JPS583383B2 - thyristor stack - Google Patents

thyristor stack

Info

Publication number
JPS583383B2
JPS583383B2 JP4213675A JP4213675A JPS583383B2 JP S583383 B2 JPS583383 B2 JP S583383B2 JP 4213675 A JP4213675 A JP 4213675A JP 4213675 A JP4213675 A JP 4213675A JP S583383 B2 JPS583383 B2 JP S583383B2
Authority
JP
Japan
Prior art keywords
heat pipe
thyristor
cooling
flat
stack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4213675A
Other languages
Japanese (ja)
Other versions
JPS514969A (en
Inventor
フリードリツヒ・シエルバウム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of JPS514969A publication Critical patent/JPS514969A/en
Publication of JPS583383B2 publication Critical patent/JPS583383B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0275Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/10Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers
    • H01L25/11Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/117Stacked arrangements of devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • F28F2265/24Safety or protection arrangements; Arrangements for preventing malfunction for electrical insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • F28F2265/26Safety or protection arrangements; Arrangements for preventing malfunction for allowing differential expansion between elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【発明の詳細な説明】 本発明は、複数個の平形サイリスタを、その各.端面に
冷却体を設けながら互に積層し、弾性的に保持してなる
ガス冷却形のサイリスタスタックに開する。
DETAILED DESCRIPTION OF THE INVENTION The present invention includes a plurality of flat thyristors, each of which has a flat shape. A gas-cooled thyristor stack is formed by laminating each other with a cooling body provided on the end face and elastically holding the thyristor stack.

このようなサイリスタスタックは入手可能である。Such thyristor stacks are available.

このスタックはブリッジ回路内に組み込まれあるいはよ
り多数の平形サイリスタが用いられるときは直列に接続
される。
This stack is integrated into a bridge circuit or connected in series when a larger number of flat thyristors is used.

例えば西ドイツ国特許公開第2107008号公報、同
第2107009号公報および同第2107319号公
報によって、平形サイリスタを空冷するための装置が公
知であり、この場合、平形サイリスタの両端面にそれぞ
れ1個ずつヒートパイプが設けられている。
For example, a device for air cooling a flat thyristor is known from West German Patent Publications No. 2107008, No. 2107009 and No. 2107319. A pipe is provided.

西ドイツ国特許出願公開第2107319号公報により
公知の装置の場合、ヒートパイプはL形に折り曲げられ
そして平形サイリスタの中心軸に対し対称的に位置して
いる。
In the device known from DE 21 07 319 A1, the heat pipe is bent in an L-shape and is located symmetrically with respect to the central axis of the flat thyristor.

1個の平形サイリスタと2個のヒートパイプからなる装
置は各々押圧装置で押圧保持されている。
A device consisting of one flat thyristor and two heat pipes is each pressed and held by a pressing device.

両ヒートパイプの自由端には、ガス状冷却媒体への熱伝
達面積を増大するために冷却フィンが設けられている。
The free ends of both heat pipes are provided with cooling fins to increase the heat transfer area to the gaseous cooling medium.

ここで、ヒートパイプなる語は、冷却技術の分野におい
て、例えば米国特許第2350348号明細書ないし、
雑誌“Chemie−Ingenieur−Techn
ik”39巻1967年1号PP.21〜26により知
られた装置を意味する。
Here, the term heat pipe is used in the field of cooling technology, for example, in US Pat. No. 2,350,348,
Magazine “Chemie-Ingenieur-Techn
ik" Vol. 39, No. 1, 1967, pp. 21-26.

このようなヒートパイプは両端の閉じたパイプがらなり
、その内壁は毛細構造の芯で覆われている。
Such a heat pipe consists of a pipe closed at both ends, the inner wall of which is covered with a capillary core.

芯は、液状冷媒、例えばフレオン、メタノール、エーテ
ル、アセトン、ベンゾールあるいは水で浸される。
The wick is soaked with a liquid refrigerant such as freon, methanol, ether, acetone, benzol or water.

ヒートパイプの蒸発部と呼ばれる部分が加熱されると、
ここで芯から冷媒が蒸発し、そして蒸気は温度勾配の方
向に流れる。
When the part called the evaporation part of the heat pipe is heated,
Here the refrigerant evaporates from the wick and the vapor flows in the direction of the temperature gradient.

この蒸気は、凝縮部と呼ばれる冷却された他の部分で凝
縮し、この際蒸気は気化熱を放出する。
This vapor condenses in another cooled section called the condensing section, where the vapor releases heat of vaporization.

凝縮部内で凝縮した冷媒は、芯内を、毛細管現象により
、ヒートパイプの加熱された蒸発部まで返送される。
The refrigerant condensed in the condensing section is returned within the core to the heated evaporation section of the heat pipe by capillary action.

かくして、外部からの力によらず、そして重力にも抗し
て作動する冷媒の循環路が生ずる。
Thus, a refrigerant circuit is created that operates independently of external forces and even against gravity.

例えば西ドイツ国実用新案第7227365号または同
国特許出願公開第2120474号公報に、電気絶縁性
のヒートパイプが述べられている。
For example, electrically insulating heat pipes are described in West German Utility Model No. 7227365 or German Patent Application No. 2120474.

このヒートパイプの場合、蒸発部と凝縮部は電気絶縁性
の材料からなる円筒状の中間片を用いて電気的に分離さ
れている。
In this heat pipe, the evaporating section and the condensing section are electrically separated using a cylindrical intermediate piece made of electrically insulating material.

この場合、芯は少なくとも中間片の範囲内で電気絶縁材
料からなり、そして冷媒は不導電性である。
In this case, the wick consists of an electrically insulating material, at least in the area of the intermediate piece, and the refrigerant is non-conductive.

例えば西ドイツ国特許出願公開第2204589号ない
し同第2107008号公報で知られるような装置を隣
接する冷却体のヒートパイプの軸が積層軸に関して互に
回転しながらずれていくように積層した、平形サイリス
タを備える空冷形のサイリスタスタツクは既に提案され
ている。
For example, a flat thyristor in which devices such as those known from West German Patent Application Nos. 2204589 to 2107008 are stacked such that the axes of heat pipes of adjacent cooling bodies are shifted from each other while rotating with respect to the stacking axis. An air-cooled thyristor stack equipped with the following has already been proposed.

このガス冷却形サイリスタスタックを用いて全ヒートパ
イプのそしてこれに伴い全平形サイリスタの良好な冷却
が可能である。
With this gas-cooled thyristor stack, good cooling of all heat pipes and thus all flat thyristors is possible.

本発明の目的は、最初に述べた装置を改良し、全平形サ
イリスタの冷却をより一層改善しそして同時にサイリス
タスタツクの構成寸法をできるだけ小さくすることにあ
る。
The object of the invention is to improve the device mentioned at the outset, to further improve the cooling of an entirely flat thyristor, and at the same time to minimize the dimensions of the thyristor stack.

本発明によれば、この目的は、各冷却体がヒートパイプ
を備え、これがサイリスタ積層体から張り出し、各ヒー
トパイプの自由端が冷却フィンを有し、そして各ヒート
パイプがL形に折れ曲がり、互に隣り合う冷却体のヒー
トパイプがサイリスタ積層体の中心軸を含む面に対して
交互に反対側に配設されるようにすることで達せられる
According to the invention, this object is such that each cooling body is provided with a heat pipe which overhangs the thyristor stack, the free end of each heat pipe has a cooling fin, and each heat pipe is bent in an L-shape and interdigitated with each other. This is achieved by alternately disposing the heat pipes of adjacent cooling bodies on opposite sides with respect to the plane containing the central axis of the thyristor stack.

本発明によるサイリスタスタックの場合、サイリスタス
タツクの全平形サイリスタに対する、各サイリスタにヒ
ートパイプを設けた良好な冷却が利用される。
In the case of the thyristor stack according to the invention, good cooling is utilized for all flat thyristors of the thyristor stack by providing each thyristor with a heat pipe.

互に隣り合うヒートパイプをサイリスタ積層体中心軸を
含む面に対して交互に反対側に配置したので、ヒートパ
イプは、通常互に平行に延びる2つの平面内に位置する
Since the adjacent heat pipes are arranged alternately on opposite sides with respect to the plane containing the central axis of the thyristor stack, the heat pipes are generally located in two planes extending parallel to each other.

この結果、隣接するヒートパイプの冷却フィンは必ずサ
イリスク積層軸を含む面の反対側に在ることになり、冷
却装置占有空間が小さな、平担でコンパクトな構造にな
る。
As a result, the cooling fins of adjacent heat pipes are always located on the opposite side of the plane containing the silice lamination axis, resulting in a flat and compact structure in which the space occupied by the cooling device is small.

又、この発明によればヒートパイプの冷却フィンはサイ
リスタ積層軸を含む面に対して交互に反対側にあるので
、冷却体の積層軸方向寸法を隣接冷却フィンが接触しな
いような充分長い寸法とするような必要は無くなり、そ
の分積層サイリスタ数を増やし倍増することができる。
Furthermore, according to the present invention, since the cooling fins of the heat pipe are alternately located on opposite sides of the plane containing the thyristor lamination axis, the dimension of the cooling body in the lamination axis direction must be long enough so that adjacent cooling fins do not come into contact with each other. There is no need to do this, and the number of laminated thyristors can be increased and doubled accordingly.

以下図示の実施例により本発明を詳しく説明する。The present invention will be explained in detail below with reference to the illustrated embodiments.

第1図に示すサイリスタスタックは、直列接続された複
数個の平形サイリスタ1を含み、ここで平形サイリスタ
の各端面には冷却体2が良好な熱伝導状態で接している
The thyristor stack shown in FIG. 1 includes a plurality of flat thyristors 1 connected in series, with a cooling body 2 in contact with each end face of the flat thyristors in a good heat conduction state.

絶縁片3と押圧片4を介して、平形サイリスタ1と冷却
体2は、実質的にネジボルト5,6と2枚の押し板7,
8からなる枠体内に保持されている。
Via the insulating piece 3 and the pressing piece 4, the flat thyristor 1 and the cooling body 2 are substantially connected to the threaded bolts 5, 6 and the two pressing plates 7,
It is held within a frame consisting of 8.

絶縁片3の1つは、押圧片4の上に載っている。One of the insulating pieces 3 rests on the pressing piece 4.

押圧片4の構造は、西ドイツ国特許出願公開第1914
790号公報に詳しく述べられている。
The structure of the pressing piece 4 is disclosed in West German Patent Application Publication No. 1914.
It is described in detail in Publication No. 790.

押圧片4は、実質的に、エネルギ蓄積体としての皿ばね
10を有し、これにより弾性的な押圧力が冷却体2およ
び平形サイリスタ1に加えられる。
The pressure piece 4 essentially has a disc spring 10 as an energy storage element, by means of which an elastic pressure force is exerted on the cooling body 2 and the flat thyristor 1 .

この結果、冷却体2と平形サイリスタ1間の電気的およ
び熱的接触が確保される。
As a result, electrical and thermal contact between the cooling body 2 and the flat thyristor 1 is ensured.

平形サイリスタ1のための電気的端子は、直接冷却体2
に設けることができる。
The electrical terminals for the flat thyristor 1 are connected directly to the cooling body 2
It can be provided in

これら端子は、図面を見易くするため、第1図には示し
てない。
These terminals are not shown in FIG. 1 for clarity of drawing.

各冷却体2はヒートパイプ11を有する。Each cooling body 2 has a heat pipe 11.

このとートハイプは、例えば銅から作られる。This metal hype is made from copper, for example.

ヒートパイプの蒸発部は、良好な熱的結合を得るべく冷
却体2内に入り込んでいる。
The evaporator part of the heat pipe extends into the cooling body 2 to obtain a good thermal coupling.

各ヒートパイプの自由端は凝縮部として働き、ヒートパ
イプに対し直角に延びる板状の冷却フィン11bないし
11dを備える。
The free end of each heat pipe serves as a condensing section and is provided with plate-shaped cooling fins 11b to 11d extending perpendicularly to the heat pipe.

ヒートパイプ11の自由端11aは、結合片13、14
を介してサイリスタスタックのための押圧装置の押し板
7ないし8に固定された支持体12の凹所12a内に保
持されている。
The free end 11a of the heat pipe 11 has coupling pieces 13, 14
It is held in a recess 12a of a support 12 which is fixed via the push plate 7 or 8 of the push device for the thyristor stack.

次に、支持体12と、結合片13,14と、押圧装置に
取り付けられた流れ案内板19とによって、冷却媒体の
流路が形成されることについてより詳しく説明する。
Next, it will be explained in more detail that the cooling medium flow path is formed by the support body 12, the coupling pieces 13 and 14, and the flow guide plate 19 attached to the pressing device.

冷却フィン11bと冷却体2間に、第1図に示す実施例
においては、各ヒートパイプ11内に位置するように可
撓性のないし弾性の円筒片11cが配置されている。
Between the cooling fins 11b and the cooling body 2, in the embodiment shown in FIG. 1, a flexible or elastic cylindrical piece 11c is arranged so as to be located within each heat pipe 11.

この弾性の円筒片11cにより、熱膨脹に基づきあるい
は製造技術的に避けられない公差のために生じ得る応力
が均等化される。
This elastic cylindrical piece 11c equalizes stresses that may arise due to thermal expansion or due to manufacturing tolerances.

ヒートパイプ11の自由端11aが、この実施例とは異
なり入り込んでいない場合には、この可撓性円筒片11
aを省略できるけれども、ヒートパイプの端部に加わっ
た機械的作用が、完全に冷却体2にそしてこれに伴い平
形サイリスタ1におよぶ危険がある。
If the free end 11a of the heat pipe 11 is not inserted unlike this embodiment, this flexible cylindrical piece 11
Although it is possible to omit step a, there is a risk that the mechanical action applied to the end of the heat pipe will be completely applied to the cooling body 2 and thus to the flat thyristor 1.

可撓性の円筒片11cは、自己保持が可能なように構成
するのが望ましい。
It is desirable that the flexible cylindrical piece 11c be constructed so that it can be self-retained.

かくしてヒートパイプ11も自己保持され、そしてパイ
プは支持体12に単に保持されるだけでよい。
The heat pipe 11 is thus also self-supporting and the pipe need only be held on the support 12.

この実施例において、可撓性の円筒片11Cは、例えば
銅合金から作られた波形パイプである。
In this embodiment, the flexible cylindrical piece 11C is a corrugated pipe made, for example, from a copper alloy.

第1図は、さらになお、冷却フィンに関する2つの実施
態様を示している。
FIG. 1 furthermore shows two embodiments of cooling fins.

冷却フィン11bは、ヒートパイプ11から、隣接する
ヒートパイプにおけるそれと接することがなくしかもオ
ーバラツプすることがないような大きさで張り出してい
る。
The cooling fins 11b protrude from the heat pipes 11 in such a size that they do not come into contact with adjacent heat pipes and do not overlap.

さらに第1図に11dで示すように、冷却フィンを、隣
接するヒートパイプ上のそれが接することなく互にオー
バラツプするような大きさにすることもできる。
Furthermore, as shown at 11d in FIG. 1, the cooling fins on adjacent heat pipes can be sized so that they overlap without touching.

こうすることで、冷却フィンの熱交換面積が増大し、し
かもサイリスタスタツクの占有空間は実際上不変である
This increases the heat exchange area of the cooling fins while leaving the space occupied by the thyristor stack virtually unchanged.

第2図は、第1図の■−■線に沿う断面図である。FIG. 2 is a sectional view taken along the line ■-■ in FIG. 1.

この図から、ヒートパイプ11をL形に折り曲げてある
ことが解る。
From this figure, it can be seen that the heat pipe 11 is bent into an L shape.

互に隣り合う冷却体のヒートパイプは、この場合、サイ
リスタスタツクから、サイリスタスタツクの中心軸15
に関してないし中心軸を横切る平面16に関して交互に
反対側になるよう側方に張り出している。
The heat pipes of mutually adjacent cooling bodies in this case extend from the thyristor stack to the central axis 15 of the thyristor stack.
They project laterally to alternately opposite sides with respect to a plane 16 that intersects the central axis.

隣接するヒートパイブ11の自由端11aは、その結果
、この実施例では互に平行する別々の平面17、18上
に位置する。
The free ends 11a of adjacent heat pipes 11 thus lie on separate planes 17, 18, which in this embodiment are parallel to each other.

かくして、平担な、占有空間の小さな構成形状が得られ
、これはさらになお、例えば空気のようなガス状冷却媒
体の良好な案内をも可能にする。
In this way, a flat design with a small footprint is obtained, which also allows good guidance of a gaseous cooling medium, such as air, for example.

この冷却媒体の案内のために、第2図から明らかなよう
に、支持体12、両結合片13、14および流れ案内板
19が利用される。
For guiding this cooling medium, the support 12, the two connecting pieces 13, 14 and the flow guide plate 19 are used, as can be seen in FIG.

これら構成部品は、ヒートパイブの冷却フィン11bな
いし11dが内部に配置される空気流路の壁面をなす。
These components form the wall surface of the air flow path in which the cooling fins 11b to 11d of the heat pipe are arranged.

第3図は、支持体14を取り外した状態におけるヒート
パイプの平面図である。
FIG. 3 is a plan view of the heat pipe with the support 14 removed.

この図から、互に隣り合う冷却体のヒートパイプ11が
、そのL形形状のために、交互に面17ないし18内に
位置することが解る。
It can be seen from this figure that the heat pipes 11 of mutually adjacent cooling bodies are located alternately in planes 17 and 18 due to their L-shaped shape.

さらに、この図は、本発明による構成によって、冷却フ
イン11bないし11dを、それが付属するヒートパイ
ブ11の中心軸11gに関して回転対称的に配置できる
ことを示している。
Furthermore, this figure shows that the arrangement according to the invention allows the cooling fins 11b to 11d to be arranged rotationally symmetrically with respect to the central axis 11g of the heat pipe 11 to which they are attached.

こすれば、全側面から均等に熱放散を行わせることがで
きる。
Rubbing allows for even heat dissipation from all sides.

第4図は、部分的に断面を取って、本発明によるサイリ
スタスタックに設けられるようなヒートパイプを示す。
FIG. 4 shows, partially in section, a heat pipe as provided in a thyristor stack according to the invention.

蒸発部内において、ヒートパイプは、例えばしわ付けを
することにより冷却体2内に確実な熱的結合が生ずるよ
うに固定されている。
In the evaporator section, the heat pipes are fixed in the cooling body 2 in such a way that a reliable thermal connection occurs, for example by creasing.

ヒートパイプは冷却体を貫通しており、そして冷却体か
ら突出する短い端部は冷媒の注入後ヒートパイプを封止
するのに利用できる。
The heat pipe passes through the cooling body, and the short end protruding from the cooling body is available for sealing the heat pipe after injection of coolant.

ヒートパイプ11の内部に芯11eが配置され、これは
、断面を取って図示された可撓性円筒片11内に示され
ている。
A wick 11e is arranged inside the heat pipe 11, which is shown within the flexible cylindrical piece 11 shown in cross section.

この範囲内において、芯は波形パイプの壁に密着せず、
波の上に単に乗っている。
Within this range, the core does not stick tightly to the wall of the corrugated pipe;
Simply riding on the waves.

芯11eとして利用できる材料に関してそしてヒートパ
イプに注入される冷媒に関しては、前述の刊行物に詳し
い説明がある。
Regarding the materials that can be used as the core 11e and regarding the refrigerant injected into the heat pipe, a detailed explanation can be found in the aforementioned publications.

冷却体2を電流の流通に利用するときもまた、通常、空
冷のヒートパイプ11を無電圧の状態に保つ必要はない
Also when the cooling body 2 is used for current flow, it is usually not necessary to keep the air-cooled heat pipe 11 in a voltage-free state.

このことが、特別の場合に必要となったときは、各ヒー
トパイプ11に電気絶縁性の中間片11fを設けること
ができ、この片は、第4図の実施例の場合冷却フイン1
1bとヒートパイプ11c間にはめ込まれている。
If this becomes necessary in special cases, each heat pipe 11 can be provided with an electrically insulating intermediate piece 11f, which in the embodiment of FIG.
1b and the heat pipe 11c.

この実施例の場合、電気絶縁性中間片11fの材料はセ
ラミックスであり、これは通例のように沿面距離を延ば
すためリブを有している。
In this embodiment, the material of the electrically insulating intermediate piece 11f is ceramic, which customarily has ribs to increase the creepage distance.

このような電気絶縁性の中間片11fを設けた場合、芯
11eを少なくとも各中間片11fの範囲内で電気絶縁
性の材料から作りそしてヒートパイプ内において電気絶
縁性の冷媒を用いる必要がある。
When such electrically insulating intermediate pieces 11f are provided, it is necessary to make the core 11e from an electrically insulating material at least within the range of each intermediate piece 11f and to use an electrically insulating refrigerant in the heat pipe.

このような芯とこのような冷媒については、同様に上記
の刊行物、特に西ドイツ国実用新案第7224356号
公報が詳しい。
Such wicks and such refrigerants are likewise detailed in the above-mentioned publications, in particular German Utility Model No. 72 24 356.

以上要約するに、本発明に従う構成と取ることにより、
ヒートパイプの利用でサイリスタの冷却を大幅に改善し
たガス冷却形、例えば空冷形のサイリスタスタツクを得
ることができる。
In summary, by adopting the configuration according to the present invention,
By using a heat pipe, it is possible to obtain a gas-cooled type, for example, an air-cooled type thyristor stack, which greatly improves the cooling of the thyristor.

本発明によるサイリスタスタックの構成寸法は、公知の
空冷形サイリスタスタックと比べてほとんど増大せずそ
してヒートパイプの特別な形状ならびにヒートパイプの
支持の結果、簡単な手段を用いて良好な冷却風の案内が
達せられる。
The structural dimensions of the thyristor stack according to the invention are hardly increased compared to known air-cooled thyristor stacks and, as a result of the special shape of the heat pipes and the support of the heat pipes, good cooling air guidance can be achieved using simple means. can be achieved.

ヒートパイブが可撓的ないし弾性的に構成されているの
で、熱的、機械的応力が補償されそして本発明によるサ
イリスタスタックは、耐震動性が要求される使用目的に
も設けられ得る。
Due to the flexible or elastic design of the heat pipe, thermal and mechanical stresses are compensated and the thyristor stack according to the invention can also be provided for applications requiring vibration resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明一実施例の一部切欠側面図、第2図は第
1図の■−■線に沿う縦断正面図、第3図は第1図に示
すスタックの一部切欠平面図、第4図は1つのヒートパ
イプを取り出して示す一部切欠正面図である。 1・・・平形サイリスタ、2・・・冷却体、11・・・
ヒートパイプ、11a・・ヒートパイプの自由端、11
b,11d・・・冷却フイン、17・・・サイリスタス
タツクの中心軸。
Fig. 1 is a partially cutaway side view of an embodiment of the present invention, Fig. 2 is a longitudinal sectional front view taken along the line ■-■ in Fig. 1, and Fig. 3 is a partially cutaway plan view of the stack shown in Fig. 1. , FIG. 4 is a partially cutaway front view showing one heat pipe taken out. 1... Flat thyristor, 2... Cooling body, 11...
Heat pipe, 11a...Free end of heat pipe, 11
b, 11d... Cooling fin, 17... Central axis of thyristor stack.

Claims (1)

【特許請求の範囲】[Claims] 1 複数個の平形サイリスタを、その各端面に冷却体を
設けながら互に積層し、弾性的に保持してなるものにお
いて、各冷却体がヒートパイプを備え、このヒートパイ
プはサイリスタ積層体から両側方に張り出し、次いで同
方向にL形に折れ曲り、その自由端がサイリスタ積層体
の中心軸を含む面に対して交互に反対側になるよう配設
されかつ前記自由端は冷却フィンを備えていることを特
徴とするサイリスタスタック。
1 A plurality of flat thyristors are stacked and elastically held together with a cooling body provided on each end face, and each cooling body is equipped with a heat pipe, and this heat pipe is connected to the thyristor stack on both sides. The thyristor laminates are arranged so that the free ends thereof are alternately opposite to the plane including the central axis of the thyristor stack, and the free ends are provided with cooling fins. A thyristor stack characterized by:
JP4213675A 1974-04-08 1975-04-07 thyristor stack Expired JPS583383B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2417106A DE2417106A1 (en) 1974-04-08 1974-04-08 Gas-cooled thyristor stack has heat sinks between thyristors - and is fitted with transverse cooling fins and lateral tubes

Publications (2)

Publication Number Publication Date
JPS514969A JPS514969A (en) 1976-01-16
JPS583383B2 true JPS583383B2 (en) 1983-01-21

Family

ID=5912495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4213675A Expired JPS583383B2 (en) 1974-04-08 1975-04-07 thyristor stack

Country Status (2)

Country Link
JP (1) JPS583383B2 (en)
DE (1) DE2417106A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2603813C2 (en) * 1976-02-02 1982-11-18 Brown, Boveri & Cie Ag, 6800 Mannheim Clamping device for a thermally and electrically pressure-contacted semiconductor component in disk cell design
DE2801660C2 (en) * 1978-01-16 1986-01-30 kabelmetal electro GmbH, 3000 Hannover Device for dissipating heat loss from electronic components
JPS5565866U (en) * 1978-10-31 1980-05-07
JPS55129462U (en) * 1979-03-08 1980-09-12
FR2588072B1 (en) * 1985-09-30 1987-12-11 Jeumont Schneider DISSIPATION SYSTEM FOR POWER SEMICONDUCTOR ELEMENTS
FR2604827B1 (en) * 1986-10-06 1989-12-29 Alsthom VAPORIZED COOLING DEVICE FOR POWER SEMICONDUCTORS
DE3719637A1 (en) * 1987-06-12 1988-12-29 Asea Brown Boveri Boiling-cooling device for semiconductor elements
JP2928603B2 (en) * 1990-07-30 1999-08-03 キヤノン株式会社 Wafer cooling device for X-ray exposure equipment
JP3020790B2 (en) * 1993-12-28 2000-03-15 株式会社日立製作所 Heat pipe type cooling device and vehicle control device using the same
US6081427A (en) * 1999-09-30 2000-06-27 Rockwell Technologies, Llc Retainer for press-pack semi-conductor device
FR2895589B1 (en) * 2005-12-23 2008-03-14 Valeo Equip Electr Moteur ELECTRICAL CONNECTION TERMINAL DEVICE, ESPECIALLY OF ROTATING ELECTRIC MACHINE, AND METHOD FOR PRODUCING SUCH A TERMINAL DEVICE.
US11488927B2 (en) 2021-02-18 2022-11-01 Abb Schweiz Ag Press-pack semiconductor fixtures

Also Published As

Publication number Publication date
JPS514969A (en) 1976-01-16
DE2417106A1 (en) 1975-10-16

Similar Documents

Publication Publication Date Title
JP6049752B2 (en) Newly structured bus bar
US5038569A (en) Thermoelectric converter
US6679318B2 (en) Light weight rigid flat heat pipe utilizing copper foil container laminated to heat treated aluminum plates for structural stability
KR101029353B1 (en) A heat dissipating device for a battery pack, and a battery pack using the same
US6609561B2 (en) Tunnel-phase change heat exchanger
JPS583383B2 (en) thyristor stack
JPH0621289A (en) Cooler for semiconductor
JP2013157111A (en) Cooling and heating structure of battery pack
US4023616A (en) Thyristor cooling arrangement
WO1999034438A1 (en) Heat sink
EP1779053A1 (en) Micro heat pipe with wedge capillaries
CN113224408A (en) High-capacity battery with good heat dissipation performance
JPH0448150Y2 (en)
JP3549933B2 (en) Plate fin type element cooler
KR850001098B1 (en) Boiling / cooling system
JP3511604B2 (en) Thermosyphon type heat transfer body
JP2015002105A (en) Cooling device for battery module
JP3456713B2 (en) Semiconductor element cooling unit
TWI378763B (en) Heat dissipation device for lithium battery
JPS5947809B2 (en) Electric heating device for heating
JPH0714029B2 (en) Power semiconductor device
JPH04196154A (en) Semiconductor cooling device
JP2001326310A (en) Electronic equipment cooling device
JP2757893B2 (en) Flat semiconductor device
CN215299343U (en) High-capacity battery with good heat dissipation performance