JPH0493054A - Flattened semiconductor device - Google Patents

Flattened semiconductor device

Info

Publication number
JPH0493054A
JPH0493054A JP20933190A JP20933190A JPH0493054A JP H0493054 A JPH0493054 A JP H0493054A JP 20933190 A JP20933190 A JP 20933190A JP 20933190 A JP20933190 A JP 20933190A JP H0493054 A JPH0493054 A JP H0493054A
Authority
JP
Japan
Prior art keywords
pellet
refrigerant
outside
external enclosure
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20933190A
Other languages
Japanese (ja)
Other versions
JP2757893B2 (en
Inventor
Kenji Kijima
研二 木島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2209331A priority Critical patent/JP2757893B2/en
Publication of JPH0493054A publication Critical patent/JPH0493054A/en
Application granted granted Critical
Publication of JP2757893B2 publication Critical patent/JP2757893B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To improve the cooling efficiency and miniaturize a cooler by providing a plurality of pipes communicating with the outside of an external enclosure in which a semiconductor pellet is contained, and sealing therein a refrigerant performing phase changes in boiling and condensation. CONSTITUTION:First, a pellet 10 is pressurized to a proper value owing to the deformation of a buffer part 16 of an external enclosure 13 once copper blocks 14, 14 undergo load in the arrow direction from the outside. Then, as power is supplied through the copper blocks 14, 14 the pellet 10 is heated, and produced heat is transmitted to the copper blocks 14, 14. Thereupon, a refrigerant 17 in contact with the surface outer periphery of the copper block 14 is boiled and evaporated. Evaporated vapor is sent from a vapor paper 18 of the external enclosure 13 to a heat exchanger, and is liquefied, and is thereafter returned from a return pipe 19. More specifically, the pellet 10 is directly cooled by the cooling system. Accordingly, thermal resistance is reduced compared with a prior art system where heat is once transmitted to the outside of the external enclosure, and further since a cooler is integrated, the entire can be miniaturized and made light-weight.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、冷却効率の向上と小形化を図った平型半導体
素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Field of Application) The present invention relates to a flat semiconductor device with improved cooling efficiency and miniaturization.

(従来の技術) 従来、大容量の平型半導体素子の放熱には、第7図に示
すように半導体素子1の両側から圧接したフィン2を受
熱部とするヒートパイプ3を用いる方式や、第8図に示
すように密閉容器4と放熱器5を蒸気管6と戻り管7で
接続し、密閉容器4の内部に冷媒8と両側からフィン2
を圧接した平型半導体素子1を収容する沸騰冷却方式が
あるが、冷却効率の面で沸騰冷却方式が優れており、多
く採用されていた。
(Prior Art) Conventionally, heat dissipation from large-capacity flat semiconductor devices has been achieved by using a heat pipe 3 using fins 2 pressed against both sides of the semiconductor device 1 as heat receiving parts, as shown in FIG. As shown in Fig. 8, the airtight container 4 and the radiator 5 are connected by the steam pipe 6 and the return pipe 7, and the refrigerant 8 and the fins 2 are inserted into the airtight container 4 from both sides.
There is a boiling cooling method that accommodates the flat semiconductor element 1 which is pressure-welded.However, the boiling cooling method is superior in terms of cooling efficiency and has been widely used.

(発明が解決しようとする課題) しかしながら、上記した沸騰冷却方式には、次のような
欠点があった。
(Problems to be Solved by the Invention) However, the boiling cooling method described above has the following drawbacks.

(1)半導体素子の内部には、熱伝導に対する抵抗があ
り、大容量の場合内部の温度勾配が大きく、冷却上の限
界がある。
(1) There is resistance to heat conduction inside a semiconductor element, and in the case of a large capacity, there is a large internal temperature gradient, and there is a cooling limit.

(2)上記(1)項のため冷媒の温度を下げる必要があ
り、放熱器が大型化する。
(2) Due to the above item (1), it is necessary to lower the temperature of the refrigerant, which increases the size of the radiator.

(3)上記(2)項のため沸騰熱伝達率が低下する。(3) The boiling heat transfer coefficient decreases due to the above item (2).

(4)冷却部が大きくなるため、圧力容器の構造上、高
圧の冷媒を使用できない。
(4) Since the cooling section becomes large, high-pressure refrigerant cannot be used due to the structure of the pressure vessel.

(5)以上の欠点があるため、冷却器を大きくしても、
大容量の半導体素子の能力を100%使用することがで
きない。
(5) Due to the above drawbacks, even if the cooler is made larger,
It is not possible to use 100% of the capacity of a large-capacity semiconductor element.

そこで、本発明の目的は、以」二の欠点を解消し、冷却
を効率良く行い、大容量の半導体素子の能力をフルに生
かし、冷却器を小型化した平型半導体素子を提供するこ
とにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a flat semiconductor device that eliminates the following two drawbacks, performs cooling efficiently, makes full use of the capabilities of a large capacity semiconductor device, and has a miniaturized cooler. be.

[発明の構成] (課題を解決するための手段) 本発明は、半導体ペレットを密閉外囲器に収納し、外部
から圧接する平型半導体素子において、外囲器に外部と
連通ずる複数の管を設け、がっ内部に沸騰・凝縮の相変
化を行う冷媒を封入したものである。
[Structure of the Invention] (Means for Solving the Problems) The present invention provides a flat semiconductor device in which a semiconductor pellet is housed in a sealed envelope and is pressure-contacted from the outside. A refrigerant that undergoes a phase change of boiling and condensation is sealed inside.

(作 用) 半導体ペレットは外囲器の構成部祠を介して通電される
と発熱するが、この熱が外囲器の構成部材に伝達し外囲
器の内部に封入している冷媒を沸騰させる。発生した蒸
気は外部と連通ずる管を介して熱交換器に送られ、液化
する。この液化した冷媒は他の管を介して外囲器に戻さ
れる。この一連の作用により半導体ペレットが直接冷却
される。したがって、従来のような外囲器の外部へ一旦
熱伝達してから冷却する系に比較して熱抵抗が小さく、
しかも冷却器を一体化しているがら全体を小形軽量化す
ることができる。
(Function) When the semiconductor pellet is energized through the components of the envelope, it generates heat, and this heat is transferred to the components of the envelope and boils the refrigerant sealed inside the envelope. let The generated steam is sent to a heat exchanger via a pipe communicating with the outside and is liquefied. This liquefied refrigerant is returned to the envelope via another pipe. This series of actions directly cools the semiconductor pellet. Therefore, the thermal resistance is lower than the conventional system that transfers heat to the outside of the envelope and then cools it.
Furthermore, although the cooler is integrated, the overall size and weight can be reduced.

(実施例) 以下、本発明の一実施例を図面を参照して説明する。第
1図は、本発明の一実施例を示す正面図であり、第2図
は、第1図のA−A断面図である。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings. FIG. 1 is a front view showing one embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along the line AA in FIG.

第1図および第2図に示すように、ペレット10は、表
面を金属材(例えばW、Mo、Cu)から形成された緩
衝板11で覆われて耐冷媒性を高くしており、端部には
絶縁ブロック12を設けてアットとカソードの絶縁を強
化し、外囲器13を構成する銅ブロック14.14で両
側から押え付けられている。
As shown in FIGS. 1 and 2, the surface of the pellet 10 is covered with a buffer plate 11 made of a metal material (for example, W, Mo, Cu) to increase refrigerant resistance, and the end portion An insulating block 12 is provided to strengthen the insulation between the at and the cathode, and the copper blocks 14 and 14 forming the envelope 13 are pressed down from both sides.

外囲器13は、円板状をなしペレット10を両側から押
え付ける一対の銅ブロック14.14とセラミックで環
状に形成され、ペレット10の外径より内径を大きくし
た絶縁部15と、薄いステンレス材で形成され、絶縁部
15のそれぞれの側面とは外周に設けた折曲部で気密に
接合し、中央に設けた関口部で銅ブロック14を気密に
接合し、かつ外周に近い位置に環状の溝leaを設け、
対向した状態に配置される一対のバッファ部1B、 1
[fで構成され、内側に空間部を形成し、低沸点冷媒(
例えば住人3M社の商品名フロリナート)17を封入し
ている。
The envelope 13 is formed into an annular shape with a pair of copper blocks 14 and 14 which are disk-shaped and press down the pellet 10 from both sides, an insulating part 15 whose inner diameter is larger than the outer diameter of the pellet 10, and a thin stainless steel block. The insulation part 15 is airtightly joined to each side surface of the insulating part 15 at a bent part provided on the outer periphery, and the copper block 14 is hermetically joined to the corner part provided in the center. A groove lea is provided,
A pair of buffer parts 1B, 1 arranged in a facing state
[f], forming a space inside, and containing a low boiling point refrigerant (
For example, 3M Co., Ltd.'s product name Fluorinert) 17 is enclosed.

一方、絶縁部15には、使用状態で上側となる位置に冷
媒17が沸騰したときに蒸気を熱交換器(図示しない)
に導く蒸気管18、反対側の位置に熱交換器で液化した
冷媒17の戻り管19を接続する。
On the other hand, the insulating part 15 is provided with a heat exchanger (not shown) that transfers steam when the refrigerant 17 boils to an upper position in the use state.
A return pipe 19 for the refrigerant 17 liquefied in the heat exchanger is connected to the steam pipe 18 leading to the refrigerant 17 at the opposite position.

以上のように構成することにより、銅ブロック14は内
側が冷却フィンとして作用し、外側が導電および圧接に
使用され、また、バッファ部16は環状の溝leaによ
り銅ブロック14が加圧されたときにも過大な応力を発
生することがない。
With the above configuration, the inner side of the copper block 14 acts as a cooling fin, and the outer side is used for conduction and pressure welding, and the buffer part 16 is configured so that when the copper block 14 is pressurized by the annular groove lea. Also, excessive stress will not be generated.

次に、以上のように構成された実施例の作用を説明する
。まず、ペレット10は、外部から銅ブロック14.1
4が第2図の矢印方向の荷重を受けると、外囲器13の
バッファ部16の変形により適切な値に加圧、圧接され
る。次に銅ブロック14.14を介して通電すると、ペ
レット10が発熱し、この熱が銅ブロック14.14へ
伝導する。そこで、銅ブロック14の表面(外周)に接
している冷媒17が沸騰し気化する。気化した蒸気は、
外囲器13の蒸気管18から熱交換器(上部に設けられ
るが図示しない)へ送られ、液化した後戻り管19から
戻る。つまり、ペレット10は、この冷却系により直接
冷却される。
Next, the operation of the embodiment configured as above will be explained. First, the pellet 10 is inserted into the copper block 14.1 from the outside.
4 receives a load in the direction of the arrow in FIG. 2, the buffer portion 16 of the envelope 13 deforms and is pressed to an appropriate value. When electricity is then passed through the copper block 14.14, the pellet 10 generates heat, which is conducted to the copper block 14.14. Therefore, the refrigerant 17 in contact with the surface (outer periphery) of the copper block 14 boils and vaporizes. The vaporized steam is
The steam is sent from the steam pipe 18 of the envelope 13 to a heat exchanger (provided in the upper part, but not shown), and is returned from the return pipe 19 after being liquefied. That is, the pellets 10 are directly cooled by this cooling system.

なお、本発明は、上記した実施例(以下、第1の実施例
という)に限定されるものでなく、種々変形実施できる
。第3図は、本発明の他の実施例(以下、第2の実施例
という)の要部を示す断面図で、第4図は第3図のA−
A断面図である。この第2の実施例は、銅ブロック14
に上下方向に沿って貫通孔20を設けたもので、これに
より銅ブロック14の表面積を大きくし、第1の実施例
より冷却能力をさらに向上することができる。また、第
5図は、本発明のさらに異なる他の実施例(以下、第3
の実施例という)の要部を示す断面図である。
Note that the present invention is not limited to the above-described embodiment (hereinafter referred to as the first embodiment), and can be implemented in various modifications. FIG. 3 is a cross-sectional view showing the main parts of another embodiment of the present invention (hereinafter referred to as the second embodiment), and FIG.
It is an A sectional view. This second embodiment consists of a copper block 14
Through holes 20 are provided along the vertical direction in the copper block 14, thereby increasing the surface area of the copper block 14 and making it possible to further improve the cooling capacity compared to the first embodiment. Further, FIG. 5 shows a further different embodiment (hereinafter referred to as the third embodiment) of the present invention.
FIG.

この第3の実施例は、銅ブロック14の外周(ただし、
バッファ部16が接合される部分は除く)にヒダ21を
設けたもので、これにより銅ブロック14の表面積を大
きくし、第2の実施例と同様に第1の実施例より冷却能
力をさらに向上することができる。第6図は、本発明の
さらに異なる他の実施例(以下、第4の実施例という)
の要部を示す断面図である。この第4の実施例は、絶縁
部22を2個用い上記した各実施例の絶縁部15より外
径、内径共生さい環状として内周を直接銅ブロック14
と気密に接合し、バッファ部23には外周に近い位置に
環状の溝23aを設け、外周の折曲部に蒸気管18と戻
り管(図示しない)を接続したもので、第1の実施例と
同様の効果が得られる。
In this third embodiment, the outer periphery of the copper block 14 (however,
Folds 21 are provided in the copper block 14 (excluding the part where the buffer section 16 is bonded), thereby increasing the surface area of the copper block 14 and further improving the cooling capacity compared to the first embodiment, similar to the second embodiment. can do. FIG. 6 shows another embodiment (hereinafter referred to as the fourth embodiment) of the present invention.
FIG. In this fourth embodiment, two insulating parts 22 are used, and the inner periphery is directly connected to the copper block 14, with the outer and inner diameters being symbiotic than the insulating parts 15 of the above-mentioned embodiments.
An annular groove 23a is provided in the buffer part 23 at a position near the outer periphery, and a steam pipe 18 and a return pipe (not shown) are connected to the bent part of the outer periphery. The same effect can be obtained.

[発明の効果] 以上説明したように本発明によれば、次の効果を有する
平型半導体素子を提供することができる。
[Effects of the Invention] As explained above, according to the present invention, a flat semiconductor element having the following effects can be provided.

(1)半導体素子内部の熱抵抗が小さいため冷却効果が
大きい。
(1) Since the thermal resistance inside the semiconductor element is small, the cooling effect is large.

(2)従来のような半導体素子と冷却フィンの接触熱抵
抗がない。
(2) There is no contact thermal resistance between the semiconductor element and the cooling fins as in the conventional case.

(3)ペレットを直接沸騰冷却するため応答性が良く、
ピークロスに強い。
(3) Good responsiveness as the pellets are directly boiled and cooled;
Strong against peak loss.

(4)冷却器が一体化しているため構成が簡単になる。(4) Since the cooler is integrated, the configuration is simple.

(5)内容積が小さく、冷媒量も少なく、かつ圧力容器
にならない。また、外部圧接型のため内圧に強い。
(5) The internal volume is small, the amount of refrigerant is small, and it does not become a pressure vessel. In addition, it is resistant to internal pressure because it is an external pressure welding type.

(6)外形が小型になり、軽量となる。(6) Smaller size and lighter weight.

(7)外囲器を外部から冷却することにより、さらに冷
却能力を向上することができる。
(7) Cooling capacity can be further improved by cooling the envelope from the outside.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す正面図、第2図は第1
図のA−A断面図、第3図は本発明の他の実施例の要部
を示す断面図、第4図は第3図のA−A断面図、第5図
は本発明のさらに異なる他の実施例の要部を示す断面図
、第6図は本発明のさらに異なる他の実施例の要部を示
す断面図、第7図は従来の平型半導体素子をヒートパイ
プで冷却している状態を示す説明図、第8図は従来の平
型半導体素子を冷却媒体により沸騰冷却している状態を
示す説明図である。 10・・・半導体ペレット、  13・・・外囲器、1
4・・・銅ブロック、 16・・・バッファ部、 18・・・蒸気管、 15・・・絶縁部、 17・・・冷媒、 19・・・戻り管。
FIG. 1 is a front view showing one embodiment of the present invention, and FIG. 2 is a front view showing one embodiment of the present invention.
3 is a sectional view showing the main parts of another embodiment of the present invention, FIG. 4 is a sectional view taken along A-A of FIG. 3, and FIG. 5 is a further different embodiment of the present invention. FIG. 6 is a sectional view showing the main part of another embodiment of the present invention. FIG. 7 is a sectional view showing the main part of another embodiment of the present invention. FIG. FIG. 8 is an explanatory diagram showing a state in which a conventional flat semiconductor element is boiled and cooled by a cooling medium. 10... Semiconductor pellet, 13... Envelope, 1
4... Copper block, 16... Buffer section, 18... Steam pipe, 15... Insulating section, 17... Refrigerant, 19... Return pipe.

Claims (1)

【特許請求の範囲】[Claims]  半導体ペレットを密閉外囲器に収納し、外部から圧接
する平型半導体素子において、前記外囲器に外部と連通
する複数の管を設け、かつ内部に沸騰・凝縮の相変化を
行う冷媒を封入したことを特徴とする平型半導体素子。
In a flat semiconductor device in which semiconductor pellets are housed in a sealed envelope and pressed against the outside, the envelope is provided with a plurality of pipes communicating with the outside, and a refrigerant that undergoes a phase change of boiling and condensation is sealed inside. A flat semiconductor device characterized by:
JP2209331A 1990-08-09 1990-08-09 Flat semiconductor device Expired - Lifetime JP2757893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2209331A JP2757893B2 (en) 1990-08-09 1990-08-09 Flat semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2209331A JP2757893B2 (en) 1990-08-09 1990-08-09 Flat semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP32717297A Division JP2856729B2 (en) 1997-11-13 1997-11-13 Flat semiconductor element

Publications (2)

Publication Number Publication Date
JPH0493054A true JPH0493054A (en) 1992-03-25
JP2757893B2 JP2757893B2 (en) 1998-05-25

Family

ID=16571178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2209331A Expired - Lifetime JP2757893B2 (en) 1990-08-09 1990-08-09 Flat semiconductor device

Country Status (1)

Country Link
JP (1) JP2757893B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10125695A1 (en) * 2001-05-25 2002-12-05 Eupec Gmbh & Co Kg Power semiconductor structure for causing a coolant to pass through to cool a power semiconductor element has a cooling element and a push-contact casing containing the power semiconductor element.
JP2010200452A (en) * 2009-02-24 2010-09-09 Nikon Corp Motor device, stage device, and aligner

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5565864U (en) * 1978-10-30 1980-05-07

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5565864U (en) * 1978-10-30 1980-05-07

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10125695A1 (en) * 2001-05-25 2002-12-05 Eupec Gmbh & Co Kg Power semiconductor structure for causing a coolant to pass through to cool a power semiconductor element has a cooling element and a push-contact casing containing the power semiconductor element.
JP2010200452A (en) * 2009-02-24 2010-09-09 Nikon Corp Motor device, stage device, and aligner

Also Published As

Publication number Publication date
JP2757893B2 (en) 1998-05-25

Similar Documents

Publication Publication Date Title
KR950014046B1 (en) Optimized integral heat pipe and electronic circuit module arrangement
JP7161343B2 (en) Cooler
JPH08340189A (en) Boiling cooling device
WO1999034438A1 (en) Heat sink
US20030024691A1 (en) High efficiency heat sink
JPH0493054A (en) Flattened semiconductor device
JPS583383B2 (en) thyristor stack
GB2167550A (en) Cooling apparatus for semiconductor device
US4862321A (en) Cooling system for heating body
US3168137A (en) Heat exchanger
JP2856729B2 (en) Flat semiconductor element
JPH11317482A (en) Heat sink
EP0047655A1 (en) Boiling/cooling system
US20020050341A1 (en) Heat pipe heat spreader with internal solid heat conductor
JPH10227585A (en) Heat spreader and cooler employing the same
JP2001024122A (en) Cooling device for heat generating element
JPS59217346A (en) Vapor cooling device
JPS61110883A (en) Heat pipe
JPH0714029B2 (en) Power semiconductor device
JP3364415B2 (en) Element cooling device
JPH08303919A (en) Electronic refrigerator
JP2000018853A (en) Cooling structure using plate type heat pipe
CN112512264B (en) Heat radiating device and heat radiating system
JPH04196154A (en) Semiconductor cooling device
JPH0364950A (en) Electrically insulated heat pipe