JP2010133021A - Particle for thermal spraying - Google Patents

Particle for thermal spraying Download PDF

Info

Publication number
JP2010133021A
JP2010133021A JP2009250600A JP2009250600A JP2010133021A JP 2010133021 A JP2010133021 A JP 2010133021A JP 2009250600 A JP2009250600 A JP 2009250600A JP 2009250600 A JP2009250600 A JP 2009250600A JP 2010133021 A JP2010133021 A JP 2010133021A
Authority
JP
Japan
Prior art keywords
thermal spraying
particles
particle
thermal
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009250600A
Other languages
Japanese (ja)
Inventor
Tomohito Ishikawa
智仁 石川
Koji Nakajima
浩二 中島
Yuta Shimizu
雄太 清水
Katsuji Motoe
克次 本江
Takanori Igarashi
貴教 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topy Industries Ltd
Original Assignee
Topy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topy Industries Ltd filed Critical Topy Industries Ltd
Priority to JP2009250600A priority Critical patent/JP2010133021A/en
Publication of JP2010133021A publication Critical patent/JP2010133021A/en
Pending legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Powder Metallurgy (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metal particle for thermal spraying which is not oxidized during thermal spraying, and further, can be easily and inexpensively produced. <P>SOLUTION: The particle for thermal spraying is obtained by providing the surface of a mother particle composed of a metal with a covering layer formed by a surface treatment agent. Suitably, the covering layer covers the whole of the surface of the metal particle, and further, it is suitable that, until immediately before the collision against the surface of the base material as a target, at least a part of the covering layer is held in a state of being left on the surface of the metal particle so as to prevent the oxidation of the metal particle. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は溶射用粒子、特に溶射用金属粒子の溶射過程における酸化抑制に関する。   The present invention relates to oxidation suppression in a thermal spraying process of thermal spray particles, particularly thermal spray metal particles.

金属被膜を形成する方法の一つに溶射があり、溶射用の金属粉末は、例えばプラズマフレームや燃焼フレームなどに導入されて熱及び運動エネルギーを与えられ、ターゲットである基材表面に向けて噴出される。
しかしながら、大気中で溶射した場合、溶射された金属粉末は高温に晒されて酸化を受け、溶射した金属粉末の特性が溶射被膜において十分発揮されないことがあった。また、強度や耐食性、耐摩耗性など、様々な目的に応じた合金組成が開発されているが、酸化の受けやすさは合金を構成する金属元素ごとに異なるため、得られた溶射被膜の合金組成が溶射した合金粒子とは異なってしまい、所望の性質が得られないことがあった。特に、酸素と結合しやすい易酸化性の金属元素を含む場合や、粒径が小さな金属粉末である場合には、酸化の影響を受けやすい。
Thermal spraying is one of the methods for forming a metal coating, and the metal powder for thermal spraying is introduced into, for example, a plasma flame or a combustion flame to give heat and kinetic energy, and sprayed toward the surface of the target substrate. Is done.
However, when sprayed in the atmosphere, the sprayed metal powder is exposed to high temperature and undergoes oxidation, and the characteristics of the sprayed metal powder may not be sufficiently exhibited in the sprayed coating. In addition, alloy compositions have been developed for various purposes such as strength, corrosion resistance, and wear resistance, but the susceptibility to oxidation varies depending on the metal elements that make up the alloy, so the resulting thermal spray coating alloy The composition is different from the thermally sprayed alloy particles, and desired properties may not be obtained. In particular, when an easily oxidizable metal element that easily binds to oxygen is included, or when the metal powder has a small particle size, it is susceptible to oxidation.

特許文献1には、ガスタービン翼等において耐食性溶射被膜形成に用いられるMCrAlY粉末(MはFe,Ni,Coの1種以上)の表面を、Pt、Re、Ta、又はNbなどの耐高温酸化性金属で被覆することにより、溶射粉末の耐高温酸化性が改善されることが記載されている。
しかしながら、耐高温酸化性金属は非常に高価であり、また、その被覆はメッキ法やPVD法などで行わなければならず、何れも工程が煩雑で、メッキ法では廃液の問題もある。
In Patent Document 1, the surface of an MCrAlY powder (M is one or more of Fe, Ni, Co) used for forming a corrosion-resistant sprayed coating in a gas turbine blade or the like is subjected to high-temperature oxidation resistance such as Pt, Re, Ta, or Nb. It is described that the high-temperature oxidation resistance of the sprayed powder is improved by coating with a reactive metal.
However, the high temperature oxidation resistant metal is very expensive, and the coating must be performed by a plating method, a PVD method, or the like. In any case, the process is complicated, and the plating method has a problem of waste liquid.

特許第3043745号Patent 3043745

本発明は前記背景技術に鑑みなされたものであり、その目的は、溶射過程で酸化しにくく、しかも簡便で安価に製造可能な溶射用金属粒子を提供することにある。   The present invention has been made in view of the background art described above, and an object of the present invention is to provide metal particles for thermal spraying that are difficult to oxidize during the thermal spraying process and that can be easily and inexpensively manufactured.

本発明者らが鋭意検討を行った結果、溶射用の金属粒子を母粒子とし、その表面を予め表面処理剤で処理して被覆層を形成しておくことにより、溶射過程で高温の酸化雰囲気に晒されてもコアの母粒子が酸化されず、良好な金属溶射被膜が得られることを見出し、本発明を完成するに至った。   As a result of intensive studies by the present inventors, the metal particles for thermal spraying are used as mother particles, and the surface is treated with a surface treatment agent in advance to form a coating layer, whereby a high-temperature oxidizing atmosphere is formed during the thermal spraying process It has been found that the core mother particles are not oxidized even when exposed to water and a good metal spray coating can be obtained, and the present invention has been completed.

すなわち、本発明にかかる溶射用粒子は、金属からなる母粒子の表面に、表面処理剤によって形成された被覆層を有することを特徴とする。
本発明の溶射用粒子において、被覆層が母粒子表面全体を被覆していることが好適である。
また、ターゲットである基材表面に衝突する直前まで、被覆層の少なくとも一部が母粒子表面に残存した状態で維持されて金属母粒子の酸化を防止することが好適である。
また、母粒子に対する表面処理剤量が0.1〜10質量%であることが好適である。
また、母粒子が△Txが30K以上の金属ガラスであることが好適である。
また、母粒子の金属が大気中溶射で酸化する反応性金属元素を含有することが好適である。
That is, the thermal spraying particle according to the present invention is characterized in that it has a coating layer formed of a surface treatment agent on the surface of a base particle made of metal.
In the thermal spraying particle of the present invention, it is preferable that the coating layer covers the entire surface of the base particle.
In addition, it is preferable that at least a part of the coating layer remains on the surface of the base particle to prevent oxidation of the metal base particle until just before the surface of the base material that is the target collides.
Moreover, it is suitable that the surface treating agent amount with respect to the mother particles is 0.1 to 10% by mass.
Moreover, it is preferable that the mother particle is a metallic glass having a ΔTx of 30K or more.
Further, it is preferable that the metal of the mother particle contains a reactive metal element that is oxidized by thermal spraying in the atmosphere.

また、表面処理剤が母粒子との反応性を有する反応性有機表面処理剤であることが好適である。
また、反応性有機表面処理剤が、Si−H基を含有する反応性シリコーン化合物であることが好適である。
また、反応性有機表面処理剤が、カップリング剤であることが好適であり、さらにはSi系、Ti系、Al系、又はZr系カップリング剤であることが好適である。
また、表面処理剤が金属粒子との反応性を持たない非反応性表面処理剤であることもできる。
また、表面処理剤がケイ酸ナトリウムであることが好適である。
Moreover, it is suitable that the surface treatment agent is a reactive organic surface treatment agent having reactivity with the mother particles.
The reactive organic surface treatment agent is preferably a reactive silicone compound containing a Si—H group.
The reactive organic surface treatment agent is preferably a coupling agent, and more preferably a Si-based, Ti-based, Al-based, or Zr-based coupling agent.
The surface treatment agent can also be a non-reactive surface treatment agent that does not have reactivity with metal particles.
In addition, it is preferable that the surface treatment agent is sodium silicate.

本発明にかかる溶射被膜は、前記何れかの溶射用粒子を溶射して得られたことを特徴とする。
本発明の溶射被膜において、前記溶射用粒子を大気中で溶射して得られたことが好適である。
また、溶射被膜中に残存した被覆層残渣の平均分散粒径が5μm以下であることが好適である。
また、ケイ素化合物を表面処理剤として形成された被覆層を有する溶射用粒子を溶射して得られた溶射被膜である場合、溶射被膜中に残存した被覆層残渣がSi量で4vol%以下であることが好適である。
The thermal spray coating according to the present invention is obtained by thermal spraying any one of the aforementioned thermal spraying particles.
The thermal spray coating of the present invention is preferably obtained by thermal spraying the thermal spray particles in the air.
Moreover, it is preferable that the average dispersed particle diameter of the coating layer residue remaining in the sprayed coating is 5 μm or less.
Further, in the case of a thermal spray coating obtained by thermal spraying particles for thermal spraying having a coating layer formed using a silicon compound as a surface treating agent, the coating layer residue remaining in the thermal spray coating is 4 vol% or less in terms of Si. Is preferred.

本発明の溶射用粒子は、コアである金属母粒子の表面に形成された被覆層により、溶射過程で高温の酸化フレームに晒されても母粒子の酸化が抑制されるので、母粒子を構成する金属が本来有する特性を溶射被膜においても十分に発揮させることができる。また、微細な母粒子に対しては、粉塵爆発の危険性の低減、スピッティングの防止などにも寄与する。また、本発明の被覆層は、表面処理剤により母粒子表面に簡便に形成可能である。また、被覆層にセラミックなどの子粒子を担持させることにより、溶射被膜の機能や性質を改良することもできる。   The particles for thermal spraying of the present invention constitute the mother particles because the coating layer formed on the surface of the metal mother particles as the core suppresses the oxidation of the mother particles even when exposed to a high-temperature oxidation frame during the thermal spraying process. The properties inherent to the metal to be applied can be sufficiently exhibited even in the sprayed coating. In addition, the fine mother particles contribute to reducing the risk of dust explosion and preventing spitting. Further, the coating layer of the present invention can be easily formed on the surface of the mother particle by a surface treatment agent. Moreover, the function and property of the thermal spray coating can be improved by supporting child particles such as ceramic on the coating layer.

本発明にかかる溶射用粒子の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the particle | grains for thermal spraying concerning this invention. 本発明にかかる溶射用粒子の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the particle | grains for thermal spraying concerning this invention. Fe43Cr16Mo161510金属ガラスガスアトマイズ粉末の(a)被覆処理前、(b)被覆処理後の電子顕微鏡写真(×500倍)である。It is an electron micrograph (x500 times) of (a) before the coating treatment and (b) after the coating treatment of the Fe 43 Cr 16 Mo 16 C 15 B 10 metal glass gas atomized powder. (a)被覆層なしのZr60Al15Ni7.5Co2.5Cu15粉末(38〜53μm)、(b)被覆層ありのZr60Al15Ni7.5Co2.5Cu15粉末(38〜53μm)をそれぞれ溶射して得られた溶射被膜のX線回折結果である。(A) Zr 60 Al 15 Ni 7.5 Co 2.5 Cu 15 powder (38 to 53 μm) without coating layer, (b) Zr 60 Al 15 Ni 7.5 Co 2.5 Cu 15 powder with coating layer It is an X-ray-diffraction result of the sprayed coating obtained by spraying (38-53 micrometers), respectively.

(a)被覆層なしのCu50Zr40Al10金属ガラス粉末(25〜53μm)、(b)被覆層ありのCu50Zr40Al10金属ガラス粉末(25〜53μm)をそれぞれ溶射して得られた溶射被膜のX線回折の結果である。(A) Cu 50 Zr 40 Al 10 metal glass powder (25 to 53 μm) without coating layer, (b) Cu 50 Zr 40 Al 10 metal glass powder (25 to 53 μm) with coating layer, respectively It is the result of the X-ray diffraction of the sprayed coating. 母粒子に対して、(a)0.5質量%、(b)1質量%の表面処理剤をそれぞれ被覆処理した溶射用粒子から得られた溶射被膜の、AES分析によるSi及びOの分布を示す図である。The distribution of Si and O by the AES analysis of the thermal spray coating obtained from the thermal spray particles coated with (a) 0.5% by mass and (b) 1% by mass of the surface treatment agent with respect to the mother particles. FIG. 母粒子に対して、3質量%の表面処理剤を被覆処理した溶射用粒子から得られた溶射被膜のSEM写真及びEDX分析によるSi分布を示す図である。It is a figure which shows Si distribution by the SEM photograph and EDX analysis of the thermal spray coating obtained from the particle | grain for thermal spraying which coat | covered 3 mass% surface treating agent with respect to the mother particle. 母粒子表面の被覆層(表面処理剤:メチルハイドロジェンポリシロキサン)に子粒子(アルミナ微粉末)が担持された溶射用粒子の(a)外観、及び(b)断面のSEM写真(2000倍)である。(A) Appearance and (b) Cross-sectional SEM photograph (2000 times) of particles for thermal spraying in which child particles (alumina fine powder) are supported on a coating layer (surface treatment agent: methyl hydrogen polysiloxane) on the surface of the mother particles It is. 子粒子(アルミナ微粉末)担持溶射粒子から得られた溶射被膜の断面SEM写真(500倍)、ならびにEPMA分析によるAlの分布を示す図である。It is a figure which shows distribution of Al by the cross-sectional SEM photograph (500 times) of the thermal spray coating obtained from the child particle (alumina fine powder) carrying thermal spray particle, and EPMA analysis.

母粒子表面の被覆層(表面処理剤:メチルハイドロジェンポリシロキサン)に子粒子(低軟化点ガラス微粉末)が担持された溶射用粒子から得られた溶射被膜断面の光学顕微鏡写真である。3 is an optical micrograph of a cross-section of a thermal spray coating obtained from thermal spray particles in which child particles (low softening point glass fine powder) are supported on a coating layer (surface treatment agent: methyl hydrogen polysiloxane) on the surface of a mother particle. 母粒子表面の被覆層(表面処理剤:メチルハイドロジェンポリシロキサン)に子粒子(低軟化点ガラス微粉末)が担持された溶射用粒子から得られた溶射被膜断面のEPMA分析によるTi及びBiの分布を示す図である。Ti and Bi by EPMA analysis of the cross section of the thermal spray coating obtained from the thermal spray particles obtained by supporting the child particles (low softening point glass fine powder) on the coating layer (surface treatment agent: methyl hydrogen polysiloxane) on the surface of the mother particles It is a figure which shows distribution. 母粒子表面の被覆層(表面処理剤:水ガラス+ステアリン酸)に子粒子(低軟化点ガラス微粉末)が担持された溶射用粒子の(a)外観、及び(b)断面のSEM写真(2000倍)である。(A) appearance and (b) SEM photograph of cross section of particles for thermal spraying in which child particles (low softening point glass fine powder) are supported on a coating layer (surface treatment agent: water glass + stearic acid) on the surface of the mother particles 2000 times).

本発明の溶射用粒子は、金属からなる母粒子(コア)の表面に、表面処理剤によって形成された被覆層を有している。この被覆層により、溶射フレームに導入された母粒子の酸化が抑制される。従って、被覆層は、酸化抑制の点から、金属粒子表面全体を被覆していることが好ましい。   The particles for thermal spraying of the present invention have a coating layer formed by a surface treatment agent on the surface of base particles (core) made of metal. By this coating layer, the oxidation of the mother particles introduced into the thermal spray frame is suppressed. Therefore, the coating layer preferably covers the entire surface of the metal particles from the viewpoint of suppressing oxidation.

図1は、本発明にかかる溶射用粒子の一例を模式的に示す断面図である。図1において、溶射用粒子10は、金属からなる球状の母粒子2と、その表面を被覆する被覆層4とを有している。なお、図1において被覆層4は一層であるが、必要に応じて2層以上の多層構造とすることもできる。また、図2に示すように、被覆層4は1つ以上の子粒子6を付加的に有することもできる。   FIG. 1 is a cross-sectional view schematically showing an example of thermal spray particles according to the present invention. In FIG. 1, a thermal spraying particle 10 has spherical base particles 2 made of metal and a coating layer 4 covering the surface thereof. In addition, although the coating layer 4 is one layer in FIG. 1, it can also be set as the multilayered structure of two or more layers as needed. Further, as shown in FIG. 2, the coating layer 4 can additionally include one or more child particles 6.

<母粒子>
コアとなる母粒子を構成する金属は特に制限されず、純金属、合金の何れでもよく、また、その構造も結晶、非結晶の何れでもよい。また、必要に応じて、金属と他の非金属成分との複合材料を用いることもできる。
被覆層による酸化防止効果は、コアの母粒子が溶射で酸化する反応性金属である場合に特に有用である。例えば、Zr、Mg、Ti、Alなどの可燃性金属を含む金属材料は通常反応性が高い。
<Mother particles>
The metal constituting the core particle serving as the core is not particularly limited, and may be either a pure metal or an alloy, and the structure may be either crystalline or amorphous. Moreover, the composite material of a metal and another nonmetallic component can also be used as needed.
The antioxidant effect of the coating layer is particularly useful when the core mother particle is a reactive metal that is oxidized by thermal spraying. For example, a metal material containing a combustible metal such as Zr, Mg, Ti, or Al is usually highly reactive.

また、1980年代以降、過冷却液体状態の結晶化に対する安定性が従来のアモルファス合金に比して非常に高い合金、いわゆる金属ガラスが見出されており、これまでに、様々な金属ガラス組成が報告されている。
金属ガラスは、加熱時に、結晶化前に明瞭なガラス遷移と広い過冷却液体温度領域を示すことが特徴である。
Also, since the 1980s, so-called metallic glasses have been found that have extremely high stability against crystallization in a supercooled liquid state as compared with conventional amorphous alloys. It has been reported.
Metallic glass is characterized by showing a clear glass transition and a wide supercooled liquid temperature region before crystallization when heated.

すなわち、金属ガラスをDSC(示差走査熱量計)を用いてその熱的挙動を調べると、温度上昇にともない、ガラス転移温度(Tg)を開始点としてブロードな広い吸熱温度領域が現れ、結晶化開始温度(Tx)でシャープな発熱ピークに転ずる。そしてさらに加熱すると、融点(Tm)で吸熱ピークが現れる。金属ガラスの種類によって、各温度は異なる。TgとTxの間の温度領域△Tx=Tx−Tgが過冷却液体温度領域であり、△Txが10〜130Kと非常に大きいことが金属ガラスの一つの特徴である。△Txが大きい程、結晶化に対する過冷却液体状態の安定性が高いことを意味する。従来のアモルファス合金では、このような熱的挙動は認められず、△Txはほぼ0である。   That is, when the thermal behavior of metallic glass is examined using DSC (Differential Scanning Calorimeter), as the temperature rises, a broad wide endothermic temperature region appears starting from the glass transition temperature (Tg), and crystallization starts. It turns into a sharp exothermic peak at temperature (Tx). When further heated, an endothermic peak appears at the melting point (Tm). Each temperature varies depending on the type of metallic glass. One characteristic of the metallic glass is that the temperature range ΔTx = Tx−Tg between Tg and Tx is the supercooled liquid temperature range, and ΔTx is as large as 10 to 130K. A larger ΔTx means higher stability of the supercooled liquid state against crystallization. In a conventional amorphous alloy, such thermal behavior is not recognized, and ΔTx is almost zero.

また、近年では、アモルファス相の金属ガラス粉末を溶射することによりアモルファス相の金属ガラス溶射被膜が得られることも報告されている(特開2006−21400号公報)。
本発明の母粒子として、このような金属ガラス粉末、さらにはアモルファス相の金属ガラス粉末が好適に用いられる。
また、アモルファス相の溶射被膜を得ようとする場合には、△Txが30K以上である金属ガラスを用いることが好ましい。
In recent years, it has also been reported that an amorphous phase metallic glass spray coating can be obtained by thermal spraying an amorphous phase metallic glass powder (Japanese Patent Laid-Open No. 2006-21400).
As the base particles of the present invention, such a metal glass powder and further an amorphous phase metal glass powder are preferably used.
Moreover, when it is going to obtain the thermal spray coating of an amorphous phase, it is preferable to use the metal glass whose (DELTA) Tx is 30K or more.

母粒子の形状は、通常溶射に使用されるものであれば特に制限されず、例えば、板状、チップ状、粒状、粉体状、球状などが挙げられるが、流動性の点から好ましくは球状である。ここでいう球状とは、粒子の最短径/最長径の比率(真球率)が0.7〜1の概略球状であるものを言う。このような球状の母粒子は、公知の方法、例えばガスアトマイズ法や水アトマイズ法などにより製造される。   The shape of the mother particle is not particularly limited as long as it is usually used for thermal spraying, and examples thereof include a plate shape, a chip shape, a granular shape, a powder shape, and a spherical shape. It is. As used herein, the term “spherical” refers to a spherical shape having a ratio of the shortest diameter / longest diameter of particles (true sphere ratio) of 0.7 to 1. Such spherical mother particles are produced by a known method such as a gas atomizing method or a water atomizing method.

母粒子の粒径は、溶射可能な範囲であれば特に制限されない。一般的に、溶射粒子の粒径は1〜100μmの範囲である。
溶射被膜の緻密性を高めるために、粒径の小さい溶射粒子の使用が望まれることがある。しかし、粒径が小さくなると酸化速度が大きくなって溶射被膜特性が著しく低下する。本発明はこのような粒径の小さな母粒子に対して特に有用であり、例えば、25μm以下、さらには10μm以下の母粒子において特に有用である。
The particle size of the base particles is not particularly limited as long as it is in a range that allows thermal spraying. In general, the particle size of the spray particles is in the range of 1 to 100 μm.
In order to increase the denseness of the thermal spray coating, it may be desired to use thermal spray particles having a small particle size. However, when the particle size is reduced, the oxidation rate is increased and the thermal spray coating properties are significantly deteriorated. The present invention is particularly useful for such a mother particle having a small particle diameter, for example, particularly useful for a mother particle of 25 μm or less, and further 10 μm or less.

また、粒径が小さくなると、一般に粉塵爆発の危険性が増大する。さらに、スピッティング(溶射ガンのノズル(バレル)内部で溶融した粒子が付着凝固してしまうこと)を生じて、生産性が低下したり、バレル内部の付着凝固物が剥離して溶射被膜中に混入するという問題も生じやすい。本発明は、これらの問題の解決にも有用である。   Also, as the particle size decreases, the risk of dust explosion generally increases. Furthermore, spitting (melted particles inside the nozzle (barrel) of the spraying gun adheres and solidifies), resulting in a decrease in productivity, and the adhered solidified material inside the barrel peels off and forms in the sprayed coating. The problem of mixing easily occurs. The present invention is also useful for solving these problems.

<被覆層>
被覆層は、溶射粒子がターゲットである基材表面に到達して衝突する直前には、揮発や燃焼によって金属粒子表面から消失していてもよいが、母粒子の酸化を十分に防止するためには、基材表面に衝突するまではその少なくとも一部が金属粒子表面に維持されることが好ましい。被覆層は、溶射による母粒子の酸化を抑制した結果、被覆層自体が溶射中に酸化されて酸化物に変換されてよい。
<Coating layer>
The coating layer may disappear from the surface of the metal particles by volatilization or combustion immediately before the sprayed particles reach the target substrate surface and collide, but in order to sufficiently prevent the oxidation of the mother particles Is preferably maintained on the surface of the metal particles until it collides with the surface of the substrate. As a result of suppressing oxidation of the mother particles due to thermal spraying, the coating layer itself may be oxidized during thermal spraying and converted to oxide.

被覆層及び/又はその酸化物が残存したまま溶射用粒子が基材表面に衝突した場合、被覆層及び/又はその酸化物(以下「被覆層残渣」ということがある)は衝突時の衝撃によって破壊、変形、あるいは飛散してその少なくとも一部が溶射被膜中に含まれる場合がある。被覆層残渣が溶射被膜に悪影響を及ぼすような場合には、微細に分散される方が好ましい。例えば、溶射被膜中における被覆層残渣の分散粒径は最大でも10μm、平均で5μm以下であることが好適である。   When the particles for thermal spraying collide with the substrate surface with the coating layer and / or its oxide remaining, the coating layer and / or its oxide (hereinafter sometimes referred to as “coating layer residue”) is In some cases, the sprayed coating is broken, deformed, or scattered and at least a part thereof is included in the sprayed coating. When the coating layer residue adversely affects the sprayed coating, it is preferable that the coating layer residue be finely dispersed. For example, the dispersed particle size of the coating layer residue in the sprayed coating is preferably 10 μm at the maximum and 5 μm or less on average.

本発明の溶射用粒子は、コアの母粒子表面を表面処理剤を用いて公知の方法で被覆処理することにより得られる。
表面処理剤の使用量は、目的とする被覆層に応じて適宜設定すればよいが、母粒子表面全体を被覆するのに十分な量を用いることが好ましい。典型的には、金属粒子表面を十分に被覆するために、母粒子に対して表面処理剤を0.1質量%以上、さらには0.5質量%以上用いることが好ましい。一方、表面処理剤を過剰に用いても、それに見合った酸化抑制効果の向上は期待できず、かえって溶射被膜中に多量の被覆層残渣が残存し、被覆層残渣の種類によっては膜性能に悪影響を与えることがある。溶射被膜中における被覆層残渣を低減し、あるいは被覆層残渣を微細分散するために、母粒子に対して表面処理剤を10質量%以下、さらには5質量%以下とすることが好ましい。例えば、ケイ素化合物を表面処理剤として被覆層を形成した溶射用粒子を用いた場合、溶射被膜中の被覆層残渣を4vol%以下とすることができる。また、表面処理剤が多くなると被覆処理して得られた溶射用粒子の凝集性が強くなり、溶射装置への送給性が悪化する傾向があるので、より好ましくは母粒子に対して表面処理剤が3質量%以下である。また、被覆層の層厚としては、約1〜30nmとすることが好ましい。なお、被覆層が子粒子を担持した場合はこの限りではない。
The thermal spraying particles of the present invention can be obtained by coating the surface of the core base particles with a surface treatment agent by a known method.
The amount of the surface treatment agent used may be appropriately set according to the target coating layer, but it is preferable to use an amount sufficient to cover the entire surface of the base particles. Typically, in order to sufficiently coat the surface of the metal particles, it is preferable to use the surface treatment agent in an amount of 0.1% by mass or more, more preferably 0.5% by mass or more based on the mother particles. On the other hand, even if an excessive amount of surface treatment agent is used, an improvement in the effect of suppressing oxidation cannot be expected.In contrast, a large amount of coating layer residue remains in the sprayed coating, and depending on the type of coating layer residue, film performance is adversely affected. May give. In order to reduce the coating layer residue in the sprayed coating or to finely disperse the coating layer residue, the surface treatment agent is preferably 10% by mass or less, more preferably 5% by mass or less, based on the mother particles. For example, when the thermal spraying particles in which a coating layer is formed using a silicon compound as a surface treatment agent, the coating layer residue in the thermal spray coating can be 4 vol% or less. Further, since the cohesiveness of the thermal spray particles obtained by the coating treatment becomes stronger and the feedability to the thermal spraying device tends to deteriorate when the surface treatment agent is increased, the surface treatment is more preferably performed on the mother particles. An agent is 3 mass% or less. The layer thickness of the coating layer is preferably about 1 to 30 nm. This is not the case when the coating layer carries child particles.

表面処理剤としては、母粒子表面に酸化抑制能を有する被覆層を形成可能なものであれば制限されないが、耐湿性の点から、疎水性コーティング剤が好適に用いられる。代表的なものとしては、例えば、ジメチルポリシロキサン、メチルハイドロジェンポリシロキサン、メチルフェニルポリシロキサン、アルキル変性シリコーン、アルコキシ変性シリコーン、フッ素変性シリコーン、トリメチルシロキシケイ酸、アクリルシリコーン、シリコーンレジン等のシリコーン化合物;パーフルオロアルキル基含有エステル、パーフルオロポリエーテル、パーフルオロアルキル基含有ポリマー等のフッ素化合物;シラン系カップリング剤、チタネート系カップリング剤、アルミネート系カップリング剤、ジルコニウム系カップリング剤などのカップリング剤;流動パラフィン、スクワラン、ワセリン、ラノリン、マイクロクリスタリンワックス、ポリエチレンワックス等の炭化水素;高級アルコール;ラウリン酸亜鉛、ステアリン酸マグネシウム、ステアリン酸アルミニウム等の金属石鹸;ラウロイルリジンなどのアシルアミノ酸化合物;デキストリン脂肪酸エステルなどの有機表面処理剤が挙げられるがこれらに限定されない。また、有機表面処理剤は一種又は二種以上を用いてもよい。   The surface treatment agent is not limited as long as it can form a coating layer having an ability to inhibit oxidation on the surface of the mother particles, but a hydrophobic coating agent is preferably used from the viewpoint of moisture resistance. Typical examples include silicone compounds such as dimethylpolysiloxane, methylhydrogenpolysiloxane, methylphenylpolysiloxane, alkyl-modified silicone, alkoxy-modified silicone, fluorine-modified silicone, trimethylsiloxysilicic acid, acrylic silicone, and silicone resin. Fluorine compounds such as perfluoroalkyl group-containing esters, perfluoropolyethers, perfluoroalkyl group-containing polymers; silane coupling agents, titanate coupling agents, aluminate coupling agents, zirconium coupling agents, etc. Coupling agents; hydrocarbons such as liquid paraffin, squalane, petrolatum, lanolin, microcrystalline wax, polyethylene wax; higher alcohols; zinc laurate, Acyl amino acid compounds such as lauroyl lysine; magnesium stearate, metal soaps of aluminum stearate and organic surface treatment agent such as dextrin fatty acid esters are not limited thereto. Moreover, 1 type, or 2 or more types may be used for an organic surface treating agent.

表面処理剤により形成される被覆層は、少なくとも常温(25℃)で固体であることが取り扱い性の点で好ましい。
被覆層は、物理的吸着及び/又は化学的結合により金属母粒子表面に形成されていてよく、非反応性コーティング剤、反応性コーティング剤の何れを用いてもよいが、保存中や溶射中に被覆層が損なわれないように、反応性コーティング剤を用いて化学的結合により母粒子表面に強固に形成されていることが好ましい。
The coating layer formed of the surface treatment agent is preferably solid at least at room temperature (25 ° C.) in terms of handleability.
The coating layer may be formed on the surface of the metal mother particle by physical adsorption and / or chemical bonding, and any of a non-reactive coating agent and a reactive coating agent may be used, but during storage or thermal spraying. In order not to damage the coating layer, it is preferable that the coating layer is firmly formed on the surface of the mother particle by chemical bonding using a reactive coating agent.

このような被覆層を形成可能な有機表面処理剤としては、オルガノハイドロジェンポリシロキサンやカップリング剤などの反応性コーティング剤が挙げられる。反応性コーティング剤は、通常適当な液体(水や有機溶剤)に分散あるいは溶解し、スプレー、混合、浸漬などにより母粒子表面全体に均一に付着させ、その後、焼付け処理(加熱による縮合反応や架橋反応などによる化学的結合の形成)、メカノケミカル処理など、公知の方法によって金属粒子表面に固定化されるが、これに限定されるものではない。アモルファス相の金属ガラス粉末を母粒子とする場合は、被覆層形成における加熱は、結晶化開始温度以下で行うことが好ましい。   Examples of the organic surface treatment agent capable of forming such a coating layer include reactive coating agents such as organohydrogenpolysiloxanes and coupling agents. The reactive coating agent is usually dispersed or dissolved in an appropriate liquid (water or organic solvent) and uniformly adhered to the entire surface of the mother particle by spraying, mixing, dipping, etc., followed by baking treatment (condensation reaction or crosslinking by heating). Although it is immobilized on the surface of the metal particles by a known method such as formation of a chemical bond by reaction or the like, or mechanochemical treatment, it is not limited thereto. In the case where the amorphous phase metallic glass powder is used as the mother particle, the heating in forming the coating layer is preferably performed at a crystallization start temperature or lower.

オルガノハイドロジェンポリシロキサンとしては、メチルハイドロジェンポリシロキサン、メチルハイドロジェンポリシロキサン・ジメチルポリシロキサン共重合体、テトラメチルシクロテトラシロキサンなどが挙げられるがこれに限定されるものではない。また、ジメチルポリシロキサンやデカメチルシクロペンタシロキサンなどのオルガノポリシロキサンなどの非反応性シリコーンを併用することもできる。   Examples of the organohydrogenpolysiloxane include, but are not limited to, methylhydrogenpolysiloxane, methylhydrogenpolysiloxane / dimethylpolysiloxane copolymer, and tetramethylcyclotetrasiloxane. Further, non-reactive silicones such as organopolysiloxanes such as dimethylpolysiloxane and decamethylcyclopentasiloxane can be used in combination.

シラン系カップリング剤としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−メタクリルオキシプロピルトリメトキシシラン、N−β(アミノエチル)−γ−アミノプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジメトキシシラン、γ−クロロプロピルトリメトキシシラン等が挙げられる。   Silane coupling agents include vinyltrimethoxysilane, vinyltriethoxysilane, γ-aminopropyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-methacryloxypropyltri Examples include methoxysilane, N-β (aminoethyl) -γ-aminopropyltrimethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, and γ-chloropropyltrimethoxysilane.

チタネート系カップリング剤としては、イソプロピルステアロイルチタネート、イソプロピルトリス(ジオクチルピロホスフェート)チタネート、イソプロピルトリ(N−アミノエチル−アミノエチル)チタネート、テトラオクチルビス(ジトリデシルホスフェート)チタネート、テトラ(2,2-ジアリールオキシメチル-1-ブチル)ビス(ジトリデシルホスフェート)チタネート、ビス(ジオクチルピロホスフェート)オキシアセテートチタネート、ビス(ジオクチルピロホスフェート)エチレンチタネート等が挙げられる。   Titanate coupling agents include isopropyl stearoyl titanate, isopropyl tris (dioctyl pyrophosphate) titanate, isopropyl tri (N-aminoethyl-aminoethyl) titanate, tetraoctyl bis (ditridecyl phosphate) titanate, tetra (2,2- Examples include diaryloxymethyl-1-butyl) bis (ditridecyl phosphate) titanate, bis (dioctyl pyrophosphate) oxyacetate titanate, and bis (dioctyl pyrophosphate) ethylene titanate.

アルミネート系カップリング剤としては、アセトアルコキシアルミニウムジイソプロピレート、アルミニウムジイソプロポキシモノエチルアセトアセテート、アルミニウムトリスエチルアセトアセテート、アルミニウムトリスアセチルアセトネート等が挙げられる。   Examples of the aluminate coupling agent include acetoalkoxyaluminum diisopropylate, aluminum diisopropoxy monoethyl acetoacetate, aluminum trisethyl acetoacetate, aluminum trisacetylacetonate and the like.

ジルコニウム系カップリング剤としては、ジルコニウムテトラキスアセチルアセトネート、ジルコニウムジブトキシビスアセチルアセトネート、ジルコニウムテトラキスエチルアセトアセテート、ジルコニウムトリブトキシモノエチルアセトアセテート、ジルコニウムトリブトキシアセチルアセトネート等が挙げられる。   Examples of the zirconium coupling agent include zirconium tetrakisacetylacetonate, zirconium dibutoxybisacetylacetonate, zirconium tetrakisethylacetoacetate, zirconium tributoxymonoethylacetoacetate, zirconium tributoxyacetylacetonate, and the like.

無機表面処理剤としては、水溶性金属塩、金属アルコキシドなどが挙げられるが、メタケイ酸のナトリウム塩(NaSiO)やNaSiO、NaSi、NaSiなどの各種ケイ酸のナトリウム塩が望ましく、特に水ガラスが望ましい。
無機表面処理剤を用いて被覆層を形成するのは、公知の方法(塗着法、沈着法、加水分解法など)によって形成することが可能である。例えば、適当な液体(水や有機溶剤)に分散あるいは溶解した無機表面処理剤をスプレー、混合、浸漬などにより母粒子表面全体に均一に付着させ、その後必要に応じて焼付け処理、メカノケミカル処理など、公知の方法によって金属粒子表面に固定化する方法;無機表面処理剤溶液中に母粒子を分散させて加水分解することにより母粒子表面に金属酸化物からなる被覆層を析出させる方法などが挙げられるが、これらに制限されるものではない。
また、無機表面処理剤は一種又は二種以上を用いても良く、有機表面処理剤と複合して使用しても良い。
Examples of the inorganic surface treatment agent include water-soluble metal salts, metal alkoxides, etc., but sodium salt of metasilicic acid (Na 2 SiO 3 ), Na 4 SiO 4 , Na 2 Si 2 O 5 , Na 2 Si 4 O 9. Various sodium salts of silicic acid such as water glass are particularly desirable.
The coating layer can be formed using an inorganic surface treatment agent by a known method (coating method, deposition method, hydrolysis method, etc.). For example, an inorganic surface treatment agent dispersed or dissolved in an appropriate liquid (water or organic solvent) is uniformly adhered to the entire surface of the mother particle by spraying, mixing, or dipping, and then, if necessary, baking treatment, mechanochemical treatment, etc. , A method of immobilizing on the surface of metal particles by a known method; a method of precipitating a coating layer made of a metal oxide on the surface of the mother particles by dispersing the mother particles in an inorganic surface treating agent solution and hydrolyzing them. However, it is not limited to these.
Moreover, 1 type, 2 or more types may be used for an inorganic surface treating agent, and you may use it in combination with an organic surface treating agent.

<子粒子>
本発明においては、得られる溶射被膜の機械的、電気的、磁気的、光学的、化学的、熱的、あるいはその他の機能や性質等を向上させるために、無機物からなる子粒子を前記被覆層により担持させることができる。例えば、セラミックスは、一般に金属よりも硬度、耐熱性、耐食性などが高いので、セラミックスを子粒子として用いることで、溶射被膜にこれらの機能を付与することが可能である。
また、通常のセラミックスは融点(あるいは軟化点)が高く、金属母粒子の溶射中でも溶融又は軟化しない。このようなセラミックスを子粒子として用いた場合には、溶射被膜の緻密性を向上することができる。
<Child particles>
In the present invention, in order to improve the mechanical, electrical, magnetic, optical, chemical, thermal, or other functions and properties of the obtained sprayed coating, the child particles made of an inorganic substance are added to the coating layer. It can be supported by. For example, ceramics generally have higher hardness, heat resistance, corrosion resistance, and the like than metals, and thus these functions can be imparted to the sprayed coating by using ceramics as the child particles.
Further, ordinary ceramics have a high melting point (or softening point) and do not melt or soften even during the thermal spraying of metal mother particles. When such ceramics are used as the child particles, the denseness of the sprayed coating can be improved.

セラミックスとしては、特に制限されるものではないが、シリカ、アルミナ、ジルコニア、酸化カルシウム、マグネシア等を構成成分とする酸化物系のセラミックス、または、炭化物、ホウ化物、窒化物等を構成成分とする非酸化物系のセラミックス等が挙げられる。子粒子は、1種又は2種以上を用いることができる。   The ceramic is not particularly limited, but includes oxide-based ceramics containing silica, alumina, zirconia, calcium oxide, magnesia, or the like, or carbides, borides, nitrides, or the like. Non-oxide ceramics can be used. 1 type (s) or 2 or more types can be used for a child particle.

子粒子を含む被覆層を形成する場合、例えば、子粒子を表面処理剤に分散・混合したものを用いて母粒子を処理する方法、子粒子を母粒子と混合したものを表面処理剤で処理する方法などにより形成できるが、これらに制限されるものではない。   When forming a coating layer containing child particles, for example, a method of treating mother particles using a dispersion / mixing of child particles in a surface treatment agent, or treating a mixture of child particles with mother particles with a surface treatment agent However, it is not limited to these.

子粒子の量は、目的とする効果に応じて適宜設定されるが、好ましくは母粒子に対して0.1〜10質量%、さらには0.5〜5質量%である。子粒子が少なすぎるとその効果が十分に得られず、多すぎると被覆層で担持することができないことがある。
子粒子の形状は特に制限されないが、母粒子表面の被覆層に強固に担持できるよう、その粒径は0.1〜5μmであることが好ましい。粒径が小さすぎると子粒子が凝集しやすく、大きすぎると被覆層から脱離したり、母粒子による溶射被膜特性を損うことがある。
Although the quantity of a child particle is suitably set according to the target effect, Preferably it is 0.1-10 mass% with respect to a mother particle, Furthermore, it is 0.5-5 mass%. If the amount of the child particles is too small, the effect cannot be obtained sufficiently, and if the amount is too large, it may not be supported by the coating layer.
The shape of the child particles is not particularly limited, but the particle size is preferably 0.1 to 5 μm so that it can be firmly supported on the coating layer on the surface of the mother particles. If the particle size is too small, the child particles tend to aggregate, and if it is too large, the particles may be detached from the coating layer or the thermal spray coating characteristics of the mother particles may be impaired.

本発明の溶射用粒子は、何れの溶射方法においても用いることができる。例えば、大気圧プラズマ溶射、減圧プラズマ溶射、フレーム溶射、高速フレーム溶射(HVOF)、アーク溶射などがあるが、大気中など酸化性雰囲気中で行われる溶射において有用であり、特に高速フレーム溶射に効果的である。
以下、本発明を具体例を挙げて説明するが、本発明はこれらに限定されるものではない。
The thermal spray particles of the present invention can be used in any thermal spraying method. For example, there are atmospheric pressure plasma spraying, low pressure plasma spraying, flame spraying, high-speed flame spraying (HVOF), arc spraying, etc., but it is useful for spraying performed in an oxidizing atmosphere such as the atmosphere, and is particularly effective for high-speed flame spraying. Is.
Hereinafter, the present invention will be described with reference to specific examples, but the present invention is not limited thereto.

試験例1 被覆層を有する溶射用粒子
Fe43Cr16Mo161510の組成からなる金属ガラスのガスアトマイズ粉末(アモルファス、Tg=885K、△Tx=65K、25μm篩下)99質量部に、メチルハイドロジェンポリシロキサン(信越化学工業(株)製 KF−9901)1質量部とエタノール1質量部との混合液を添加し、サンプルミルで均一に混合した。これを、乾燥炉中、270℃で5時間焼付け処理した。その後、サンプルミルで団塊を解砕し、45μm篩下を分取して被覆層を有する溶射用粒子を得た。
Test Example 1 Metal atomized gas atomized powder (amorphous, Tg = 885K, ΔTx = 65K, 25 μm under sieve) composed of a composition of thermal spray particles Fe 43 Cr 16 Mo 16 C 15 B 10 having a coating layer , A mixed solution of 1 part by mass of methyl hydrogen polysiloxane (manufactured by Shin-Etsu Chemical Co., Ltd., KF-9901) and 1 part by mass of ethanol was added and mixed uniformly with a sample mill. This was baked in a drying oven at 270 ° C. for 5 hours. Thereafter, the nodule was crushed with a sample mill, and the particles for spraying having a coating layer were obtained by separating the sieve under 45 μm.

図3は、(a)被覆処理前、及び(b)被覆処理後の粒子のSEM写真(×500倍)である。図3に示されるように、試験例1で得られた溶射用粒子は概略球状で被覆層で表面全体が被覆され、被覆処理による形状の変化や凝集は見られなかった。
また、試験例1で得られた溶射用粒子の元素分布をオージェ電子分光分析法(AES:Auger Electron Spectroscopy)で調べた。その結果、母粒子表面の被膜層が約3nmであることが確認された。
FIG. 3 is an SEM photograph (× 500 times) of the particles before (a) coating treatment and (b) after coating treatment. As shown in FIG. 3, the particles for thermal spraying obtained in Test Example 1 were approximately spherical and the entire surface was coated with the coating layer, and no change in shape or aggregation due to the coating treatment was observed.
In addition, the element distribution of the thermal spray particles obtained in Test Example 1 was examined by Auger Electron Spectroscopy (AES). As a result, it was confirmed that the coating layer on the surface of the mother particle was about 3 nm.

試験例2 酸化抑制効果
試験例1と同様にして、Zr60Al15Ni7.5Co2.5Cu15の組成からなる金属ガラスのガスアトマイズ粉末(アモルファス、△Tx=84K)を被覆処理し、被覆層を有する溶射用粒子を得た。この溶射用粒子、ならびに、比較例として被覆処理していない金属ガラス粉末(被覆層なし)をそれぞれ用いて溶射を行った。溶射条件は、次の通りである。
Test Example 2 Oxidation Inhibitory Effect In the same manner as in Test Example 1, a metal glass gas atomized powder (amorphous, ΔTx = 84K) having a composition of Zr 60 Al 15 Ni 7.5 Co 2.5 Cu 15 was coated, Thermal spray particles having a coating layer were obtained. Thermal spraying was performed using the particles for thermal spraying and, as a comparative example, a metal glass powder not coated (without a coating layer). The thermal spraying conditions are as follows.

(溶射条件)
―――――――――――――――――――――――――――――――――――――――
溶射装置:HVOF装置(PRAXAIR−TAFA社製 JP−5000、
バレル長さ4インチ)
基材:SUS304L板(表面ブラスト処理仕上げ)
粉末搬送ガス:N
燃料:灯油2.5GPH−酸素2000SCFH
溶射距離:180mm
―――――――――――――――――――――――――――――――――――――――
(Spraying conditions)
―――――――――――――――――――――――――――――――――――――――
Thermal spray apparatus: HVOF apparatus (JP-5000, manufactured by PRAXAIR-TAFA)
Barrel length 4 inches)
Base material: SUS304L plate (surface blasted finish)
Powder carrier gas: N 2
Fuel: Kerosene 2.5GPH-Oxygen 2000SCFH
Thermal spray distance: 180mm
―――――――――――――――――――――――――――――――――――――――

図4(a)は被覆層なしのZr60Al15Ni7.5Co2.5Cu15粉末(38〜53μm)、(b)は被覆層ありのZr60Al15Ni7.5Co2.5Cu15粉末(38〜53μm)をそれぞれ溶射して得られた溶射被膜のX線回折結果である。
図4(a)のように、被覆層を持たない金属ガラス粉末では溶射被膜に酸化物のピークが認められたのに対し、図4(b)のように、被覆層を有する金属ガラス粉末から得られた溶射被膜ではこのような酸化物のピークはほとんど認められなかった。
4 (a) is Zr 60 Al 15 Ni 7.5 Co 2.5 Cu 15 powder without the coating layer (38~53μm), (b) is a coating layer of Zr 60 Al 15 Ni 7.5 Co 2 . 5 Cu 15 powder (38~53μm) is an X-ray diffraction results of the thermal sprayed coating obtained by spraying respectively.
As shown in FIG. 4 (a), an oxide peak was observed in the thermal spray coating in the metal glass powder having no coating layer, whereas from the metal glass powder having the coating layer as shown in FIG. 4 (b). In the obtained sprayed coating, such an oxide peak was hardly recognized.

また、Cu50Zr40Al10の組成からなる金属ガラスのガスアトマイズ粉末(アモルファス、△Tx=55K)についても、上記の溶射条件により溶射被膜を作成し、被覆層あり、被覆層なしの場合を同様に比較した。
図5(a)は被覆層なしのCu50Zr40Al10金属ガラス粉末(25〜53μm)、(b)は被覆層ありのCu50Zr40Al10金属ガラス粉末(25〜53μm)をそれぞれ溶射して得られた溶射被膜のX線回折の結果である。
図5からも、母粒子表面に形成された被覆層により、母粒子金属成分の酸化が抑制されていることが理解される。
このように、母粒子表面に形成された被覆層により、母粒子金属成分の酸化を抑制することができる。
In addition, for a metal atomized gas atomized powder (amorphous, ΔTx = 55K) having a composition of Cu 50 Zr 40 Al 10, a sprayed coating was prepared under the above-mentioned spraying conditions, and the same applies to the case with a coating layer and without a coating layer. Compared to.
5 (a) is Cu 50 Zr 40 Al 10 metallic glass powder without the coating layer (25~53μm), (b) is Cu 50 Zr 40 Al 10 metallic glass powder has coating layer (25~53μm) respectively spraying It is the result of the X-ray diffraction of the sprayed coating obtained by doing.
From FIG. 5 also, it is understood that the oxidation of the mother particle metal component is suppressed by the coating layer formed on the mother particle surface.
Thus, the coating layer formed on the surface of the mother particle can suppress the oxidation of the mother particle metal component.

試験例3 被覆層残渣
試験例1において、メチルハイドロジェンポリシロキサンの量を原料粉体(母粒子)に対して0.5質量%又は1質量%とした以外は同様にして、被覆層を有する溶射用粒子を製造し、試験例2と同様にして溶射を行った。
各溶射被膜の元素分布をオージェ電子分光分析法(AES:Auger Electron Spectroscopy)により調べた。図6(a)に処理剤0.5質量%、(b)に処理剤1質量%の粉末からそれぞれ得られた溶射被膜のSi及びOの分布を示す。
図6からわかるように、何れの溶射被膜においても被覆層残渣は溶射被膜中に微細に分散し、その分散平均粒子径は5μm以下であり、10μmを超える分散粒子はなかった。これらは、同図をカラーマッピングした場合にはより明確となる。
Test Example 3 Coating Layer Residue In Test Example 1, a coating layer was prepared in the same manner except that the amount of methylhydrogenpolysiloxane was 0.5% by mass or 1% by mass with respect to the raw material powder (mother particles). Thermal spray particles were produced and sprayed in the same manner as in Test Example 2.
The element distribution of each sprayed coating was examined by Auger Electron Spectroscopy (AES). FIG. 6A shows the Si and O distributions of the sprayed coating obtained from the powder of 0.5% by mass of the treatment agent and FIG.
As can be seen from FIG. 6, in any sprayed coating, the coating layer residue was finely dispersed in the sprayed coating, the dispersion average particle diameter was 5 μm or less, and there were no dispersed particles exceeding 10 μm. These become clearer when the figure is color-mapped.

また、試験例1において、メチルハイドロジェンポリシロキサンの量を原料粉体(母粒子)に対して3質量%、エタノールの量を2質量%とした以外は同様にして、被覆層を有する溶射用粒子を製造し、試験例2と同様にして溶射を行った。
FE−SEM(日本電子(株)製 JSM−7001F)及びEDX(日本電子(株)製 JED−2300)で分析した結果を図7に示す。なお、図7においてEDXによるSi分布はカラーを白黒に二値化変換したものであり、黒い部分がSiを示す。被覆層残渣は溶射被膜中に微細に分散し、その平均分散粒子径は約3.9μmであり、10μmを超える分散粒子はなかった。また、溶射被膜中に含まれる被覆層残渣はSi量として約3.6vol%であった。
In addition, in Test Example 1, the same applies except that the amount of methylhydrogenpolysiloxane was 3% by mass and the amount of ethanol was 2% by mass with respect to the raw material powder (mother particles). Particles were produced and sprayed as in Test Example 2.
The result analyzed by FE-SEM (JEOL Co., Ltd. JSM-7001F) and EDX (JEOL Co., Ltd. JED-2300) is shown in FIG. In FIG. 7, the Si distribution by EDX is obtained by binarizing the color into black and white, and the black portion indicates Si. The coating layer residue was finely dispersed in the sprayed coating, and the average dispersed particle size was about 3.9 μm, and there were no dispersed particles exceeding 10 μm. Moreover, the coating layer residue contained in the thermal spray coating was about 3.6 vol% as the amount of Si.

試験例4 表面処理剤
試験例1において、下記表1のように種々の表面処理剤と溶媒とを用いて被覆処理を行い、溶射用粒子を製造した(水ガラスの場合のみ、焼付け条件は110℃、24時間)。
表1のように、何れの表面処理剤を用いた場合でも母粒子表面全体が被覆された溶射用粒子が得られた。これら溶射用粒子から試験例2に準じて得られた溶射被膜は何れも、X線回折図において酸化物ピークのないハローパターンを示した。
なお、表面処理剤が多すぎると溶射用粒子に凝集性を生じ、溶射適性が低下する傾向があった。
Test Example 4 Surface treatment agent In Test Example 1, coating treatment was performed using various surface treatment agents and solvents as shown in Table 1 below to produce particles for thermal spraying (only in the case of water glass, the baking condition was 110). (C, 24 hours).
As shown in Table 1, thermal spray particles having the entire surface of the base particles coated were obtained when any surface treatment agent was used. All of the thermal spray coatings obtained from these thermal spray particles according to Test Example 2 exhibited a halo pattern having no oxide peak in the X-ray diffraction pattern.
In addition, when there was too much surface treating agent, there existed a tendency for a thermal spraying particle to produce aggregability and to reduce the thermal sprayability.

試験例5 爆発下限濃度
試験例2で用いたZr60Al15Co2.5Ni7.5Cu15は非常に活性なZr基金属ガラスであり、25μm篩以下の粉末の爆発下限濃度は約100g/mであった(JIS Z8818 可燃性粉塵の爆発下限濃度測定方法に従って測定)。
一方、この粉末に、試験例1と同様に被覆処理して被覆層を形成した場合、25μm篩以下の爆発下限濃度は約500g/mであった。
このように、被覆層の形成により、爆発性の懸念がほとんどないレベルにまで粉塵爆発の危険性を低下させることが可能である。
Test Example 5 Explosive Lower Limit Concentration Zr 60 Al 15 Co 2.5 Ni 7.5 Cu 15 used in Test Example 2 is a very active Zr-based metallic glass, and the lower explosive lower concentration of the powder of 25 μm or less is about 100 g. / M 3 (measured in accordance with JIS Z8818 flammable dust explosion lower limit concentration measurement method).
On the other hand, when this powder was coated in the same manner as in Test Example 1 to form a coating layer, the lower explosion limit of 25 μm or less was about 500 g / m 3 .
Thus, by forming the coating layer, it is possible to reduce the risk of dust explosion to a level where there is almost no explosive concern.

試験例6 子粒子の複合化(1)
Fe43Cr16Mo161510の組成からなる金属ガラスのガスアトマイズ粉末(アモルファス、Tg=885K、△Tx=65K、10〜25μm)95質量部に、γ−アルミナの微粉末(2〜3μm)5質量部をメカノハイブリッドミキサー(三井鉱山(株)製)で予め混合し、これにメチルハイドロジェンポリシロキサン(信越化学工業(株)製 KF−9901)1質量部とエタノール2質量部との混合液を添加し、さらに混合した。これを、乾燥炉中、270℃で5時間焼付け処理した。その後、メカノハイブリッドミキサーで団塊を解砕し、45μm篩下を分取して、さらに気流分級により10μm以下の微粉をカットして、溶射用粒子を得た。
得られた粒子の(a)外観、ならびに(b)断面のSEM写真(2000倍)を図8に示す。図8から、概略球状の母粒子表面全体がアルミナ微粒子を担持した約2〜3μm厚の被覆層で被覆されていることが確認された。
Test Example 6 Compounding of child particles (1)
Metal glass gas atomized powder (amorphous, Tg = 885K, ΔTx = 65K, 10 to 25 μm) composed of Fe 43 Cr 16 Mo 16 C 15 B 10 is added to 95 parts by mass of γ-alumina fine powder (2 to 3 μm). ) 5 parts by mass in advance with a mechano-hybrid mixer (Mitsui Mining Co., Ltd.), and 1 part by weight of methyl hydrogen polysiloxane (KF-9901 manufactured by Shin-Etsu Chemical Co., Ltd.) and 2 parts by mass of ethanol. The mixture was added and further mixed. This was baked in a drying oven at 270 ° C. for 5 hours. Thereafter, the nodules were crushed with a mechano-hybrid mixer, the bottom of the 45 μm sieve was collected, and fine particles of 10 μm or less were further cut by air classification to obtain particles for thermal spraying.
FIG. 8 shows (a) appearance of the obtained particles, and (b) cross-sectional SEM photograph (magnified 2000 times). From FIG. 8, it was confirmed that the entire surface of the substantially spherical mother particle was coated with a coating layer having a thickness of about 2 to 3 μm carrying alumina fine particles.

この溶射用粒子を用いて、試験例2と同様にして溶射被膜を得た。また、比較のために、γ−アルミナ微粉末を使用せずに溶射用粒子を調製し、同様に溶射被膜を得た。
その結果、下記表2からわかるように、子粒子を被覆層中に存在させることにより、溶射被膜の硬度を著しく高めることができた。
また、溶射被膜断面を分布電子線マイクロアナライザー(EPMA:Electron
Probe Micro Analyzer)で調べた結果、堆積した溶射粒子の境界部分(粒界)にAlが点在していた。
Using this thermal spraying particle, a thermal spray coating was obtained in the same manner as in Test Example 2. For comparison, particles for thermal spraying were prepared without using γ-alumina fine powder, and a thermal spray coating was obtained in the same manner.
As a result, as can be seen from Table 2 below, the hardness of the thermal spray coating could be remarkably increased by allowing the child particles to be present in the coating layer.
In addition, the sprayed coating cross section was analyzed with a distributed electron beam microanalyzer (EPMA: Electron).
As a result of investigation by Probe Micro Analyzer, Al was scattered at the boundary portion (grain boundary) of the deposited spray particles.

図9は子粒子ありの溶射用粒子をSUS基材に溶射して得られた溶射被膜の断面SEM写真(500倍)とAES分析結果である。これより溶射被膜中にアルミが観察され、アルミナが分散していることが示される。これは、同図をカラーマッピングした場合にはより明確となる。   FIG. 9 shows a cross-sectional SEM photograph (500 times) and an AES analysis result of a thermal spray coating obtained by thermal spraying particles for thermal spraying with child particles on a SUS substrate. As a result, aluminum was observed in the sprayed coating, indicating that alumina was dispersed. This becomes clearer when the figure is color-mapped.

試験例7 子粒子の複合化(2)
Fe76Si5.79.53.8の組成からなる金属ガラスのガスアトマイズ粉末(アモルファス、Tg=758K、△Tx=45K、10〜25μm)95質量部に、ガラス微粉末(旭硝子(株)製ASF1094、転移点733K、軟化点793K、中心粒径1.0μm)5質量部をメカノハイブリッドミキサー(三井鉱山(株)製)で予め混合し、これにメチルハイドロジェンポリシロキサン(信越化学工業(株)製 KF−9901)1質量部とエタノール2質量部との混合液を添加し、さらに混合した。これを、乾燥炉中、270℃で5時間焼付け処理した。その後、メカノハイブリッドミキサーで団塊を解砕し、45μm篩下を分取して、さらに気流分級により10μm以下の微粉をカットして、溶射用粒子を得た。
この場合にも、試験例6と同様に、概略球状の金属ガラス母粒子表面全体が被覆層で被覆され、ガラス微粒子が被覆層に保持された溶射用粒子が得られた。
Test Example 7 Compounding of child particles (2)
A metal atomized gas atomized powder (amorphous, Tg = 758K, ΔTx = 45K, 10-25 μm) having a composition of Fe 76 P 5 Si 5.7 B 9.5 C 3.8 is added to 95 parts by mass of a glass fine powder ( Asahi Glass Co., Ltd. ASF1094, transition point 733K, softening point 793K, center particle size 1.0 μm) 5 parts by mass are mixed in advance with a mechano hybrid mixer (Mitsui Mine Co., Ltd.), and methyl hydrogen polysiloxane ( A mixed solution of 1 part by weight of Shin-Etsu Chemical Co., Ltd. KF-9901) and 2 parts by weight of ethanol was added and further mixed. This was baked in a drying oven at 270 ° C. for 5 hours. Thereafter, the nodules were crushed with a mechano-hybrid mixer, the bottom of the 45 μm sieve was collected, and fine particles of 10 μm or less were further cut by air classification to obtain particles for thermal spraying.
Also in this case, as in Test Example 6, the entire spherical metal glass mother particle surface was coated with the coating layer, and particles for thermal spraying in which the glass fine particles were held in the coating layer were obtained.

また、この溶射用粒子を用いて、試験例2と同様にして溶射被膜を得た。得られた溶射被膜断面の光学顕微鏡写真を図10に示す。
得られた溶射被膜断面を分布電子線マイクロアナライザー(EPMA:Electron
Probe Micro Analyzer)で調べた結果、図11に示すように、ガラス由来のBiやTiは堆積した溶射粒子の境界部分(粒界)に広く存在していた。これは、子粒子として用いたガラス粉末が比較的低軟化点であり、溶射中に軟化したためと考えられる。これは、同図をカラーマッピングした場合にはより明確となる。
Further, a thermal spray coating was obtained in the same manner as in Test Example 2 using the thermal spray particles. FIG. 10 shows an optical micrograph of the obtained sprayed coating cross section.
The cross section of the obtained sprayed coating was analyzed with a distributed electron beam microanalyzer (EPMA: Electron).
As a result of investigation by Probe Micro Analyzer, as shown in FIG. 11, Bi and Ti derived from glass were widely present at the boundary portion (grain boundary) of the deposited spray particles. This is presumably because the glass powder used as the child particles had a relatively low softening point and softened during spraying. This becomes clearer when the figure is color-mapped.

試験例8 子粒子の複合化(3)
試験例7において、メチルハイドロジェンポリシロキサンのエタノール溶液を、水ガラス[(有)林ケミカル 水ガラス3号(成分:SiO30%、NaO10%、水60%、固形分40質量%)]10質量部とステアリン酸2質量部の混合物に代えて、焼付け温度を100℃とした以外は同様にして、溶射用粒子を製造し、この溶射用粒子を用いて、試験例2と同様にして溶射被膜を得た。
この溶射用粒子は、試験例7と同様に、概略球状の金属ガラス母粒子表面全体がガラス微粒子を担持した被覆層で被覆された溶射用粒子であった。得られた溶射用粒子の(a)外観、ならびに(b)断面のSEM写真(2000倍)を図12に示す。
Test Example 8 Compounding of child particles (3)
In Test Example 7, an ethanol solution of methyl hydrogen polysiloxane was mixed with water glass [(Yes) Hayashi Chemical Water Glass No. 3 (components: SiO 2 30%, NaO 10%, water 60%, solid content 40% by mass)] 10 Instead of the mixture of part by mass and 2 parts by mass of stearic acid, spray particles were produced in the same manner except that the baking temperature was 100 ° C., and using these spray particles, thermal spraying was performed in the same manner as in Test Example 2. A coating was obtained.
In the same manner as in Test Example 7, the particles for thermal spraying were particles for thermal spraying in which the entire surface of the substantially spherical metallic glass mother particles was coated with a coating layer supporting glass fine particles. FIG. 12 shows (a) appearance and (b) cross-sectional SEM photograph (magnified 2000 times) of the obtained thermal spraying particles.

Claims (16)

金属からなる母粒子の表面に、表面処理剤によって形成された被覆層を有することを特徴とする溶射用粒子。   A thermal spraying particle comprising a coating layer formed of a surface treatment agent on a surface of a base particle made of metal. 請求項1記載の溶射用粒子において、被覆層が母粒子表面全体を被覆していることを特徴とする溶射用粒子。   The thermal spraying particle according to claim 1, wherein the coating layer covers the entire surface of the base particle. 請求項1又は2記載の溶射用粒子において、ターゲットである基材表面に衝突する直前まで、被覆層の少なくとも一部が母粒子表面に残存した状態で維持されて金属母粒子の酸化を抑制することを特徴とする溶射用粒子。   3. The thermal spraying particle according to claim 1 or 2, wherein at least a part of the coating layer is maintained on the surface of the base particle until it collides with the surface of the base material as a target to suppress oxidation of the metal base particle. Thermal spray particles characterized by that. 請求項1〜3の何れかに記載の溶射用粒子において、母粒子に対する表面処理剤量が0.1〜10質量%であることを特徴とする溶射用粒子。   The thermal spraying particle according to any one of claims 1 to 3, wherein the amount of the surface treatment agent relative to the base particle is 0.1 to 10% by mass. 請求項1〜4の何れかに記載の溶射用粒子において、母粒子が△Txが30K以上の金属ガラスであることを特徴とする溶射用粒子。   The thermal spraying particle according to any one of claims 1 to 4, wherein the base particle is a metallic glass having a ΔTx of 30K or more. 請求項1〜5の何れかに記載の溶射用粒子において、母粒子の金属が大気中溶射で酸化する反応性金属元素を含有することを特徴とする溶射用粒子。   The thermal spraying particle according to any one of claims 1 to 5, wherein the metal of the mother particle contains a reactive metal element that is oxidized by thermal spraying in the atmosphere. 請求項1〜6の何れかに記載の溶射用粒子において、表面処理剤が母粒子との反応性を有する反応性有機表面処理剤であることを特徴とする溶射用粒子。   The thermal spraying particle according to any one of claims 1 to 6, wherein the surface treatment agent is a reactive organic surface treatment agent having reactivity with the mother particle. 請求項7記載の溶射用粒子において、反応性有機表面処理剤が、Si−H基を含有する反応性シリコーン化合物であることを特徴とする溶射用粒子。   The thermal spraying particle according to claim 7, wherein the reactive organic surface treatment agent is a reactive silicone compound containing a Si—H group. 請求項7記載の溶射用粒子において、反応性有機表面処理剤が、カップリング剤であることを特徴とする溶射用粒子。   The thermal spraying particle according to claim 7, wherein the reactive organic surface treatment agent is a coupling agent. 請求項9記載の溶射用粒子において、カップリング剤が、Si系、Ti系、Al系、又はZr系カップリング剤であることを特徴とする溶射用粒子。   The thermal spraying particle according to claim 9, wherein the coupling agent is a Si-based, Ti-based, Al-based, or Zr-based coupling agent. 請求項1〜6の何れかに記載の溶射用粒子において、表面処理剤が金属粒子との反応性を持たない非反応性表面処理剤であることを特徴とする溶射用粒子。   The thermal spraying particle according to any one of claims 1 to 6, wherein the surface treatment agent is a non-reactive surface treatment agent having no reactivity with metal particles. 請求項1〜6の何れかに記載の溶射用粒子において、表面処理剤がケイ酸ナトリウムであることを特徴とする溶射用粒子。   The thermal spraying particle according to any one of claims 1 to 6, wherein the surface treatment agent is sodium silicate. 請求項1〜12の何れかに記載の溶射用粒子を溶射して得られた溶射被膜。   A thermal spray coating obtained by thermal spraying the thermal spraying particles according to claim 1. 請求項13記載の溶射被膜において、前記溶射用粒子を大気中で溶射して得られたことを特徴とする溶射被膜。   The thermal spray coating according to claim 13, wherein the thermal spray coating is obtained by thermal spraying the thermal spray particles in the atmosphere. 請求項13又は14記載の溶射被膜において、溶射被膜中に残存した被覆層残渣の平均分散粒径が5μm以下であることを特徴とする溶射被膜。   The thermal spray coating according to claim 13 or 14, wherein the average dispersed particle size of the coating layer residue remaining in the thermal spray coating is 5 µm or less. 請求項13〜15の何れかに記載の溶射被膜において、ケイ素化合物を表面処理剤として形成された被覆層を有する溶射用粒子を溶射して得られた溶射被膜であり、溶射被膜中に残存した被覆層残渣がSi量で4vol%以下であることを特徴とする溶射被被膜。   The thermal spray coating according to any one of claims 13 to 15, wherein the thermal spray coating is obtained by thermal spraying particles for thermal spraying having a coating layer formed using a silicon compound as a surface treatment agent, and remains in the thermal spray coating. The thermal spray coating, wherein the coating layer residue is 4 vol% or less in terms of Si.
JP2009250600A 2008-10-31 2009-10-30 Particle for thermal spraying Pending JP2010133021A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009250600A JP2010133021A (en) 2008-10-31 2009-10-30 Particle for thermal spraying

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008281597 2008-10-31
JP2009250600A JP2010133021A (en) 2008-10-31 2009-10-30 Particle for thermal spraying

Publications (1)

Publication Number Publication Date
JP2010133021A true JP2010133021A (en) 2010-06-17

Family

ID=42344563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009250600A Pending JP2010133021A (en) 2008-10-31 2009-10-30 Particle for thermal spraying

Country Status (1)

Country Link
JP (1) JP2010133021A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2448003A3 (en) * 2010-10-27 2012-08-08 Samsung Electronics Co., Ltd. Conductive paste comprising a conductive powder and a metallic glass for forming a solar cell electrode
US8668847B2 (en) 2010-08-13 2014-03-11 Samsung Electronics Co., Ltd. Conductive paste and electronic device and solar cell including an electrode formed using the conductive paste
CN103703159A (en) * 2011-07-25 2014-04-02 埃卡特有限公司 Method for applying a coating to a substrate, coating, and use of particles
US8715535B2 (en) 2010-08-05 2014-05-06 Samsung Electronics Co., Ltd. Conductive paste and electronic device and solar cell including an electrode formed using the conductive paste
CN103827345A (en) * 2011-07-25 2014-05-28 埃卡特有限公司 Use of specially coated powdered coating materials and coating methods using such coating materials
CN103827344A (en) * 2011-07-25 2014-05-28 埃卡特有限公司 Methods for substrate coating and use of additive-containing powdered coating materials in such methods
WO2014142019A1 (en) * 2013-03-13 2014-09-18 株式会社 フジミインコーポレーテッド Powder for thermal spraying, thermal sprayed coating, and method for forming thermal sprayed coating
JP2014526033A (en) * 2011-06-23 2014-10-02 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Powder of alloy mainly composed of uranium and molybdenum in γ-metastable phase, powder composition containing this powder, and method of using said powder and composition
US8940195B2 (en) 2011-01-13 2015-01-27 Samsung Electronics Co., Ltd. Conductive paste, and electronic device and solar cell including an electrode formed using the same
US8987586B2 (en) 2010-08-13 2015-03-24 Samsung Electronics Co., Ltd. Conductive paste and electronic device and solar cell including an electrode formed using the conductive paste
US9105370B2 (en) 2011-01-12 2015-08-11 Samsung Electronics Co., Ltd. Conductive paste, and electronic device and solar cell including an electrode formed using the same
WO2016136319A1 (en) * 2015-02-27 2016-09-01 日立造船株式会社 Thermal spray material and method for manufacturing same, thermal spraying method and thermal spray product
JP2017537217A (en) * 2014-09-18 2017-12-14 エリコン メテコ(ユーエス)インコーポレイテッド Pre-blended powder raw material
US9984787B2 (en) 2009-11-11 2018-05-29 Samsung Electronics Co., Ltd. Conductive paste and solar cell

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60230974A (en) * 1984-04-05 1985-11-16 メトコ・インコーポレイテツド Thermal spray composite material and method of setting corrosion resistant coating
JPH01215907A (en) * 1988-02-24 1989-08-29 Tokin Corp Manufacture of metal sintered compact
JPH08290977A (en) * 1995-04-19 1996-11-05 Showa Denko Kk Thermal spraying material
JP2004323584A (en) * 2003-04-22 2004-11-18 Kansai Paint Co Ltd Epoxy powder coating and method for forming epoxy powder coating film on casting
JP2005246193A (en) * 2004-03-03 2005-09-15 Konica Minolta Holdings Inc Method for producing composite film, particle for thermal spraying, composite film and radiation image transformation panel using the composite film
JP2007131952A (en) * 2004-03-25 2007-05-31 Akihisa Inoue Metallic glass laminate member

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60230974A (en) * 1984-04-05 1985-11-16 メトコ・インコーポレイテツド Thermal spray composite material and method of setting corrosion resistant coating
JPH01215907A (en) * 1988-02-24 1989-08-29 Tokin Corp Manufacture of metal sintered compact
JPH08290977A (en) * 1995-04-19 1996-11-05 Showa Denko Kk Thermal spraying material
JP2004323584A (en) * 2003-04-22 2004-11-18 Kansai Paint Co Ltd Epoxy powder coating and method for forming epoxy powder coating film on casting
JP2005246193A (en) * 2004-03-03 2005-09-15 Konica Minolta Holdings Inc Method for producing composite film, particle for thermal spraying, composite film and radiation image transformation panel using the composite film
JP2007131952A (en) * 2004-03-25 2007-05-31 Akihisa Inoue Metallic glass laminate member

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9984787B2 (en) 2009-11-11 2018-05-29 Samsung Electronics Co., Ltd. Conductive paste and solar cell
US8715535B2 (en) 2010-08-05 2014-05-06 Samsung Electronics Co., Ltd. Conductive paste and electronic device and solar cell including an electrode formed using the conductive paste
US8668847B2 (en) 2010-08-13 2014-03-11 Samsung Electronics Co., Ltd. Conductive paste and electronic device and solar cell including an electrode formed using the conductive paste
US8987586B2 (en) 2010-08-13 2015-03-24 Samsung Electronics Co., Ltd. Conductive paste and electronic device and solar cell including an electrode formed using the conductive paste
EP2448003A3 (en) * 2010-10-27 2012-08-08 Samsung Electronics Co., Ltd. Conductive paste comprising a conductive powder and a metallic glass for forming a solar cell electrode
US8974703B2 (en) 2010-10-27 2015-03-10 Samsung Electronics Co., Ltd. Conductive paste and electronic device and solar cell including an electrode formed using the same
US9105370B2 (en) 2011-01-12 2015-08-11 Samsung Electronics Co., Ltd. Conductive paste, and electronic device and solar cell including an electrode formed using the same
US8940195B2 (en) 2011-01-13 2015-01-27 Samsung Electronics Co., Ltd. Conductive paste, and electronic device and solar cell including an electrode formed using the same
JP2014526033A (en) * 2011-06-23 2014-10-02 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Powder of alloy mainly composed of uranium and molybdenum in γ-metastable phase, powder composition containing this powder, and method of using said powder and composition
JP2014522913A (en) * 2011-07-25 2014-09-08 エッカルト ゲゼルシャフト ミット ベシュレンクテル ハフツング Use of specially coated powdered coating materials and coating methods using such coating materials
CN103703159A (en) * 2011-07-25 2014-04-02 埃卡特有限公司 Method for applying a coating to a substrate, coating, and use of particles
JP2014527575A (en) * 2011-07-25 2014-10-16 エッカルト ゲゼルシャフト ミット ベシュレンクテル ハフツングEckart GmbH Methods for substrate coating and use of additive-containing powdered coating materials in such methods
CN108950459A (en) * 2011-07-25 2018-12-07 埃卡特有限公司 The purposes of powder coating material in the method for the method for substrate coating and containing additive
CN103827344A (en) * 2011-07-25 2014-05-28 埃卡特有限公司 Methods for substrate coating and use of additive-containing powdered coating materials in such methods
CN103827345A (en) * 2011-07-25 2014-05-28 埃卡特有限公司 Use of specially coated powdered coating materials and coating methods using such coating materials
US20140342094A1 (en) * 2011-07-25 2014-11-20 Eckart Gmbh Use of Specially Coated Powdered Coating Materials and Coating Methods Using Such Coating Materials
US20160016856A1 (en) * 2013-03-13 2016-01-21 Fujimi Incorporated Powder for thermal spraying, thermal sprayed coating, and method for forming thermal sprayed coating
JPWO2014142019A1 (en) * 2013-03-13 2017-02-16 株式会社フジミインコーポレーテッド Thermal spray powder, thermal spray coating, and method of forming thermal spray coating
US9682892B2 (en) 2013-03-13 2017-06-20 Fujimi Incorporated Powder for thermal spraying, thermal sprayed coating, and method for forming thermal sprayed coating
TWI588296B (en) * 2013-03-13 2017-06-21 福吉米股份有限公司 Thermal spray powder, thermal spray coating, and method for forming thermal spray coating
KR20150128843A (en) * 2013-03-13 2015-11-18 가부시키가이샤 후지미인코퍼레이티드 Powder for thermal spraying, thermal sprayed coating, and method for forming thermal sprayed coating
WO2014142019A1 (en) * 2013-03-13 2014-09-18 株式会社 フジミインコーポレーテッド Powder for thermal spraying, thermal sprayed coating, and method for forming thermal sprayed coating
KR102164024B1 (en) * 2013-03-13 2020-10-12 가부시키가이샤 후지미인코퍼레이티드 Powder for thermal spraying, thermal sprayed coating, and method for forming thermal sprayed coating
JP2017537217A (en) * 2014-09-18 2017-12-14 エリコン メテコ(ユーエス)インコーポレイテッド Pre-blended powder raw material
JP2019073805A (en) * 2014-09-18 2019-05-16 エリコン メテコ(ユーエス)インコーポレイテッド Preliminarily blended powder material
WO2016136319A1 (en) * 2015-02-27 2016-09-01 日立造船株式会社 Thermal spray material and method for manufacturing same, thermal spraying method and thermal spray product

Similar Documents

Publication Publication Date Title
JP2010133021A (en) Particle for thermal spraying
Lin et al. Characterization of alumina–3 wt.% titania coating prepared by plasma spraying of nanostructured powders
TWI276704B (en) Y2O3 spray-coated member and production method thereof
JP2824189B2 (en) Powder supply composition for refractory oxide coating formation, method of use and product
CN111809094B (en) High-entropy alloy resistant to high-temperature oxidation, thermal barrier coating and preparation method of thermal barrier coating
He et al. Microstructure and wear behavior of nano C-rich TiCN coatings fabricated by reactive plasma spraying with Ti-graphite powders
Daroonparvar et al. Improvement of thermally grown oxide layer in thermal barrier coating systems with nano alumina as third layer
CA2669052A1 (en) Method for coating a substrate and coated product
KR100454715B1 (en) MoSi2-Si3N4 COMPOSITE COATING AND MANUFACTURING METHOD THEREOF
CN102167568A (en) Amorphous and nanocrystalline ceramic material, ceramic coating and preparation method of ceramic coating
JP2845144B2 (en) Hot-dip metal bath immersion member and method for producing the same
Wang et al. Low-pressure plasma spraying of ZrB2-SiC coatings on C/C substrate by adding TaSi2
Ghadami et al. Characterization of MCrAlY/nano-Al 2 O 3 nanocomposite powder produced by high-energy mechanical milling as feedstock for high-velocity oxygen fuel spraying deposition
JP5017675B2 (en) Film manufacturing method
JP2002309364A (en) Low-temperature thermal spray coated member and manufacturing method thereof
WO2002092874A1 (en) Member coated with thermal barrier coating film and thermal spraying powder
JP2018178187A (en) Powder for spray coating, and film deposition method of sprayed coating using the same
Xie et al. Dense nanostructured YSZ coating prepared by low-pressure suspension plasma spraying: Atmosphere control and deposition mechanism
Ulutan et al. Plasma transferred arc surface modification of atmospheric plasma sprayed ceramic coatings
TW202200806A (en) Slurry composition for suspension plasma spraying, method for preparing the same and suspension plasma spray coating layer
CN108220957A (en) A kind of titanium alloy surface high-temperaure coating and preparation method thereof
JP3413096B2 (en) Heat resistant member and method of manufacturing the same
Lee et al. Fabrication of porous Al alloy coatings by cold gas dynamic spray process
CN111117312A (en) Preparation method of metal piece surface coating resistant to 500 ℃ high temperature and seawater corrosion for long time
Hemanth et al. Corrosion and Wear Behavior of Nano-Zirconium (Zr) Coated Commercial Grade Cast Iron by Sol-Gel and Plasma Spray Process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140603