JPH01215907A - Manufacture of metal sintered compact - Google Patents

Manufacture of metal sintered compact

Info

Publication number
JPH01215907A
JPH01215907A JP63039664A JP3966488A JPH01215907A JP H01215907 A JPH01215907 A JP H01215907A JP 63039664 A JP63039664 A JP 63039664A JP 3966488 A JP3966488 A JP 3966488A JP H01215907 A JPH01215907 A JP H01215907A
Authority
JP
Japan
Prior art keywords
metal powder
sintering
binder
metal
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63039664A
Other languages
Japanese (ja)
Other versions
JPH0768565B2 (en
Inventor
Tadao Katahira
片平 忠夫
Morikazu Yamada
盛一 山田
Yuuichi Tachitani
雄一 立谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP63039664A priority Critical patent/JPH0768565B2/en
Publication of JPH01215907A publication Critical patent/JPH01215907A/en
Publication of JPH0768565B2 publication Critical patent/JPH0768565B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To manufacture a sintered alloy product having excellent mechanical characteristic by forming film of Si compound on the surface of raw material metal powder and compacted-sintering kneading material with binder at low temp. and low pressure. CONSTITUTION:At the time of producing the sintered alloy made member by using the metal powder as the raw material with powder metallurgy method, beforehand the metal powder is treated with silane coupling agent having each one or more of Si atom and alkoxy group in one molecule of vinyl triethoxysilane, etc., to form the film of Si compound on the surface of metal powder. By kneading this metal powder with about 5% binder of low density polyethylene, etc., and the other, with lubricant of paraffin wax, etc., and plasticizer of dioctyl phthalate, etc., it is compacted under pressurizing in a die at low pressure. Successively, after degleasing the binder with organic solvent of petroleum, etc., CO2 gas under supercritical condition, etc., it is sintered at low temp. By existence of the Si compound on the surface of metal powder, it is easily sintered and the sintered alloy member having excellent mechanical strength can be manufactured by compacting at low pressure and sintering at low temp. under low cost.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、原料粉末からグリーン成形体を得る成形工程
と、グリーン成形体の脱脂工程と、焼結工程を経て形成
される焼結体製造方法に関するものである。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to the production of a sintered body formed through a molding process for obtaining a green molded body from raw material powder, a degreasing process for the green molded body, and a sintering process. It is about the method.

〔従来の技術〕[Conventional technology]

一般に金属の焼結体を製造する工程で焼結前の成形体は
粉末を圧縮成形することにより圧粉体として得られてい
る。これは通常上下方向からパンチで加圧するという方
法であることから、得られるグリーン成形体の形状とし
ては円柱、円筒のような比較的単純のなものに限られ、
より複雑な製品を得るには焼結上がりの製品に切削、研
削等の後加工を必要とする。
Generally, in the process of manufacturing a metal sintered body, a compact before sintering is obtained as a green compact by compression molding powder. Since this method usually involves applying pressure with a punch from above and below, the shape of the green molded product obtained is limited to relatively simple shapes such as cylinders and cylinders.
To obtain more complex products, the sintered product requires post-processing such as cutting and grinding.

このような観点から成形体の形状を製品により近づける
ための技術が種々検討されている。いわゆるエンジニア
リングセラミックス等を中心とした窯業製品の分野では
、原料粉末に10〜20重量%の有機高分子を主成分と
したバインダーを加え、混合混練し、続いて射出成形又
は、押出成形した成形体を脱脂、焼結して製品を得ると
いう方・ 法が工業的に行なわれてきている。射出成形
、及び押出成形は元来は熱可塑性プラスチックの成形方
法であるが、製品の最終的な形状を後加工なしに、しか
も高い寸法精度で、大量に生産するのに適しているため
、前述のような問題点の解決策としては注目すべきもの
かある。そして、近年アトマイズ法に代表される金属粉
末の製造技術の発展から射出成形、押出成形方法が、金
属の焼結製品に製造も適用が試みられてきている。
From this point of view, various techniques have been studied to make the shape of the molded object more similar to that of the product. In the field of ceramic products, mainly so-called engineering ceramics, 10 to 20% by weight of a binder mainly composed of organic polymers is added to raw material powder, mixed and kneaded, and then injection molded or extruded molded bodies are produced. A method of obtaining products by degreasing and sintering has been used industrially. Injection molding and extrusion molding are originally molding methods for thermoplastic plastics, but they are suitable for mass production of the final shape of a product without post-processing and with high dimensional accuracy, so they are used as described above. There are some noteworthy solutions to these problems. In recent years, with the development of metal powder manufacturing technology such as the atomization method, attempts have been made to apply injection molding and extrusion molding methods to manufacturing sintered metal products.

前述のような焼結製品の製造工程での最大の技術的な問
題点は原料粉末に多量のバインダーを加えであることか
ら、焼結前にこれを如何に除去するかということである
。バインダーの除去、即ち脱脂は加熱によってバインダ
ーを熱分解、揮散させるのが、最も一般的であり、近年
、超臨界状態(擬液体状態)の二酸化炭素カスによって
抽出することも試みられている。加熱もしくは抽出のい
ずれの方法においても成形体中でのパインターの拡散の
容易さを考慮して、バインダーとしてはなるべく低分子
量のものが望ましい。このことから、バインダーとして
石油系のパラフィンワックス等が多用されている。
The biggest technical problem in the manufacturing process of sintered products as described above is that a large amount of binder is added to the raw material powder, and how to remove this before sintering. The most common method for binder removal, ie, degreasing, is to thermally decompose and volatilize the binder by heating, and in recent years, extraction using carbon dioxide scum in a supercritical state (quasi-liquid state) has also been attempted. In either heating or extraction method, it is desirable to use a binder with as low a molecular weight as possible in consideration of ease of diffusion of pinter in the molded body. For this reason, petroleum-based paraffin wax and the like are often used as binders.

〔発明か解決しようとする課題〕[Invention or problem to be solved]

しかしバインダーは金属粉末との親和性か小さく、また
一般に有機高分子は低分子量になるに従い、機械的な強
度低下することから、成形体そのものも機械的強度が不
十分で取り扱いの上で問題があり、ひいては歩留の低下
をきたすことが避けられない。しかも前述のようにバイ
ンダーと金属粉末の親和性の小さいことから粉末の原料
中での分散性にも問題があり、成形不良となることが多
い。
However, the binder has a low affinity with metal powder, and the mechanical strength of organic polymers generally decreases as the molecular weight decreases, so the molded product itself has insufficient mechanical strength and poses problems in handling. This inevitably leads to a decrease in yield. Moreover, as mentioned above, since the affinity between the binder and the metal powder is low, there is a problem in the dispersibility of the powder in the raw material, which often results in poor molding.

本発明はかかる問題点に鑑み、原料粉末表面を改質する
ことにより原料粉末の分散性を改善し、低温、低圧で成
形体の機械的強度を向上することが可能な金属焼結体の
製造方法を提供することを目的とする。
In view of these problems, the present invention improves the dispersibility of the raw material powder by modifying the surface of the raw material powder, and produces a metal sintered body that can improve the mechanical strength of the molded body at low temperature and low pressure. The purpose is to provide a method.

〔問題を解決するための手段〕[Means to solve the problem]

本発明によれば、金属粉末とバインダーを含む原料を混
合、混練しコンパウンドを経て射出成形又は押出成形し
て成形体を得る成形工程と、脱脂工程と、焼結工程とを
有する金属焼結体の製造方法において、上記金属粉末は
、1分子内にケイ素原子及びアルコキシ基を1以上含む
シランカップリング剤により表面処理が施されてケイ素
化合物の被膜が形成されていることを特徴とする金属焼
結体の製造方法が得られる。
According to the present invention, a metal sintered body includes a molding process of mixing and kneading raw materials including metal powder and a binder, compounding, injection molding or extrusion molding to obtain a molded body, a degreasing process, and a sintering process. In the manufacturing method, the metal powder is surface-treated with a silane coupling agent containing one or more silicon atoms and one or more alkoxy groups in one molecule to form a coating of a silicon compound. A method for producing a body is obtained.

一般に無機質の粉末の表面改質方法としては(1)オレ
フィン酸誘導体のような界面活性剤を表面に均一に吸着
させる。(2)適当な分散媒に粉末を分散させた状態で
重合反応し得るモノマーと触媒を加えて反応させ、ポリ
マーで粉末表面を被覆する。(3)熱可塑性または熱硬
化性の高分子で表面を被覆する。(4)アルコキシ基を
有する有機金属化合物、即ち、カップリング剤で表面を
被覆する。などが挙げられるが、(1)は粉末の分散性
向上には効果かあるものの、グリーン成形体の機械的な
強度はむしろ低下し、しがち界面活性剤の粉=  6 
− 米表面との結合か強くない。(2)は使用する触媒かな
とえは過酸化物のように当然のことながら、化学的に粘
性の高いものであるため金属表面を浸ずことが多い、(
3)は粉末か微細になるに従い、処理が困難になり、実
用性が低いという理由から本発明者らは(4)に着目し
、検討の結果、1分子内にケイ素原子及びアルコキシ基
を各々1以上有するシランカップリング剤が、金属粉末
の分散性向上及び成形体の機械的強度向上させることが
できしかも上記した化合物の表面処理により、焼結する
際の焼結性の向上にも寄与することを見出し、本発明を
なすに至ったものである。
Generally, as a method for surface modification of inorganic powder, (1) a surfactant such as an olefinic acid derivative is uniformly adsorbed on the surface. (2) While the powder is dispersed in a suitable dispersion medium, a monomer capable of polymerization reaction and a catalyst are added and reacted to coat the powder surface with the polymer. (3) Coating the surface with a thermoplastic or thermosetting polymer. (4) The surface is coated with an organometallic compound having an alkoxy group, that is, a coupling agent. Although (1) is effective in improving the dispersibility of the powder, the mechanical strength of the green molded product tends to decrease, and surfactant powder = 6
− The bond with the rice surface is not strong. For (2), the catalyst used is of course a highly viscous chemical like peroxide, so it often does not soak the metal surface.
3) becomes more difficult to process as it becomes finer, making it less practical. Therefore, the present inventors focused on (4), and as a result of investigation, found that silicon atoms and alkoxy groups are each included in one molecule. The silane coupling agent having one or more of these can improve the dispersibility of the metal powder and the mechanical strength of the compact, and also contribute to improving the sinterability during sintering by surface treatment with the above-mentioned compound. This discovery led to the present invention.

本発明による方法がアルコキシ基により粉末表面と化合
物の間に化学的な結合か形成され、表面と強固に結合し
た皮膜か形成され、バインダーと粉末の親和性を増加す
ることにより粉末の分散性、成形体の機械的強度の向上
に寄与すると考えられる。
In the method according to the present invention, a chemical bond is formed between the powder surface and the compound by the alkoxy group, a film is formed that is strongly bonded to the surface, and the affinity of the powder with the binder is increased, thereby improving the dispersibility of the powder. It is thought that this contributes to improving the mechanical strength of the molded article.

本発明において、金属粉末を処理するシランカップリン
グ剤としては、ビニルトリエトキシシラン、ビニル−ト
リス(2−メトキシーエ(・キシ)シラン、γ−メタク
リロキシープロピルトリメトキシ−シラン、γ−アミノ
プロピルートリメトキシシラン、β−(3,4−エポキ
シ−シクロヘキシル)エチル−1−リメトキシシラン、
γ4ルカプトプロピルトリメトキシシラン等のシランカ
ップリング剤か挙げられるか、これらに限定されるもの
ではない。
In the present invention, examples of the silane coupling agent for treating metal powder include vinyltriethoxysilane, vinyl-tris(2-methoxy(·xy)silane), γ-methacryloxypropyltrimethoxy-silane, and γ-aminopropyltrimethoxysilane. Methoxysilane, β-(3,4-epoxy-cyclohexyl)ethyl-1-rimethoxysilane,
Examples include, but are not limited to, silane coupling agents such as γ4katopropyltrimethoxysilane.

本発明において、金属粉末の表面処理方法は上記しなシ
ランカップリンク添加剤をそのままが、適当なエタノー
ル等の溶媒に溶解して、粉末と混合し、そのまま放置す
るという簡便な方法でも良く、又溶媒のすみやかな除去
、反応の促進のため加熱しても良いか、その場合は金属
粉末表面の酸化を抑制するため不活性ガス中で行うこと
が望ましい。本発明においては、加熱もしくは有機溶媒
抽出による脱脂工程で、パインター類のみを除去してケ
イ素を含む被膜を金属粉末表面に残すことか可能であり
、焼結工程で金属粉末を含有する成形体中にケイ素と化
合物を形成する成分が存在する場合はその成分とケイ素
が反応することにより焼結の促進に寄与すると解される
。更には、焼結工程ではケイ素がグリーン成形体中の金
属粉末粒子相内に拡散し、固溶体を得ることが可能であ
る。
In the present invention, the surface treatment method for the metal powder may be a simple method in which the above-mentioned silane cup link additive is dissolved as it is in a suitable solvent such as ethanol, mixed with the powder, and left as it is; In order to quickly remove the solvent and promote the reaction, heating may be used, or in that case, it is preferable to conduct the reaction in an inert gas to suppress oxidation of the surface of the metal powder. In the present invention, it is possible to remove only the paint particles and leave a silicon-containing film on the surface of the metal powder in the degreasing process by heating or organic solvent extraction, and in the sintering process, it is possible to remove the silicon-containing film on the surface of the metal powder. If there is a component that forms a compound with silicon, it is understood that the reaction between that component and silicon contributes to the promotion of sintering. Furthermore, during the sintering process silicon can diffuse into the metal powder particle phase in the green compact to obtain a solid solution.

尚、本発明において、抽出用有機溶射は、石油、ベンゼ
ン、トルエン、キシレンなどの芳香族系溶媒、四塩化炭
素トリクレンなどの塩素系有機溶媒等のバインダーを溶
解できる有機溶剤であるならば、これらに限定されない
In the present invention, the organic thermal spraying for extraction is an organic solvent that can dissolve the binder, such as aromatic solvents such as petroleum, benzene, toluene, and xylene, and chlorinated organic solvents such as carbon tetrachloride trichloride. but not limited to.

以下に実施例を挙は本発明の詳細な説明する。The present invention will be explained in detail by way of examples below.

〔実施例〕〔Example〕

第1表は、本発明の実施例に係る金属焼結体製造方法に
より得られたグリーン成形体と焼結体を示している。比
較の為に従来の金属焼結体製造方法により得られたクリ
ーン成形体と焼結体を併記した。
Table 1 shows green molded bodies and sintered bodies obtained by the metal sintered body manufacturing method according to the example of the present invention. For comparison, a clean molded body and a sintered body obtained by a conventional metal sintered body manufacturing method are also shown.

以下余白 第   1   表 この表から、シランカップリング剤により表面処理され
た金属粉末により得られた実施例に係る− 10 = グリーン成形体は、また、射出温度が40℃位射出圧力
が50℃とともに小さいにもかかわらす、曲げ強度が2
倍以上優れており、焼結体においても、その密度が大き
く、歩留りにすぐれていることがわかる。
From this table, it can be seen that -10 = green molded bodies according to examples obtained with metal powders surface-treated with a silane coupling agent also have an injection temperature of 40°C and an injection pressure of 50°C. Despite its small size, the bending strength is 2.
It can be seen that the sintered body has a high density and an excellent yield.

本発明の実施例に係る金属焼結体は次のように製造され
た。第2表は、本発明の実施例に係る金属焼結体の原料
粉末の化学組成を示す。この表のように、原料粉末は、
カップリング剤により表面処理が行われた金属粉末91
.0wt%と、バインダー類、有機高分子、滑剤、可塑
剤として低密度ポリエチレン5.0%、融点63°Cの
パラフィンワックス2.5wt%及び、ジオクチルフタ
レート1.5wt%よりなっている。
A metal sintered body according to an example of the present invention was manufactured as follows. Table 2 shows the chemical composition of the raw material powder for the metal sintered body according to the example of the present invention. As shown in this table, the raw material powder is
Metal powder 91 surface-treated with a coupling agent
.. 0 wt%, 5.0% low density polyethylene as binders, organic polymers, lubricants, and plasticizers, 2.5 wt% paraffin wax with a melting point of 63°C, and 1.5 wt% dioctyl phthalate.

第   2   表 この実施例に係る金属粉末は次のように表面処理か施さ
れている。
Table 2 The metal powder according to this example was subjected to surface treatment as follows.

原子%で50%Fe、50%Coなる化学組成の合金を
アルゴンカス雰囲気で高周波加熱により要請し、水アト
マイズ法により、平均粒径的10μmの合金粉末を得た
。その合金粉末を10k(]秤量し、内容量10.1i
のはスーパーミキサーに投入した。ミキサーの撹拌羽根
を200r、p、mで回転させ、γ−アミノプロピルー
トリメトキシシラン50gを250ccのエチルアルコ
ールに溶解した溶液を滴下し、10分間撹拌した。この
合金粉末を窒素カスを流した乾燥炉中にて120℃で3
0分間加熱した、次に本発明の実施例に係る金属焼結体
は次のように製造された。第2表に示した組成により混
合、混練、粉砕し、射出成形用の原料を得た。
An alloy having a chemical composition of 50% Fe and 50% Co in atomic percent was obtained by high frequency heating in an argon gas atmosphere, and an alloy powder with an average particle size of 10 μm was obtained by water atomization. Weighed 10k (] of the alloy powder, and the inner volume was 10.1i.
was added to the super mixer. The stirring blades of the mixer were rotated at 200 r, p, m, and a solution of 50 g of γ-aminopropyltrimethoxysilane dissolved in 250 cc of ethyl alcohol was added dropwise and stirred for 10 minutes. This alloy powder was heated at 120℃ for 3 hours in a drying oven flushed with nitrogen gas.
The metal sintered body according to the example of the present invention was then heated for 0 minutes and was manufactured as follows. The mixture was mixed, kneaded, and pulverized according to the composition shown in Table 2 to obtain raw materials for injection molding.

次にこの原料を用い、外径50 mm、内径35市、厚
さ5印のクリーン成形体を射出成形により作製した。こ
のグリーン成形体を体積比で水素=70%アルルゴン3
0%よりなる気流中で、室温から10°C/Hrの速度
で600°Cまで昇温し、2時間保持後、室温まで冷却
した。続いて炉中にて2XIO−’Torrまで減圧し
、200℃Hrで室温から1200°Cまで昇温し、1
0時間保持した後、急冷し焼結体を得た。この焼結体の
結晶粒の界面をEDXで分析しな。その結果ケイ素は検
出できなかった。また第1表に示したグリーン成形焼結
体より測定した。
Next, using this raw material, a clean molded body having an outer diameter of 50 mm, an inner diameter of 35 mm, and a thickness of 5 marks was produced by injection molding. This green molded body is hydrogen = 70% arurgone 3 in volume ratio.
The temperature was raised from room temperature to 600°C at a rate of 10°C/Hr in a 0% air flow, maintained for 2 hours, and then cooled to room temperature. Next, the pressure was reduced to 2XIO-'Torr in the furnace, and the temperature was raised from room temperature to 1200°C at 200°C Hr.
After holding for 0 hours, it was rapidly cooled to obtain a sintered body. Analyze the grain interfaces of this sintered body using EDX. As a result, silicon could not be detected. Further, measurements were made using the green molded sintered bodies shown in Table 1.

また、比較の為に従来例に係る金属焼結体を次のように
製造した。γ−アミノプロピルートリメトキシシランに
よって粉末に表面処理を施さなかったこと以外は実施例
とまったく同じ製造方法により焼結体を製造した。第1
表に併記したグリーン成形体の曲げ強度、焼結体の相対
密度及び焼結体の元素分析結果は、この時に得られたグ
リーン成形体と焼結体より測定した。
Further, for comparison, a metal sintered body according to a conventional example was manufactured as follows. A sintered body was manufactured by the same manufacturing method as in the example except that the powder was not surface-treated with γ-aminopropyltrimethoxysilane. 1st
The bending strength of the green molded body, the relative density of the sintered body, and the elemental analysis results of the sintered body listed in the table were measured from the green molded body and the sintered body obtained at this time.

〔発明の効果〕〔Effect of the invention〕

以上詳しく述べたように本発明によれば、低コストで射
出成形グリーン成形体の機械的強度、焼結体の相対密度
を向上することができる。また本発明によれは、射出成
形の条件を低温、低圧力にすることができる。周知のよ
うに射出成形でスプルー・ランナーのようなスクラップ
の発生は不可避であるが、殊にこの場合のように高価な
金属粉末を含んだ材料ではスクラップをリサイクル使用
することがコスト低減に寄与する。従って、成形温度を
なるべく低くすることが、材料の熱劣化を防ぐ上で重要
である。そしてこの場合のように金属粉末を含む材料で
は通常のプラスチックに比較して金型の摩耗が著しいが
、成形圧力を低くすることが、金型の寿命を伸ばす上で
重要である。
As described in detail above, according to the present invention, the mechanical strength of an injection-molded green molded body and the relative density of a sintered body can be improved at low cost. Further, according to the present invention, the injection molding conditions can be set to low temperature and low pressure. As is well known, the generation of scraps such as sprue and runners is unavoidable in injection molding, but recycling scraps can help reduce costs, especially for materials that contain expensive metal powder, as in this case. . Therefore, it is important to keep the molding temperature as low as possible in order to prevent thermal deterioration of the material. As in this case, when using a material containing metal powder, the mold wears more significantly than when using ordinary plastic, but lowering the molding pressure is important in extending the life of the mold.

このように本発明の及ぼす効果はコスト低減に寄与する
所は非常に大きく、工業上極めて重要である。
As described above, the effect of the present invention greatly contributes to cost reduction, and is extremely important industrially.

= 14− 手続補正書(自発) 昭和63年3月2日= 14- Procedural amendment (voluntary) March 2, 1986

Claims (1)

【特許請求の範囲】 1、金属粉末とバインダーを含む原料を混合、混練しコ
ンパウンドを経て射出成形又は押出成形して成形体を得
る成形工程と、脱脂工程と、焼結工程とを有する金属焼
結体の製造方法において、上記金属粉末は、1分子内に
ケイ素原子及びアルコキシ基を1以上含むシランカップ
リング剤により表面処理が施されてケイ素化合物の被膜
が形成されていることを特徴とする金属焼結体の製造方
法。 2、上記脱脂工程は上記成形体を加熱することにより上
記バインダーを分解、揮散させて上記金属粉末の表面を
被覆しているケイ素化合物を残す工程であり、上記焼結
工程は上記ケイ素化合物によって焼結が促進されること
を特徴とする第1の請求項記載の金属焼結体の製造方法
。 3、上記脱脂工程は上記成形体から上記バインダー抽出
溶媒により溶出させて上記金属粉末の表面を被覆してい
るケイ素化合物を残す工程であり、上記焼結工程は上記
ケイ素化合物によって焼結が促進されることを特徴とす
る第1の請求項記載のの金属焼結体の製造方法。 4、上記脱脂工程は抽出溶媒として液相の有機溶媒を用
いることを特徴とする第3の請求項記載の金属焼結体の
製造方法。 5、上記脱脂工程は抽出溶媒として超臨界状態の流体を
用いることを特徴とする第4の請求項記載の金属焼結体
の製造方法。 6、上記焼結工程は上記金属粉末表面を被覆した上記ケ
イ素化合物中のケイ素原子を上記金属粉末内部に拡散さ
せて固溶体とする工程を含むことを特徴とする第2から
第5の請求項のいずれか1つに記載の金属焼結体の製造
方法。
[Claims] 1. A metal sintering process comprising a molding process of mixing and kneading raw materials containing metal powder and a binder, compounding, and injection molding or extrusion molding to obtain a molded body, a degreasing process, and a sintering process. In the method for producing a compact, the metal powder is surface-treated with a silane coupling agent containing one or more silicon atoms and one or more alkoxy groups in one molecule to form a film of a silicon compound. A method for manufacturing a metal sintered body. 2. The degreasing step is a step in which the binder is decomposed and volatilized by heating the molded body to leave a silicon compound covering the surface of the metal powder, and the sintering step is a step in which the binder is decomposed and volatilized by heating the compact, leaving a silicon compound covering the surface of the metal powder. 2. The method for producing a metal sintered body according to claim 1, characterized in that sintering is promoted. 3. The degreasing step is a step in which the molded body is eluted with the binder extraction solvent to leave a silicon compound covering the surface of the metal powder, and the sintering step is a step in which sintering is promoted by the silicon compound. A method for producing a metal sintered body according to claim 1, characterized in that: 4. The method for manufacturing a metal sintered body according to claim 3, wherein the degreasing step uses a liquid-phase organic solvent as an extraction solvent. 5. The method for manufacturing a metal sintered body according to claim 4, wherein the degreasing step uses a fluid in a supercritical state as an extraction solvent. 6. The sintering step includes a step of diffusing silicon atoms in the silicon compound coating the surface of the metal powder into the metal powder to form a solid solution. A method for producing a metal sintered body according to any one of the above.
JP63039664A 1988-02-24 1988-02-24 Manufacturing method of sintered metal Expired - Fee Related JPH0768565B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63039664A JPH0768565B2 (en) 1988-02-24 1988-02-24 Manufacturing method of sintered metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63039664A JPH0768565B2 (en) 1988-02-24 1988-02-24 Manufacturing method of sintered metal

Publications (2)

Publication Number Publication Date
JPH01215907A true JPH01215907A (en) 1989-08-29
JPH0768565B2 JPH0768565B2 (en) 1995-07-26

Family

ID=12559353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63039664A Expired - Fee Related JPH0768565B2 (en) 1988-02-24 1988-02-24 Manufacturing method of sintered metal

Country Status (1)

Country Link
JP (1) JPH0768565B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6689311B2 (en) * 2000-11-13 2004-02-10 Matsushita Electric Industrial Co., Ltd. Method and apparatus for manufacturing sinter, method for measuring concentration of plasticizer, evaluation method, and evaluation apparatus
JP2010133021A (en) * 2008-10-31 2010-06-17 Topy Ind Ltd Particle for thermal spraying
JP2017528593A (en) * 2014-07-08 2017-09-28 エメリー オレオケミカルズ ゲーエムベーハー Sinterable feedstock for 3D printing devices

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5567107A (en) * 1978-11-14 1980-05-21 Toshiba Corp Preparing method of permanent magnet
JPS60244888A (en) * 1984-05-21 1985-12-04 Seiko Epson Corp Weight composition for self-winding wristwatch
JPS62282418A (en) * 1986-05-07 1987-12-08 Tohoku Metal Ind Ltd Manufacture of composite magnet
JPH01161803A (en) * 1987-12-18 1989-06-26 Hitachi Metals Ltd Surface treating method for magnetic powder for anisotropic nd-fe-b bond magnet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5567107A (en) * 1978-11-14 1980-05-21 Toshiba Corp Preparing method of permanent magnet
JPS60244888A (en) * 1984-05-21 1985-12-04 Seiko Epson Corp Weight composition for self-winding wristwatch
JPS62282418A (en) * 1986-05-07 1987-12-08 Tohoku Metal Ind Ltd Manufacture of composite magnet
JPH01161803A (en) * 1987-12-18 1989-06-26 Hitachi Metals Ltd Surface treating method for magnetic powder for anisotropic nd-fe-b bond magnet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6689311B2 (en) * 2000-11-13 2004-02-10 Matsushita Electric Industrial Co., Ltd. Method and apparatus for manufacturing sinter, method for measuring concentration of plasticizer, evaluation method, and evaluation apparatus
JP2010133021A (en) * 2008-10-31 2010-06-17 Topy Ind Ltd Particle for thermal spraying
JP2017528593A (en) * 2014-07-08 2017-09-28 エメリー オレオケミカルズ ゲーエムベーハー Sinterable feedstock for 3D printing devices

Also Published As

Publication number Publication date
JPH0768565B2 (en) 1995-07-26

Similar Documents

Publication Publication Date Title
EP0428719B1 (en) Method of forming shaped components from mixtures of thermosetting binders and powders having a desired chemistry
JP2012512962A (en) Method for manufacturing cemented carbide products
JPH01215907A (en) Manufacture of metal sintered compact
CN101396734B (en) Handset vibrator manufacture method
JPH0313503A (en) Method for degreasing molding for powder metallurgy, binder and supercritical fluid
JPH02107703A (en) Composition for injection molding
JP2002206124A (en) METHOD FOR PRODUCING Ti ALLOY SINTERED BODY
JP2949130B2 (en) Method for producing porous metal filter
JP2980209B2 (en) Noble metal sintered body and method for producing the same
JPH0987775A (en) Production of molded article made of copper-chromium family metal alloy
JPH06287055A (en) Production of sintered article of ceramic
JP2793938B2 (en) Manufacturing method of sintered metal parts by metal powder injection molding method
JPH0313505A (en) Method of degreasing powder formed body
JPH0734154A (en) Manufacure of sintered hard alloy by injection molding
JPH0339402A (en) Manufacture of metal powder sintered body
JP2799064B2 (en) Manufacturing method of sintered body
JPH0647682B2 (en) Manufacturing method of sintered metal
JP2745889B2 (en) Method of manufacturing high-strength steel member by injection molding method
JPH04186803A (en) Magnetic powder molded body and degreasing method thereof, and binder for magnetic powder molded body
JPH0681004A (en) Method for powder metallurgy
JPH0483752A (en) Mixture of sinterable substance
JPH02129062A (en) Production of sintered ferrite
JPH032820B2 (en)
JPS6140867A (en) Readily sinterable composition
JPH02208257A (en) Production of ferrite sintered body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees