained in the step [4].
A method for manufacturing precision metal parts by powder compaction, characterized by obtaining a sintered body with close to true density.
(4)請求項(3)に示される、成形体から有機バイン
ダーを除去する工程[3]において、少なくとも成形体
を構成している酸素量を制御した1種または2種以上よ
りなる金属粉末を還元する工程[4]前に、90%以上
の有機バインダーが除去されていることを特徴とする粉
末成形による精密金属部品の製造方法。
(4) In the step [3] of removing the organic binder from the molded body as set forth in claim (3), at least one metal powder comprising one or more metal powders with a controlled amount of oxygen is used to form the molded body. A method for manufacturing precision metal parts by powder molding, characterized in that 90% or more of the organic binder is removed before the reducing step [4].
(5)請求項(3)に示される、成形体を構成している
酸素量を制御した1種または2種以上よりなる金属粉末
を還元する工程[4]を、本焼結前に行うことを特徴と
する粉末成形による精密金属部品の製造方法。
(5) The step [4] of reducing the metal powder consisting of one or more kinds with a controlled amount of oxygen constituting the compact as set forth in claim (3) is performed before the main sintering. A method for manufacturing precision metal parts by powder molding, characterized by:
(6)焼結した粒子構成体として精密金属部品を製造す
るため、焼結収縮率を金属粉末の還元減少量を管理して
部品寸法を正確に制御し、真密度に近い焼結体を得るこ
とを特徴とする粉末成形による精密金属部品の製造方法
(6) In order to manufacture precision metal parts as a sintered particle structure, the sintering shrinkage rate is controlled by the reduction reduction amount of the metal powder to accurately control the part dimensions and obtain a sintered body with close to true density. A method for manufacturing precision metal parts by powder molding, characterized by:
JP02110213A 1990-04-27 1990-04-27 Manufacturing method of precision metal parts by powder molding Expired - Lifetime JP3073217B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02110213A JP3073217B2 (en) 1990-04-27 1990-04-27 Manufacturing method of precision metal parts by powder molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02110213A JP3073217B2 (en) 1990-04-27 1990-04-27 Manufacturing method of precision metal parts by powder molding

Publications (2)

Publication Number Publication Date
JPH049403A true JPH049403A (en) 1992-01-14
JP3073217B2 JP3073217B2 (en) 2000-08-07

Family

ID=14529933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02110213A Expired - Lifetime JP3073217B2 (en) 1990-04-27 1990-04-27 Manufacturing method of precision metal parts by powder molding

Country Status (1)

Country Link
JP (1) JP3073217B2 (en)

Also Published As

Publication number Publication date
JP3073217B2 (en) 2000-08-07

Similar Documents

Publication Publication Date Title
JPH0686608B2 (en) Method for producing iron sintered body by metal powder injection molding
JP2002523630A (en) Powder metal injection molding method for manufacturing products from nickel-based superalloy "Hastelloy X"
JPH02194105A (en) Method for degreasing injection-molded body
JPH02294405A (en) Method for removing wax from injection molded metallic part
JPH04329801A (en) Production of sintered parts
EP0523651B1 (en) Method for making high strength injection molded ferrous material
JPH049403A (en) Manufacture of precise metal parts with powder compacting
JP2004332016A (en) Granulated metal powder, manufacturing method therefor, and metal powder
JP2002206124A (en) METHOD FOR PRODUCING Ti ALLOY SINTERED BODY
JPH0770610A (en) Method for sintering injection-molded product
JP2007314870A (en) Method for producing hard alloy sintered compact, and hard alloy sintered compact
JPH0987775A (en) Production of molded article made of copper-chromium family metal alloy
JPH11131103A (en) Composition for powder injection molding and production of powder injection molded goods
KR20040027788A (en) Binder for High Density Stainless Steel Sintering Material and Method for making High Density Stainless Steel Sintering Material using the same
JP2745889B2 (en) Method of manufacturing high-strength steel member by injection molding method
JPH1046208A (en) Production of ti-ni base alloy sintered body
JPH0734154A (en) Manufacure of sintered hard alloy by injection molding
JPH02228401A (en) Manufacture of compound for injection-molding metal
JPH03257101A (en) Method for degreasing powder green compact
JP2000199001A (en) Powder and method for manufacturing high density sintered body
JPH0565501A (en) Raw material for injection molding of metallic powder and production of sintered metallic material
JPH01215907A (en) Manufacture of metal sintered compact
JPH0257614A (en) Degreasing method
JPH02290901A (en) Metal fine powder for compacting and manufacture of sintered body thereof
JPH04337040A (en) Production of tungsten heavy alloy product

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090602

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090602

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 10

EXPY Cancellation because of completion of term