JPH01161803A - Surface treating method for magnetic powder for anisotropic nd-fe-b bond magnet - Google Patents

Surface treating method for magnetic powder for anisotropic nd-fe-b bond magnet

Info

Publication number
JPH01161803A
JPH01161803A JP62320308A JP32030887A JPH01161803A JP H01161803 A JPH01161803 A JP H01161803A JP 62320308 A JP62320308 A JP 62320308A JP 32030887 A JP32030887 A JP 32030887A JP H01161803 A JPH01161803 A JP H01161803A
Authority
JP
Japan
Prior art keywords
magnetic powder
titanate
organometallic compound
silane
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62320308A
Other languages
Japanese (ja)
Inventor
Katsunori Iwasaki
克典 岩崎
Shigeo Tanigawa
茂穂 谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP62320308A priority Critical patent/JPH01161803A/en
Publication of JPH01161803A publication Critical patent/JPH01161803A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0572Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes with a protective layer

Abstract

PURPOSE:To improve molding property and mechanical strength, by compositely using a silane organic metal compound and a titanate organic metal compound as surface quality improving agents on a surface. CONSTITUTION:A silane organic metal compound and a titanate organic metal com pound are coated on a surface of magnetic powder beforehand as a composite bases. At this time, 70% or more of the total weight part of the magnetic powder undergoes the surface treatment with the silane organic metal compound, and the remaining part undergoes the surface treatment with the titanate organic metal compound. There after, both are mixed. Or the surface of the total weight part of the magnetic powder undergoes the surface treatment with the silane organic metal compound. Thereafter, the coated part undergoes the surface treatment with the titanate organic metal com pound. Or the surface of the total weight part of the magnetic powder undergoes the surface treatment with the silane organic metal compound. Thereafter, the titanate organic metal compound is poured immediately before kneading with a resin or during the kneading. With respect to the ratio of the surface quality improving agents, it is desirable that 0.01-5.00weight parts are used respectively with respect to 100weight parts of the applicable anisotropic magnetic powder.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、異方性Nd −Fe −B系ボンド磁石に使
用される磁性粉末の表面処理方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for surface treatment of magnetic powder used in anisotropic Nd-Fe-B bonded magnets.

[従来の技術] Nd −Fe−B系ボンド磁石に関しては、本出願人が
特開昭61−62174号公報に、超急冷法で得られた
薄片をホットプレス、1−11P等の温間塑性加工を施
して異方性を付与した後、粉砕し樹脂と混合して圧縮あ
るいは射出成形により異方性ボンド磁石とすることを開
示した。一方、磁性粉末の表面処理に際しては、例えば
、特公昭55−32206号公報にはフェライト粉末の
充填量を高めるために、フェライト粉末を有機ケイ素化
合物で表面処理することが開示されている。また、特公
昭59−93741号公報には、チタネート系カップリ
ング剤が塑性剤として作用するため、強磁性粉末の予励
の充填が可能であることが開示されている。また、フェ
ライト系磁性粉末をシラン系カップリング剤で処理し、
次いでチタネート系カップリング剤で処理することによ
り、機械的強度を改良し、かつ、粘度の上界を招くこと
なく高磁気特性を備えている樹脂磁石用成形材料の製造
方法が知られている(特開昭6l−3690G号公報参
照)。
[Prior art] Regarding Nd-Fe-B bonded magnets, the present applicant has disclosed in Japanese Patent Application Laid-Open No. 61-62174 that thin pieces obtained by an ultra-quenching method are subjected to hot pressing, warm plasticity such as 1-11P, etc. It was disclosed that after being processed to impart anisotropy, it is crushed, mixed with a resin, and then compressed or injection molded to form an anisotropic bonded magnet. On the other hand, regarding surface treatment of magnetic powder, for example, Japanese Patent Publication No. 55-32206 discloses surface treatment of ferrite powder with an organosilicon compound in order to increase the amount of ferrite powder packed. Further, Japanese Patent Publication No. 59-93741 discloses that pre-excitation filling of ferromagnetic powder is possible because a titanate coupling agent acts as a plasticizer. In addition, ferrite magnetic powder is treated with a silane coupling agent,
There is a known method for producing a molding material for resin magnets that is then treated with a titanate coupling agent to improve mechanical strength and has high magnetic properties without causing an upper limit on viscosity. (See Japanese Patent Application Laid-Open No. 61-3690G).

[発明が解決しようとする問題点] 射出成形による異方性ボンド磁石を作製する場合、成形
金型内の流れを良くし、配向磁場に対して、応答V]を
高めるため、適度の流動性を有し、しかも、成形後の機
械的強度が優れたコンパウンドが必要である。チタネー
ト系有機金属化合物を単独あるいは添加剤としてステア
リン酸アマイド等と併用する場合、樹脂との混練性にJ
3いては、極めて改善効果が認められコンパウンドの流
動性は向上するものの、コンパウンド製造時、樹脂とバ
インダーの密着性が低下し樹脂から脱落する磁粉間が多
く、コンパウンド内の磁粉充填量を低下させ、これが成
形体の密着低下につながる他、成形体が脆弱になるとい
う欠点がある。
[Problems to be solved by the invention] When producing an anisotropic bonded magnet by injection molding, appropriate fluidity is required to improve the flow in the mold and increase the response V to the orienting magnetic field. There is a need for a compound that has excellent mechanical strength after molding. When titanate-based organometallic compounds are used alone or in combination with stearamide, etc. as an additive, J
3, a significant improvement effect was observed and the fluidity of the compound was improved, but during compound production, the adhesion between the resin and the binder was reduced, and many gaps between magnetic particles fell off from the resin, reducing the amount of magnetic particles filled in the compound. This leads to a decrease in the adhesion of the molded body, and also has the disadvantage that the molded body becomes brittle.

一方、シラン系有機金属化合物を単独で使用する場合、
磁粉とバインダーの結合力は増加し、成形体の強度を高
める効果はあるが溶融粘度を増加させ流動性を低下させ
る。この欠点を補うためステアリン酸アマイド等の可塑
剤を多母に添加すると溶融粘度は低下するものの成形体
強度が低下するという問題点がある。
On the other hand, when using a silane-based organometallic compound alone,
The bonding strength between the magnetic powder and the binder increases, which has the effect of increasing the strength of the molded body, but increases the melt viscosity and reduces fluidity. If a plasticizer such as stearamide is added to the polymer to compensate for this drawback, there is a problem that although the melt viscosity decreases, the strength of the molded product decreases.

本発明の目的は、上述した従来技術の問題点を解消し、
成形性および機械的強度に優れた異方性ボンド磁石用コ
ンパウンドを安定して得ることのできる磁性粉末の表面
処理方法を提供するものである。
The purpose of the present invention is to solve the problems of the prior art described above,
The present invention provides a method for surface treatment of magnetic powder that can stably obtain a compound for anisotropic bonded magnets with excellent moldability and mechanical strength.

[問題点を解決するための手段] 本発明の異方性磁性粉末の複合表面処理方法は、Nd 
−Fe −B系磁性粉末を出発原料とした異方性ボンド
磁石用磁粉の複合的な表面処理方法に関するものであり
、表面改質剤としてシラン系有機金属化合物とチタネー
ト系有機金属化合物を表面に複合的に用いることを特徴
とする複合表面処理方法の手段として以下の3方法が有
効である。
[Means for Solving the Problems] The composite surface treatment method for anisotropic magnetic powder of the present invention includes Nd
This relates to a composite surface treatment method for magnetic powder for anisotropic bonded magnets using -Fe-B magnetic powder as a starting material, in which a silane-based organometallic compound and a titanate-based organometallic compound are applied to the surface as surface modifiers. The following three methods are effective as means for a composite surface treatment method characterized by multiple use.

(1)lifi性粉末全粉末全重量部70%以上をシラ
ン系有機金属化合物で、残りをチタネート系有機金属化
合物の各々で表面処理した後、両方を混合する。
(1) After surface-treating 70% or more of the total weight of all lifi powders with a silane-based organometallic compound and the remainder with a titanate-based organometallic compound, both are mixed.

(2)磁性粉末全重量部の表面にシラン系有機金属化合
物で表面処理した後、更にその周囲にチタネート系有機
金属化合物で表面処理する。
(2) After the surface of the total weight part of the magnetic powder is surface-treated with a silane-based organometallic compound, the surrounding area is further surface-treated with a titanate-based organometallic compound.

(3)磁性粉末全重量部の表面にシラン系有機金属化合
物で表面処理した後、樹脂と混練する直前、あるいは混
線中にチタネート系有機金属化合物を注入する方法であ
る。さらに表面改質剤の比率は、該当する異方性磁性粉
末100重M部に対しそれぞれ0.01〜5.00Wf
fi部とすることを特徴とするものである。
(3) After surface-treating the surface of the total weight part of the magnetic powder with a silane-based organometallic compound, the titanate-based organometallic compound is injected immediately before kneading with the resin or during mixing. Furthermore, the ratio of the surface modifier is 0.01 to 5.00 Wf per 100 parts by weight of the corresponding anisotropic magnetic powder.
It is characterized in that it is an fi section.

本発明者等は、異方性磁性粉末の表面改質剤について秤
々検討した結果、シラン系有機金属化合物で表面処理し
たNd −Fe −B系の異方性磁性粉末は樹脂との親
和性に優れ、チタネート系有機金属化合物で表面処理し
た異方性磁性粉末は、樹脂との混練を円滑に進める他、
成形金型内への流れを改善し磁場に対する配向性を高め
る加工に優れていることを見出した。そしてこれらの表
面改質剤を上記3つの方法で活用することによって、双
方の具備している特徴を兼ね備えた異方性磁性粉末が得
られることを見出した。
As a result of extensive studies on surface modifiers for anisotropic magnetic powder, the present inventors found that Nd-Fe-B-based anisotropic magnetic powder surface-treated with a silane-based organometallic compound has good affinity with resin. The anisotropic magnetic powder, which has been surface-treated with a titanate-based organometallic compound, facilitates smooth kneading with resin.
It has been found that this material is excellent in processing that improves the flow into the mold and enhances the orientation with respect to the magnetic field. We have also discovered that by utilizing these surface modifiers in the three methods described above, it is possible to obtain an anisotropic magnetic powder that has the characteristics of both.

前記複合添加により顕著な効果が得られる理由はシラン
系有機金属化合物は、化学結合型に属し、1分子内に無
機物に対し反応性をもつ親水性官能機と、有機物に対し
て反応性に富む疎水性官能機を持つか、あるいは無機物
に対してのみ反応性を持つ部分から成る性質を具備して
いる。一方、チタネート系有機金属化合物は一般的に物
理的結合型に属し無機物に対して反応性に富む反面、有
機物に対しては物理的に結合している。従って、チタネ
ート系有機金属化合物で表面処理した磁性粉末は、樹脂
との結合力が弱く、混線時の回転力を小さくする他、成
形時の流動性に富む。
The reason why a remarkable effect can be obtained by the above-mentioned composite addition is that silane-based organometallic compounds belong to the chemically bonded type, and each molecule contains a hydrophilic functional group that is reactive towards inorganic substances, and a hydrophilic functional group that is highly reactive towards organic substances. It has the property of having a hydrophobic functional group or consisting of a part that is reactive only to inorganic substances. On the other hand, titanate-based organometallic compounds generally belong to the physically bonded type and are highly reactive with inorganic substances, but are physically bonded with organic substances. Therefore, magnetic powder whose surface has been treated with a titanate-based organometallic compound has a weak bonding force with the resin, reduces the rotational force during cross-wire, and has high fluidity during molding.

ここでいう無機物とは磁性粉末を指し、有機物とは、ボ
ンド磁石用樹脂に用いる工、ボキシ、ポリウレタン等の
熱硬化性樹脂、あるいはポリエチレン、塩化ビニル、ポ
リアミド等の熱可塑性樹脂を示す。
The term "inorganic substance" as used herein refers to magnetic powder, and the term "organic substance" refers to thermosetting resins such as polyurethane, boxy, and polyurethane used in resins for bonded magnets, or thermoplastic resins such as polyethylene, vinyl chloride, and polyamide.

本発明における異方性磁性粉末と、表面改質剤が相互作
用により、無機物側である個々の異方性磁性粉末表面と
反応し薄い膜を形成する。シラン系有機化合物は更に樹
脂との親和力を増し、チタネー!・系有機金属化合物は
、流動性を向上させる効果を引き出す。
The anisotropic magnetic powder in the present invention and the surface modifier interact with each other to form a thin film by reacting with the surface of each anisotropic magnetic powder on the inorganic side. The silane-based organic compound further increases its affinity with resin, making it Titanium! - Organometallic compounds bring out the effect of improving fluidity.

シラン系有機金属化合物としては、γ−クロロプロピル
トリメトキシシラン、ビニルトリクロルシラン、ビニル
トリエトキシシラン、ビニルトリメトキシシラン、ビニ
ル・トリス(β−メトキシエトキシ)シラン、γ−メタ
クリロキシプロピルトリメ!・キシシラン、β−(3,
4−エポキシシクロヘキシル)■デルトリメトキシシラ
ン、γ−メルカブリプロビルトリメ1〜キシシラン、γ
−アミノプロピルトリエトキシシラン、N−β−(アミ
ノエチル)−γ−アミノプロピルトリメトキシシラン、
γ−ニレイドプロピルトリエトキシシラン。
Examples of silane-based organometallic compounds include γ-chloropropyltrimethoxysilane, vinyltrichlorosilane, vinyltriethoxysilane, vinyltrimethoxysilane, vinyl tris(β-methoxyethoxy)silane, γ-methacryloxypropyltrimethoxysilane, and γ-methacryloxypropyltrimethoxysilane.・Xysilane, β-(3,
4-Epoxycyclohexyl) ■deltrimethoxysilane, γ-mercabriprovir trime 1-xysilane, γ
-aminopropyltriethoxysilane, N-β-(aminoethyl)-γ-aminopropyltrimethoxysilane,
γ-Nyreidopropyltriethoxysilane.

N−β(アミノエチル)γ−アミノプロピルメチルジメ
トキシシラン等が使用できる。
N-β(aminoethyl)γ-aminopropylmethyldimethoxysilane and the like can be used.

チタネート系有機金属化合物としては、イソプビル・ト
リイソステアロイルチタネート、イソプロピル・トリド
デシルベンゼン・スルホニル・チタネート、イソプロピ
ル・トリス(ジオクチルパイロピル・ビス(ジオキチル
ホスファイト)・チタネート、テトラオクチル・ビス(
ジトリデシルホスファイト)・チタネート、テトラ(2
゜2−ジアリルオキシメチル−1−ブチル)ビス(ジ−
トリデシル)・ホスファイト・チタネート、ビス(ジオ
クチルパイロホスフェート)・オキシアセテート・チタ
ネート、ビス(ジオクチルパイロホスフェート)エチレ
ン・チタネート等の市販品が使用できる。
Titanate-based organometallic compounds include isopubil triisostearoyl titanate, isopropyl tridodecylbenzene sulfonyl titanate, isopropyl tris(dioctylpyropyl bis(diochylphosphite) titanate, and tetraoctyl bis(dioctyl phosphite) titanate).
ditridecyl phosphite), titanate, tetra(2
゜2-Diallyloxymethyl-1-butyl)bis(di-
Commercial products such as tridecyl) phosphite titanate, bis(dioctylpyrophosphate) oxyacetate titanate, and bis(dioctylpyrophosphate) ethylene titanate can be used.

また、シラン系有機金属化合物とチタネート系有機金属
化合物の複合添加間は、異方性磁性粉末の粒度分布、形
状等によって若干変動させる必要がある。
Further, the amount of combined addition of the silane-based organometallic compound and the titanate-based organometallic compound must be slightly varied depending on the particle size distribution, shape, etc. of the anisotropic magnetic powder.

磁性粉末を各々の表面改質剤で処理した後混合する場合
(特許請求の範囲第2項)、磁性粉末全重量のうち30
%以上をチタネート系有機金属化合物でコーティングす
ると混線、成形時の流動性は改善されるものの、コンパ
ウンド作成時に磁性粉末の脱落は著しくなる。
When the magnetic powder is mixed after being treated with each surface modifier (Claim 2), 30% of the total weight of the magnetic powder
If more than % is coated with a titanate-based organometallic compound, crosstalk and fluidity during molding will be improved, but the magnetic powder will significantly fall off during compound creation.

シラン系イjItM金属化合物の添加量は、該当する異
方性磁性粉末100重石部に対し0.01重品部以上で
樹脂との親和性改善の効果が認められ、5.00重量部
以上では最終製品である異方性ボンド磁石の磁気特性を
低下させる。チタネート系有機金属化合物の添加mは該
当する異方性磁性粉末100重聞部間対し0.01重量
部以上で流5)J性向上の効果が認められるものの5.
00重石部以上では、混練後のコンパウンド作製時に磁
性粉末脱落あるいは成形体の脆弱につながる。
The effect of improving the affinity with the resin is recognized when the amount of the silane-based metal compound added is 0.01 parts by weight or more per 100 parts by weight of the corresponding anisotropic magnetic powder, and when it is 5.00 parts by weight or more, It reduces the magnetic properties of the final product, the anisotropic bonded magnet. The addition of the titanate-based organometallic compound is 0.01 part by weight or more per 100 parts of the corresponding anisotropic magnetic powder.
If the weight exceeds 0.00 weight parts, the magnetic powder may fall off or the compact may become brittle during compound production after kneading.

[実施例] (実施例1) Nd−Fe−B系の超急冷薄片に温間加工を施して異方
性を付与した′バルク状の磁石をディスクミルで粒径5
00μm以下に粉砕し、ボンド磁石用の原料に供した。
[Example] (Example 1) A bulk magnet made by warm-processing an ultra-quenched Nd-Fe-B thin piece to give it anisotropy was milled to a particle size of 5 using a disk mill.
It was ground to 00 μm or less and used as a raw material for bonded magnets.

所定の重aに秤量した異方性磁性粉末100重用部に対
して一定量のシラン系右I幾金属化合物あるいはチタネ
ート系有機金属化合物と21r部のエタノール溶液を投
入し、ヘンシェルミキサーで1分間混合した。次いで、
この磁性粉末をアルゴン雰囲気中で80℃で2時間乾燥
し、水分を除去し表面処理した異方性磁粉を得た。なお
、シラン系有機金属化合物としては、γ−アミノプロピ
ルトリエトキシシランを使用し、チタネート系有機金属
化合物としてはアルコラード系を使用した。なお、混線
条件としては上記の処理により得られた異方性磁性粉末
を92wt%、ステアリン酸アルマイトを1,5wt%
、ナイロン12を6.5wt%とし、なおかつ全容積が
76ccとなるよう秤量。
To 100 parts by weight of anisotropic magnetic powder weighed to a predetermined weight a, a certain amount of a silane-based I metal compound or a titanate-based organometallic compound and 21 parts of an ethanol solution were added, and mixed for 1 minute with a Henschel mixer. did. Then,
This magnetic powder was dried at 80° C. for 2 hours in an argon atmosphere to remove moisture and obtain surface-treated anisotropic magnetic powder. Note that γ-aminopropyltriethoxysilane was used as the silane-based organometallic compound, and Alcolade-based was used as the titanate-based organometallic compound. The crosstalk conditions were as follows: 92 wt% of the anisotropic magnetic powder obtained by the above treatment, and 1.5 wt% of stearic acid alumite.
, 6.5 wt% of nylon 12, and weighed so that the total volume was 76 cc.

混合した。Mixed.

混練装置としては容積100ccのラボプラストミルを
使用し、回転数50ppm 、設定温度180℃で行っ
た。ベレットあるいはコンパウンドの質的比較を明確に
するため以下の定義を設け、それぞれの実験で記録し評
価の材料とした。
A Laboplast Mill with a capacity of 100 cc was used as a kneading device, and the kneading was carried out at a rotation speed of 50 ppm and a set temperature of 180°C. In order to clarify the qualitative comparison of berets or compounds, the following definitions were established, recorded in each experiment, and used as materials for evaluation.

まず、混線のしやすさを比較するための混練トルクをT
 or20K G −cmと決め、混線開始から20分
後の回転トルクで読み取った。混線時の摩擦による発熱
温度上昇を△T (℃)と決め、設定温度180℃から
の差とすることにした。更に樹脂との親和性を示り指標
としてペレット粉砕後に樹脂から脱落した磁粉を32メ
ツシユのふるいで回収し、投入量に対づる比率で示す。
First, we set the kneading torque to T to compare the ease of cross-mixing.
Or20K G-cm was determined, and the rotational torque was read 20 minutes after the start of crosstalk. The heat generation temperature rise due to friction during crosstalk was determined to be △T (°C), and the difference from the set temperature of 180°C was decided. Furthermore, as an indicator to show the affinity with the resin, the magnetic powder that fell off from the resin after pellet crushing was collected through a 32-mesh sieve and expressed as a ratio to the input amount.

脱落磁粉Dp  (%)。Fallen magnetic powder Dp (%).

流動性を示tMI値<Q /10 m1n)で比較する
ことにした。以上の測定を紅だコンパウンドを実際に射
出成形し、密度測定、磁気測定、硬度測定を行った。
The fluidity was compared based on the tMI value <Q/10 m1n). The above measurements were carried out by actually injection molding the red compound, and density, magnetism and hardness measurements were performed.

(1)異方性磁性粉末に対しシランあるいはチタネート
系有機金属化合物で表面処理した時の混線状態と諸特性
を第1表に示す。この結果、シラン系有機金属化合物を
使用した場合■、■混線状態は改善されるが、チタネー
ト系に比較し流動性が若干小さい伯、保磁力が低く、配
向が十分でないことが分かる。一方、チタネート系の場
合■■。
(1) Table 1 shows the crosstalk state and various properties when anisotropic magnetic powder is surface-treated with silane or a titanate-based organometallic compound. As a result, it can be seen that when a silane-based organometallic compound is used, the crosstalk conditions (1) and (2) are improved, but the fluidity is slightly lower than that of the titanate-based compound, the coercive force is low, and the orientation is insufficient. On the other hand, in the case of titanate type ■■.

Tor20.△T、Ml値には著しい効果が認められる
が、Dpが極めて多い。従って、密度、硬度ともに低下
する。いずれの表面改質剤とも量が多くなると硬度低下
につながる。
Tor20. Although significant effects are observed on ΔT and Ml values, Dp is extremely large. Therefore, both density and hardness decrease. A large amount of any surface modifier leads to a decrease in hardness.

(2)全磁粉量をシラン系あるいはチタネート系有機金
属化合物で表面処理する割合を3owt%、対70wt
%、 90wt%対10wt%とし、各々表面処理後混
合して混練した。それぞれの磁粉量に対して配合する表
面処理剤の添加量を変化させた結果を第2表に示す。こ
の結果、表面処理剤を単独で使用するより、複合処理し
た方が優れることが分かる。
(2) The ratio of surface treatment of the total amount of magnetic powder with silane-based or titanate-based organometallic compound is 3wt%, compared to 70wt.
%, 90 wt % to 10 wt %, and after each surface treatment, they were mixed and kneaded. Table 2 shows the results of varying the amount of surface treatment agent added to each amount of magnetic powder. The results show that combined treatment is better than using a single surface treatment agent.

また、全磁粉量に対し、シラン系有機金属化合物で処理
する量を増加させた方が、混線状態、諸特性ともに優れ
る。
In addition, when the amount treated with the silane-based organometallic compound is increased relative to the total amount of magnetic particles, both the crosstalk state and various characteristics are better.

(3)磁粉表面を最初にシラン系有機金属化合物でコー
ティングした後、再度その磁粉にチタネート系有機金属
化合物で表面処理、混練した側を第3表に示す。この場
合でも複合添加した効果が現れた。
(3) Table 3 shows the side in which the magnetic powder surface was first coated with a silane-based organometallic compound, and then the magnetic powder was again surface-treated and kneaded with a titanate-based organometallic compound. Even in this case, the effect of the combined addition appeared.

しかし、両表面改質剤のうち一方を多量に添加しすぎる
と脱落磁粉の増加、あるいは硬度に悪影響を及ぼす。
However, if one of the two surface modifiers is added in too large a quantity, the amount of fallen magnetic particles will increase or the hardness will be adversely affected.

(4)シラン系有機金属化合物で表面処理した後、混練
開始直後にスポイトで所定量のチタネート系有機金属化
合物を注入した結果を第4表に示す。
(4) After surface treatment with a silane-based organometallic compound, a predetermined amount of a titanate-based organometallic compound was injected with a dropper immediately after the start of kneading. Table 4 shows the results.

実験3とほぼ同様の結果を得た。Almost the same results as Experiment 3 were obtained.

(以下、余白) (実施例2) 磁粉量を93wt%とし、実施例1中の実験3.実験番
号(14)と同様の表面処理を施して、射出形成時、無
磁場、  2KOa、  4KOe、  6KOe、 
 7.5KOeの各磁場中で成形した際の磁気特性を第
1図に示す。なお、比較のためにシラン系有機金属化合
物のみで同様の成形を行った結果も同図中に示した。こ
の様に両表面改質剤を複合して使用することによって低
磁場での配向も改善できる。
(Hereinafter, blank space) (Example 2) The amount of magnetic powder was 93 wt%, and Experiment 3 in Example 1. The same surface treatment as in experiment number (14) was applied, and during injection molding, no magnetic field, 2KOa, 4KOe, 6KOe,
FIG. 1 shows the magnetic properties when molded in each magnetic field of 7.5 KOe. For comparison, the same figure also shows the results of similar molding using only a silane-based organometallic compound. By using both surface modifiers in combination in this way, orientation in a low magnetic field can also be improved.

(実施例3) 実施例2で示した複合表面方法の下でφ8−10極の積
置方性ステッピングモータ用の[」−夕を2KOe(永
久磁石製)の磁場中で射出成形後、表面磁束を測定した
結果を第2図に示す。同図中に同様の射出成形方法で成
形したフェライトボンドと81−co  (2/17系
)ボンド磁石をのせた。この結果本弁明による複合表面
処理法で作成したボンド磁石の表面磁束は2500Gの
高特性を達成した。
(Example 3) Under the composite surface method shown in Example 2, after injection molding in a 2KOe (permanent magnet) magnetic field, a Figure 2 shows the results of magnetic flux measurements. In the figure, a ferrite bond molded by the same injection molding method and an 81-co (2/17 series) bond magnet are placed. As a result, the surface magnetic flux of the bonded magnet produced by the composite surface treatment method according to the present invention achieved a high characteristic of 2500G.

[発明の効果1 以上の如く本発明によれば、シラン系有機金属化合物と
チタネート系有機金属化合物で複合表面処理することに
より、磁気特性成形性、及び機械的強度に優れた異方性
ボンド磁石用磁性粉末を容易かつ安定に得ることができ
る。
[Effect of the invention 1 As described above, according to the present invention, an anisotropic bonded magnet with excellent magnetic properties and formability and mechanical strength can be obtained by performing a composite surface treatment with a silane-based organometallic compound and a titanate-based organometallic compound. Magnetic powder for use can be easily and stably obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る一実施例である、磁気特性と11
場強度との関係を比較例との対比で示した図。第2図は
本発明の一実施例により得られるステッピングモータ用
磁石の表面磁束を従来のフェライト系及び希土類コバル
ト系ボンド磁石との比較で示した図である。
FIG. 1 shows an example of the magnetic characteristics and 11 according to the present invention.
A diagram showing the relationship with field strength in comparison with a comparative example. FIG. 2 is a diagram showing the surface magnetic flux of a stepping motor magnet obtained according to an embodiment of the present invention in comparison with conventional ferrite-based and rare earth cobalt-based bonded magnets.

Claims (4)

【特許請求の範囲】[Claims] (1)Nd−Fe−B系磁性粉末と熱可塑性もしくは熱
硬化性の有機バインダを混練後磁場中で射出成形して異
方性のボンド磁石を製造する方法において、予め前記磁
性粉末に対しシラン系有機金属化合物とチタネート系有
機金属化合物を表面に複合的にコーティングすることを
特徴とする異方性Nd−Fe−B系ボンド磁石用磁性粉
末の表面処理方法。
(1) In a method of manufacturing an anisotropic bonded magnet by kneading Nd-Fe-B magnetic powder and a thermoplastic or thermosetting organic binder and then injection molding in a magnetic field, silane is applied to the magnetic powder in advance. 1. A method for surface treatment of anisotropic Nd-Fe-B bonded magnetic powder, the method comprising coating the surface of anisotropic Nd-Fe-B bonded magnetic powder in a composite manner with a titanate-based organometallic compound and a titanate-based organometallic compound.
(2)特許請求の範囲第1項記載のものにおいて、前記
磁性粉末全重量部のうち70%以上をシラン系有機金属
化合物で、残部30%未満をチタネート系有機金属化合
物の各々コーティングし、しかもそれぞれの磁性粉末1
00重量部に対しシラン系有機金属化合物0.01〜5
.00重量部,チタネート系有機金属化合物0.01〜
5.00重量部の割合で磁性粉末表面にコーティングす
ることを特徴とする異方性Nd−Fe−B系ボンド磁石
用磁性粉末の表面処理方法。
(2) In the product according to claim 1, 70% or more of the total weight of the magnetic powder is coated with a silane-based organometallic compound, and the remaining less than 30% is coated with a titanate-based organometallic compound, and Each magnetic powder 1
0.01 to 5 parts by weight of silane-based organometallic compound
.. 00 parts by weight, titanate-based organometallic compound 0.01~
A method for surface treatment of anisotropic Nd-Fe-B based magnetic powder for bonded magnets, which comprises coating the surface of the magnetic powder at a ratio of 5.00 parts by weight.
(3)特許請求の範囲第1項記載のものにおいて、磁性
粉末100重量部に対し、0.01〜5.00重量部の
シラン系有機金属化合物でコーティングした後、更にそ
の表面に5.00重量部以下のチタネート系有機金属化
合物をコーティングすることを特徴とする異方性Nd−
Fe−B系ボンド磁石用磁性粉末の表面処理方法。
(3) In the product described in claim 1, after coating 100 parts by weight of the magnetic powder with 0.01 to 5.00 parts by weight of a silane-based organometallic compound, the surface is further coated with 5.00 parts by weight. Anisotropic Nd- characterized in that it is coated with a titanate-based organometallic compound in an amount of part by weight or less.
A method for surface treatment of magnetic powder for Fe-B bonded magnets.
(4)特許請求の範囲第1項記載のものにおいて、磁性
粉末100重量部に対し、0.01〜5.00重量部の
シラン系有機金属化合物を磁性粉末表面にコーティング
した後、樹脂と混練する際、あるいは混練中に磁性粉末
100重量部に対し0.01〜5.00重量部のチタネ
ート系有機金属化合物を添加することを特徴とする異方
性Nd−Fe−B系ボンド磁石用磁性粉末の表面処理方
法。
(4) In the product described in claim 1, the surface of the magnetic powder is coated with 0.01 to 5.00 parts by weight of a silane-based organometallic compound per 100 parts by weight of the magnetic powder, and then kneaded with a resin. Magnetism for anisotropic Nd-Fe-B bonded magnets characterized by adding 0.01 to 5.00 parts by weight of a titanate-based organometallic compound to 100 parts by weight of magnetic powder during kneading or kneading. Powder surface treatment method.
JP62320308A 1987-12-18 1987-12-18 Surface treating method for magnetic powder for anisotropic nd-fe-b bond magnet Pending JPH01161803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62320308A JPH01161803A (en) 1987-12-18 1987-12-18 Surface treating method for magnetic powder for anisotropic nd-fe-b bond magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62320308A JPH01161803A (en) 1987-12-18 1987-12-18 Surface treating method for magnetic powder for anisotropic nd-fe-b bond magnet

Publications (1)

Publication Number Publication Date
JPH01161803A true JPH01161803A (en) 1989-06-26

Family

ID=18120041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62320308A Pending JPH01161803A (en) 1987-12-18 1987-12-18 Surface treating method for magnetic powder for anisotropic nd-fe-b bond magnet

Country Status (1)

Country Link
JP (1) JPH01161803A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01215907A (en) * 1988-02-24 1989-08-29 Tokin Corp Manufacture of metal sintered compact
WO1998005454A1 (en) * 1996-08-05 1998-02-12 Kawasaki Steel Corporation Iron-base powder mixture for powder metallurgy having excellent fluidity and moldability and process for preparing the same
JP2005072553A (en) * 2003-08-05 2005-03-17 Ricoh Co Ltd Magnet compound material, magnet molding, developing magnet roller, developer, process cartridge, and image forming device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01215907A (en) * 1988-02-24 1989-08-29 Tokin Corp Manufacture of metal sintered compact
WO1998005454A1 (en) * 1996-08-05 1998-02-12 Kawasaki Steel Corporation Iron-base powder mixture for powder metallurgy having excellent fluidity and moldability and process for preparing the same
US5989304A (en) * 1996-08-05 1999-11-23 Kawasaki Steel Corporation Iron-based powder composition for powder metallurgy excellent in flowability and compactibility and method
US6139600A (en) * 1996-08-05 2000-10-31 Kawasaki Steel Corporation Method of making iron-based powder composition for powder metallurgy excellent in flow ability and compactibility
JP2005072553A (en) * 2003-08-05 2005-03-17 Ricoh Co Ltd Magnet compound material, magnet molding, developing magnet roller, developer, process cartridge, and image forming device
JP4491251B2 (en) * 2003-08-05 2010-06-30 株式会社リコー Magnet compound material, magnet molding, developing magnet roller, developing device, process cartridge, and image forming apparatus

Similar Documents

Publication Publication Date Title
JP2004529508A (en) Inductive element and its manufacturing method
JPS58171802A (en) Ferromagnetic resin compound
JPH01161803A (en) Surface treating method for magnetic powder for anisotropic nd-fe-b bond magnet
JP2004111515A (en) Highly weather resistant magnet powder, resin composition for bonded magnet and bonded magnet obtained by using the resin composition
JPS62282418A (en) Manufacture of composite magnet
JP5110296B2 (en) Method for producing Sm-Fe-N-based magnetic particle powder, resin composition for bonded magnet containing Sm-Fe-N-based magnetic particle powder, and bonded magnet
JP2767244B2 (en) Method for producing composite magnet composition
JPH0440842B2 (en)
JPH0411702A (en) Manufacture of resin magnet
JPH0230564B2 (en) PURASUCHITSUKUMAGUNETSUTOSOSEIBUTSU
JPH0845719A (en) Quenched thin band for bond magnet, particles for bond magnet, bond magnet and manufacture thereof
KR940003340B1 (en) Magnetic materials
JPH01102901A (en) Surface treatment of magnetic powder for nd-fe-b-based anisotropic bonded magnet
JPH0493002A (en) Manufacture of bond magnet molding material
WO2023120184A1 (en) Resin composition for bonded magnets and bonded magnets using same
JPH0464202A (en) Bonded magnet and manufacture thereof
JPH03192703A (en) Rare-earth alloy powder for bonding magnet and bonded magnet
JPH01239901A (en) Rare-earth magnet and its manufacture
JPH0450725B2 (en)
JP3380870B2 (en) Rare earth magnet manufacturing method
JPH01165103A (en) Plastic magnet material superior in mechanical strength and magnetic characteristics
JPH03288405A (en) Bonded-magnet raw material and manufacture thereof
JPH01111305A (en) Plastic magnet composition
JPH06302418A (en) Bond-type permanent magnet and its manufacture
JPH0669010A (en) Manufacture method of r-t-m-n based bonded magnet