JP2013157111A - Cooling and heating structure of battery pack - Google Patents

Cooling and heating structure of battery pack Download PDF

Info

Publication number
JP2013157111A
JP2013157111A JP2012014967A JP2012014967A JP2013157111A JP 2013157111 A JP2013157111 A JP 2013157111A JP 2012014967 A JP2012014967 A JP 2012014967A JP 2012014967 A JP2012014967 A JP 2012014967A JP 2013157111 A JP2013157111 A JP 2013157111A
Authority
JP
Japan
Prior art keywords
heat
heat pipe
cooling
hydraulic fluid
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012014967A
Other languages
Japanese (ja)
Inventor
Kazuo Taga
和夫 多賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2012014967A priority Critical patent/JP2013157111A/en
Priority to CN2013100441245A priority patent/CN103227354A/en
Priority to CN201320053329.5U priority patent/CN203406391U/en
Publication of JP2013157111A publication Critical patent/JP2013157111A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular

Abstract

PROBLEM TO BE SOLVED: To provide a cooling and heating structure which can cool single cells constituting a battery pack efficiently, and can heat the single cells to a proper temperature range in a short time before starting use even in a cold district.SOLUTION: In the cooling and heating structure, a plurality of flat rectangular parallelepiped single cells 1, and a plurality of planar heat pipes 2 are arranged in lamination so that the single cells 1 and planar heat pipes 2 are perpendicular, and the planar heat pipes 2 come into thermal contact with at least single side of the single cells 1. Upper end of the planar heat pipe 2 at the perpendicular body portion 5a of a base plate 5 is located above the upper end of the single cell 1, and the lower end is located below the lower end of the single cell 1. A horizontal heat radiation part 8 making a right angle to the body portion 5a is provided at the upper end of the body portion 5a, and a horizontal heat receiving part 9 making a right angle to the body portion 5a is provided at the lower end of the body portion 5a.

Description

この発明は組電池の冷却兼加熱構造に関する。   The present invention relates to a cooling and heating structure for an assembled battery.

この明細書および特許請求の範囲において、図1および図7の上下を上下というものとする。   In this specification and claims, the top and bottom of FIGS. 1 and 7 are referred to as top and bottom.

近年、環境問題などから、ハイブリッド自動車、電気自動車等が注目されており、そのために各種の二次電池が開発されている。各種の二次電池の中でもリチウムイオン二次電池は、エネルギー密度が高く、密閉性に優れ、かつメンテナンスフリーであるため、ハイブリッド自動車や電気自動車用のバッテリとして優れているが、大型のものは実用化されていない。そこで、複数個の小型の単電池を直列または並列に接続して組電池の形態とすることにより、所望の電圧や容量を確保している。   In recent years, hybrid vehicles, electric vehicles, and the like have attracted attention due to environmental problems, and various secondary batteries have been developed for this purpose. Among various types of secondary batteries, lithium ion secondary batteries have high energy density, excellent sealing properties, and are maintenance-free, so they are excellent as batteries for hybrid vehicles and electric vehicles. It has not been converted. Therefore, a desired voltage and capacity are secured by connecting a plurality of small cells in series or in parallel to form a battery pack.

リチウムイオン二次電池は、使用温度によって性能や寿命が変化するので、長時間にわたって効率良く使用するためには適正な温度で使用する必要があるが、上述したような組電池の形態で用いた場合、各単電池自体から発せられる熱を放熱することが困難であり、各単電池の温度が上昇して寿命が短くなるという問題がある。   Lithium ion secondary batteries vary in performance and life depending on the operating temperature, so it is necessary to use them at an appropriate temperature in order to use them efficiently over a long period of time. In this case, it is difficult to dissipate heat generated from each unit cell itself, and there is a problem that the temperature of each unit cell rises and the life is shortened.

そこで、上述したような組電池における単電池の温度上昇を抑制することを目的として、複数の扁平状の単電池と、複数の平板状ヒートパイプとが、両者が水平となるように交互に積層状に配置されており、平板状ヒートパイプの周縁部の少なくとも一部に、単電池よりも外方に突出しかつ放熱用ヒートシンクに接触させられる放熱部が設けられている冷却構造が提案されている(特許文献1参照)。   Therefore, for the purpose of suppressing the temperature rise of the unit cell in the assembled battery as described above, a plurality of flat unit cells and a plurality of flat plate heat pipes are alternately stacked so that both are horizontal. A cooling structure is proposed in which a heat dissipating part is provided on at least a part of the peripheral part of the flat plate heat pipe that protrudes outward from the unit cell and is brought into contact with a heat dissipating heat sink. (See Patent Document 1).

ところで、寒冷地においては、使用開始前には使用環境温度の影響により単電池の温度が適正温度よりも低くなり、単電池の温度が適正温度に上昇するまでは効率良く使用することができないという問題がある。   By the way, in cold regions, the temperature of the unit cell becomes lower than the appropriate temperature due to the influence of the use environment temperature before the start of use, and it cannot be used efficiently until the temperature of the unit cell rises to the appropriate temperature. There's a problem.

特開2009−140714号公報JP 2009-140714 A

この発明の目的は、上記問題を解決し、組電池を構成する単電池を効率良く冷却することができるとともに、寒冷地においても使用開始前に短時間で単電池を適正温度域に加熱しうる組電池の冷却兼加熱構造を提供することにある。   The object of the present invention is to solve the above-mentioned problems and to efficiently cool the cells constituting the assembled battery and to heat the cells to an appropriate temperature range in a short time before the start of use even in a cold region. An object is to provide a cooling and heating structure for an assembled battery.

本発明は、上記目的を達成するために以下の態様からなる。   In order to achieve the above object, the present invention comprises the following aspects.

1)複数の扁平直方体状の単電池と、1つのヒートパイプ部が設けられた基板を有する複数の平板状ヒートパイプとが、単電池の少なくとも片面に平板状ヒートパイプが熱的に接触するように積層状に配置されており、基板の周縁部の少なくとも一部に、単電池よりも外方に突出しかつ冷却源に熱的に接触させられる放熱部と、単電池よりも外方に突出しかつ加熱源に熱的に接触させられる受熱部とが設けられている組電池の冷却兼加熱構造。   1) A plurality of flat rectangular parallelepiped cells and a plurality of flat plate heat pipes having a substrate provided with a single heat pipe portion so that the flat plate heat pipes are in thermal contact with at least one surface of the single cell. And a heat dissipating part projecting outward from the unit cell and being in thermal contact with the cooling source, projecting outward from the unit cell, and at least a part of the peripheral edge of the substrate An assembled battery cooling and heating structure provided with a heat receiving portion that is brought into thermal contact with a heating source.

2)平板状ヒートパイプの基板が互いに接合された2枚の金属板からなり、平板状ヒートパイプの基板のヒートパイプ部が、基板の少なくともいずれか一方の金属板を膨出させることにより形成された1つの中空状作動液封入部内に作動液が封入されることによって形成されている上記1)記載の組電池の冷却兼加熱構造。   2) The flat heat pipe substrate is composed of two metal plates joined to each other, and the heat pipe portion of the flat heat pipe substrate is formed by expanding at least one of the metal plates of the substrate. The cooling and heating structure for an assembled battery as described in 1) above, which is formed by enclosing a hydraulic fluid in one hollow hydraulic fluid enclosure.

3)単電池および平板状ヒートパイプが鉛直状に配置されており、平板状ヒートパイプの基板の上部に単電池の上端部よりも上方に突出した放熱部が設けられ、同じく基板の下部に単電池の下端部よりも下方に突出した受熱部が設けられている上記1)または2)記載の組電池の冷却兼加熱構造。   3) The unit cell and the flat plate heat pipe are arranged vertically, and a heat dissipating part projecting upward from the upper end of the unit cell is provided at the upper part of the substrate of the flat plate heat pipe. The cooling and heating structure for an assembled battery according to the above 1) or 2), wherein a heat receiving portion protruding downward from the lower end portion of the battery is provided.

4)平板状ヒートパイプの基板が、ヒートパイプ部が設けられた鉛直状本体部分を備えており、鉛直状本体部分の上端に、鉛直状本体部分と直角をなす水平状放熱部が設けられ、鉛直状本体部分の下端に、鉛直状本体部分と直角をなす水平状受熱部が設けられている上記3)記載の組電池の冷却兼加熱構造。   4) The flat heat pipe substrate has a vertical main body portion provided with a heat pipe portion, and a horizontal heat dissipating portion perpendicular to the vertical main body portion is provided at the upper end of the vertical main body portion, The cooling and heating structure for an assembled battery according to 3) above, wherein a horizontal heat receiving portion perpendicular to the vertical main body portion is provided at the lower end of the vertical main body portion.

5)すべての平板状ヒートパイプの基板の放熱部に跨って、1つの冷却源が熱的に接触するようになされ、すべての平板状ヒートパイプの基板の受熱部に跨って、1つの加熱源が熱的に接触するようになされている上記4)記載の組電池の冷却兼加熱構造。   5) One cooling source is made to come into thermal contact across the heat radiation parts of the substrates of all flat plate heat pipes, and one heating source is straddled across the heat receiving parts of the substrates of all flat plate heat pipes. The cooling and heating structure for an assembled battery according to 4) above, wherein the battery is in thermal contact.

6)単電池および平板状ヒートパイプが水平状に配置されており、平板状ヒートパイプの基板の周縁部の一部に放熱部と受熱部とが設けられている上記1)または2)記載の組電池の冷却兼加熱構造。   6) The cell according to 1) or 2) above, wherein the unit cells and the flat plate heat pipe are arranged horizontally, and a heat radiating portion and a heat receiving portion are provided on a part of the peripheral portion of the substrate of the flat plate heat pipe. Cooling and heating structure for battery pack.

7)平板状ヒートパイプの基板が、ヒートパイプ部が設けられた水平状本体部分を備えており、水平状本体部分の周縁の一部に、水平状本体部分と直角をなす鉛直状放熱部と、水平状本体部分と直角をなす鉛直状受熱部とが設けられている上記6)記載の組電池の冷却兼加熱構造。   7) The flat heat pipe substrate has a horizontal main body portion provided with a heat pipe portion, and a vertical heat dissipating portion perpendicular to the horizontal main body portion at a part of the peripheral edge of the horizontal main body portion. The cooling and heating structure for an assembled battery according to 6) above, wherein a vertical heat receiving portion perpendicular to the horizontal main body portion is provided.

8)すべての平板状ヒートパイプの基板の放熱部に跨って、1つの冷却源が熱的に接触するようになされ、すべての平板状ヒートパイプの基板の受熱部に跨って、1つの加熱源が熱的に接触するようになされている上記7)記載の組電池の冷却兼加熱構造。   8) One cooling source is in thermal contact with the heat sink of the substrates of all flat plate heat pipes, and one heating source is straddled with the heat receiving portions of the substrates of all flat plate heat pipes. The cooling and heating structure for an assembled battery according to 7) above, wherein the battery is in thermal contact.

9)放熱部および受熱部が兼用されるとともに、冷却源および加熱源が兼用されるようになされている上記7)または8)記載の組電池の冷却兼加熱構造。   9) The combined battery cooling and heating structure according to 7) or 8), wherein the heat radiation unit and the heat receiving unit are also used, and the cooling source and the heating source are also used.

10)両面に平板状ヒートパイプが熱的に接触させられた単電池と、同じく片面のみに平板状ヒートパイプが熱的に接触させられた単電池とが混在している上記1)〜9)のうちのいずれかに記載の組電池の冷却兼加熱構造。   10) The above 1) to 9), in which a single cell having a flat plate heat pipe thermally contacted on both sides and a single cell having a flat plate heat pipe thermally contacted only on one side are mixed. A cooling and heating structure for an assembled battery according to any one of the above.

上記1)〜10)の冷却兼加熱構造によれば、複数の扁平直方体状の単電池と、互いに接合された2枚の金属板からなりかつ1つのヒートパイプ部が設けられた基板を有する複数の平板状ヒートパイプとが、単電池の少なくとも片面に平板状ヒートパイプが熱的に接触するように積層状に配置されており、平板状ヒートパイプの基板のヒートパイプ部が、基板の少なくともいずれか一方の金属板を膨出させることにより形成された1つの中空状作動液封入部内に作動液が封入されることによって形成され、基板の周縁部の少なくとも一部に、単電池よりも外方に突出しかつ冷却源に熱的に接触させられる放熱部と、単電池よりも外方に突出しかつ加熱源に熱的に接触させられる受熱部とが設けられているので、以下に述べるように単電池を効率良く冷却しうるとともに、寒冷地においては使用開始前に単電池を短時間で適正温度に加熱することが可能になる。   According to the cooling and heating structures 1) to 10) above, a plurality of flat cells having a rectangular parallelepiped shape and a plurality of substrates each made of two metal plates joined to each other and provided with one heat pipe portion. Are arranged in a stacked manner so that the flat heat pipe is in thermal contact with at least one surface of the unit cell, and the heat pipe portion of the flat heat pipe substrate is at least one of the substrates. Formed by enclosing the working fluid in one hollow working fluid enclosure formed by expanding one of the metal plates, and at least part of the peripheral edge of the substrate is more outward than the unit cell. And a heat-dissipating part that is in thermal contact with the cooling source and a heat-receiving part that protrudes outward from the unit cell and that is in thermal contact with the heating source are provided as described below. Efficient battery Together may retirement, it is possible to heat the appropriate temperature in a short time unit cells before the start of use in cold climates.

すなわち、単電池を冷却する際には、単電池から発せられる熱によって、平板状ヒートパイプにおける単電池に熱的に接触している部分が加熱され、この熱がヒートパイプ部の作動液封入部内の作動液に伝わって作動液が蒸発する。一方、放熱部の近傍においては、放熱部に熱的に接触している冷却源によって、基板における放熱部に近い部分から熱が奪われ、放熱部に近い部分において作動液封入部内の気相の作動液が凝縮し、作動液封入部内の気相作動液が凝縮した部分の圧力が低下する。そして、作動液封入部内で発生した気相作動液が、作動液封入部内における圧力が低下した部分に流れるとともに、再凝縮した液相作動液が、液相作動液が蒸発した部分に流れるので、ヒートパイプ部において、気相作動液の流れと液相作動液の流れとが発生し、作動液の循環が起きる。ヒートパイプ部の作動液封入部内で気相作動液が凝縮した液相作動液は、液相作動液が蒸発した部分に流れるまでの間においても、単電池から熱を奪って蒸発する。したがって、単電池における平板状ヒートパイプに熱的に接触している部分の全体が均等に冷却される。   That is, when the unit cell is cooled, the portion of the flat plate heat pipe that is in thermal contact with the unit cell is heated by the heat generated from the unit cell, and this heat is heated in the working fluid enclosure of the heat pipe unit. The hydraulic fluid evaporates by being transferred to the hydraulic fluid. On the other hand, in the vicinity of the heat dissipating part, the cooling source that is in thermal contact with the heat dissipating part takes heat away from the part near the heat dissipating part of the substrate, and in the part close to the heat dissipating part, The hydraulic fluid is condensed, and the pressure of the portion where the vapor-phase hydraulic fluid in the hydraulic fluid enclosure is condensed is reduced. And, as the gas phase hydraulic fluid generated in the hydraulic fluid enclosing portion flows to the portion where the pressure in the hydraulic fluid enclosing portion has decreased, the recondensed liquid phase hydraulic fluid flows to the portion where the liquid phase hydraulic fluid has evaporated, In the heat pipe portion, a flow of the gas phase hydraulic fluid and a flow of the liquid phase hydraulic fluid are generated, and the hydraulic fluid is circulated. The liquid-phase hydraulic fluid in which the gas-phase hydraulic fluid is condensed in the hydraulic fluid enclosing portion of the heat pipe portion evaporates by taking heat from the unit cell until it flows to the portion where the liquid-phase hydraulic fluid has evaporated. Accordingly, the entire portion of the unit cell that is in thermal contact with the flat plate-like heat pipe is uniformly cooled.

寒冷地において、使用開始前に単電池を加熱する際には、加熱源から平板状ヒートパイプの基板の受熱部に熱を供給する。供給された熱は、基板における受熱部に近い部分に伝わるとともに、ヒートパイプ部の作動液封入部内の作動液に伝わって作動液が蒸発する。一方、単電池に熱的に接触している部分においては、単電池によって基板から熱が奪われて単電池が加熱され、作動液封入部内の気相の作動液が凝縮し、作動液封入部内の気相作動液が凝縮した部分の圧力が低下する。そして、作動液封入部内で発生した気相作動液が、作動液封入部内における圧力が低下した部分に流れるとともに、再凝縮した液相作動液が、液相作動液が蒸発した部分に流れるので、ヒートパイプ部において、気相作動液の流れと液相作動液の流れとが発生し、作動液の循環が起きる。したがって、単電池における平板状ヒートパイプに熱的に接触している部分の全体が均等に加熱され、単電池の全体が短時間で適正温度に加熱される。   In a cold region, when heating the unit cell before the start of use, heat is supplied from the heating source to the heat receiving portion of the flat plate heat pipe substrate. The supplied heat is transmitted to a portion of the substrate close to the heat receiving portion, and is also transmitted to the working fluid in the working fluid sealing portion of the heat pipe portion to evaporate the working fluid. On the other hand, in the portion that is in thermal contact with the unit cell, the unit cell is deprived of heat from the substrate, and the unit cell is heated, so that the gas-phase hydraulic fluid in the hydraulic fluid enclosing unit condenses, The pressure in the portion where the gas phase hydraulic fluid is condensed decreases. And, as the gas phase hydraulic fluid generated in the hydraulic fluid enclosing portion flows to the portion where the pressure in the hydraulic fluid enclosing portion has decreased, the recondensed liquid phase hydraulic fluid flows to the portion where the liquid phase hydraulic fluid has evaporated, In the heat pipe portion, a flow of the gas phase hydraulic fluid and a flow of the liquid phase hydraulic fluid are generated, and the hydraulic fluid is circulated. Therefore, the entire portion of the unit cell that is in thermal contact with the flat plate-like heat pipe is evenly heated, and the entire unit cell is heated to an appropriate temperature in a short time.

上記3)の冷却兼加熱構造によれば、単電池を冷却する際には、単電池から発せられる熱によって、平板状ヒートパイプにおける単電池に熱的に接触している部分が加熱され、この熱がヒートパイプ部の作動液封入部内の作動液に伝わって作動液が蒸発する。一方、放熱部の近傍においては、放熱部に熱的に接触している冷却源によって、基板における放熱部に近い部分から熱が奪われ、放熱部に近い上部において作動液封入部内の気相の作動液が凝縮し、作動液封入部内の気相作動液が凝縮した部分の圧力が低下する。そして、作動液封入部内で発生した気相作動液が、作動液封入部内における圧力が低下した部分に流れるとともに、再凝縮した液相作動液が、重力により下方に流れるので、ヒートパイプ部において、気相作動液の上方への流れと液相作動液の下方への流れとが発生し、作動液の循環が起きる。ヒートパイプ部の作動液封入部内で気相作動液が凝縮した液相作動液は、液相作動液が蒸発した部分に流れるまでの間においても、単電池から熱を奪って蒸発する。したがって、単電池における平板状ヒートパイプに熱的に接触している部分の全体が均等に冷却される。   According to the cooling and heating structure of 3) above, when cooling the unit cell, the portion of the flat plate heat pipe that is in thermal contact with the unit cell is heated by the heat generated from the unit cell. Heat is transmitted to the hydraulic fluid in the hydraulic fluid sealing portion of the heat pipe, and the hydraulic fluid evaporates. On the other hand, in the vicinity of the heat dissipating part, heat is taken away from the part near the heat dissipating part in the substrate by the cooling source that is in thermal contact with the heat dissipating part, and in the upper part near the heat dissipating part, The hydraulic fluid is condensed, and the pressure of the portion where the vapor-phase hydraulic fluid in the hydraulic fluid enclosure is condensed is reduced. And the gas phase hydraulic fluid generated in the hydraulic fluid enclosing part flows to the portion where the pressure in the hydraulic fluid enclosing part is reduced, and the recondensed liquid phase hydraulic fluid flows downward by gravity. The upward flow of the gas-phase hydraulic fluid and the downward flow of the liquid-phase hydraulic fluid are generated, and the hydraulic fluid is circulated. The liquid-phase hydraulic fluid in which the gas-phase hydraulic fluid is condensed in the hydraulic fluid enclosing portion of the heat pipe portion evaporates by taking heat from the unit cell until it flows to the portion where the liquid-phase hydraulic fluid has evaporated. Accordingly, the entire portion of the unit cell that is in thermal contact with the flat plate-like heat pipe is uniformly cooled.

寒冷地において、使用開始前に単電池を加熱する際には、加熱源から平板状ヒートパイプの基板の受熱部に熱を供給する。供給された熱は、基板における受熱部に近い部分に伝わるとともに、ヒートパイプ部の作動液封入部内の作動液に伝わって作動液が蒸発する。一方、単電池に熱的に接触している部分においては、単電池によって基板から熱が奪われて単電池が加熱され、作動液封入部内の気相の作動液が凝縮し、作動液封入部内の気相作動液が凝縮した部分の圧力が低下する。そして、作動液封入部内で発生した気相作動液が、作動液封入部内における圧力が低下した部分に流れるとともに、再凝縮した液相作動液が、重力により下方に流れるので、ヒートパイプ部において、気相作動液の上方への流れと液相作動液の下方への流れとが発生し、作動液の循環が起きる。したがって、単電池における平板状ヒートパイプに熱的に接触している部分の全体が均等に加熱され、単電池の全体が短時間で適正温度に加熱される。   In a cold region, when heating the unit cell before the start of use, heat is supplied from the heating source to the heat receiving portion of the flat plate heat pipe substrate. The supplied heat is transmitted to a portion of the substrate close to the heat receiving portion, and is also transmitted to the working fluid in the working fluid sealing portion of the heat pipe portion to evaporate the working fluid. On the other hand, in the portion that is in thermal contact with the unit cell, the unit cell is deprived of heat from the substrate, and the unit cell is heated, so that the gas-phase hydraulic fluid in the hydraulic fluid enclosing unit condenses, The pressure in the portion where the gas phase hydraulic fluid is condensed decreases. And the gas phase hydraulic fluid generated in the hydraulic fluid enclosing part flows to the portion where the pressure in the hydraulic fluid enclosing part is reduced, and the recondensed liquid phase hydraulic fluid flows downward by gravity. The upward flow of the gas-phase hydraulic fluid and the downward flow of the liquid-phase hydraulic fluid are generated, and the hydraulic fluid is circulated. Therefore, the entire portion of the unit cell that is in thermal contact with the flat plate-like heat pipe is evenly heated, and the entire unit cell is heated to an appropriate temperature in a short time.

上記4)の冷却兼加熱構造によれば、複数の平板状ヒートパイプの基板の放熱部に跨って冷却源を熱的に接触させることが可能になるとともに、複数の平板状ヒートパイプの基板の受熱部に跨って加熱源を熱的に接触させることが可能なり、冷却源および加熱源の数を低減することが可能になる。   According to the cooling and heating structure of 4) above, the cooling source can be brought into thermal contact across the heat radiation portions of the plurality of flat plate heat pipe substrates, and the plurality of flat plate heat pipe substrates The heating source can be brought into thermal contact across the heat receiving portion, and the number of cooling sources and heating sources can be reduced.

上記5)の冷却兼加熱構造によれば、冷却源および加熱源の数を最小にすることができる。   According to the cooling and heating structure of 5) above, the number of cooling sources and heating sources can be minimized.

上記6)の冷却兼加熱構造によれば、単電池を冷却する際には、単電池から発せられる熱によって、平板状ヒートパイプにおける単電池に熱的に接触している部分が加熱され、この熱がヒートパイプ部の作動液封入部内の作動液に伝わって作動液が蒸発する。一方、放熱部の近傍においては、放熱部に熱的に接触している冷却源によって、基板における放熱部に近い部分から熱が奪われ、放熱部に近い上部において作動液封入部内の気相の作動液が凝縮し、作動液封入部内の気相作動液が凝縮した部分の圧力が低下する。そして、作動液封入部内で発生した気相作動液が、作動液封入部内における圧力が低下した部分に流れるとともに、再凝縮した液相作動液が、作動液封入部内の液面高さのバランスを取るように、液相作動液が蒸発した部分に流れるので、ヒートパイプ部において、気相作動液の流れと液相作動液の流れとが発生し、作動液の循環が起きる。ヒートパイプ部の作動液封入部内で気相作動液が凝縮した液相作動液は、液相作動液が蒸発した部分に流れるまでの間においても、単電池から熱を奪って蒸発する。したがって、単電池における平板状ヒートパイプに熱的に接触している部分の全体が均等に冷却される。   According to the cooling and heating structure of 6) above, when cooling the unit cell, the portion of the flat plate heat pipe that is in thermal contact with the unit cell is heated by the heat generated from the unit cell. Heat is transmitted to the hydraulic fluid in the hydraulic fluid sealing portion of the heat pipe, and the hydraulic fluid evaporates. On the other hand, in the vicinity of the heat dissipating part, heat is taken away from the part near the heat dissipating part in the substrate by the cooling source that is in thermal contact with the heat dissipating part, and in the upper part near the heat dissipating part, The hydraulic fluid is condensed, and the pressure of the portion where the vapor-phase hydraulic fluid in the hydraulic fluid enclosure is condensed is reduced. The gas-phase hydraulic fluid generated in the hydraulic fluid enclosure flows to the portion where the pressure in the hydraulic fluid enclosure has decreased, and the recondensed liquid-phase hydraulic fluid balances the liquid level in the hydraulic fluid enclosure. As described above, since the liquid phase hydraulic fluid flows through the evaporated portion, a gas phase hydraulic fluid flow and a liquid phase hydraulic fluid flow are generated in the heat pipe portion, and the hydraulic fluid is circulated. The liquid-phase hydraulic fluid in which the gas-phase hydraulic fluid is condensed in the hydraulic fluid enclosing portion of the heat pipe portion evaporates by taking heat from the unit cell until it flows to the portion where the liquid-phase hydraulic fluid has evaporated. Accordingly, the entire portion of the unit cell that is in thermal contact with the flat plate-like heat pipe is uniformly cooled.

寒冷地において、使用開始前に単電池を加熱する際には、加熱源から平板状ヒートパイプの基板の受熱部に熱を供給する。供給された熱は、基板における受熱部に近い部分に伝わるとともに、ヒートパイプ部の作動液封入部内の作動液に伝わって作動液が蒸発する。一方、単電池に熱的に接触している部分においては、単電池によって基板から熱が奪われて単電池が加熱され、作動液封入部内の気相の作動液が凝縮し、作動液封入部内の気相作動液が凝縮した部分の圧力が低下する。そして、作動液封入部内で発生した気相作動液が、作動液封入部内における圧力が低下した部分に流れるとともに、再凝縮した液相作動液が、作動液封入部内の液面高さのバランスを取るように、液相作動液が蒸発した部分に流れるので、ヒートパイプ部において、気相作動液の流れとこれとは逆向きの液相作動液の流れとが発生し、作動液の循環が起きる。したがって、単電池における平板状ヒートパイプに熱的に接触している部分の全体が均等に加熱され、単電池の全体が短時間で適正温度に加熱される。   In a cold region, when heating the unit cell before the start of use, heat is supplied from the heating source to the heat receiving portion of the flat plate heat pipe substrate. The supplied heat is transmitted to a portion of the substrate close to the heat receiving portion, and is also transmitted to the working fluid in the working fluid sealing portion of the heat pipe portion to evaporate the working fluid. On the other hand, in the portion that is in thermal contact with the unit cell, the unit cell is deprived of heat from the substrate, and the unit cell is heated, so that the gas-phase hydraulic fluid in the hydraulic fluid enclosing unit condenses, The pressure in the portion where the gas phase hydraulic fluid is condensed decreases. The gas-phase hydraulic fluid generated in the hydraulic fluid enclosure flows to the portion where the pressure in the hydraulic fluid enclosure has decreased, and the recondensed liquid-phase hydraulic fluid balances the liquid level in the hydraulic fluid enclosure. As described above, since the liquid phase hydraulic fluid flows through the evaporated portion, a flow of the gas phase hydraulic fluid and a flow of the liquid phase hydraulic fluid in the opposite direction are generated in the heat pipe portion, and the circulation of the hydraulic fluid is performed. Get up. Therefore, the entire portion of the unit cell that is in thermal contact with the flat plate-like heat pipe is evenly heated, and the entire unit cell is heated to an appropriate temperature in a short time.

上記7)の冷却兼加熱構造によれば、複数の平板状ヒートパイプの基板の放熱部に跨って冷却源を熱的に接触させることが可能になるとともに、複数の平板状ヒートパイプの基板の受熱部に跨って加熱源を熱的に接触させることが可能なり、冷却源および加熱源の数を低減することが可能になる。   According to the cooling and heating structure of the above 7), the cooling source can be brought into thermal contact across the heat radiation portions of the plurality of flat plate heat pipe substrates, and the plurality of flat plate heat pipe substrates The heating source can be brought into thermal contact across the heat receiving portion, and the number of cooling sources and heating sources can be reduced.

上記8)の冷却兼加熱構造によれば、冷却源および加熱源の数を最小にすることができる。   According to the cooling and heating structure of 8) above, the number of cooling sources and heating sources can be minimized.

上記9)の冷却兼加熱構造によれば、冷却源および加熱源を別々に用意する必要がなくなる。   According to the cooling and heating structure 9), it is not necessary to prepare a cooling source and a heating source separately.

この発明による組電池の冷却兼加熱構造の実施形態1の全体構成を示す一部切り欠き正面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a partially cutaway front view showing an overall configuration of a first embodiment of a cooling and heating structure for a battery pack according to the present invention. 図1に示す冷却兼加熱構造の一部を示す分解斜視図である。It is a disassembled perspective view which shows a part of cooling and heating structure shown in FIG. 図1の冷却兼加熱構造に用いられる平板状ヒートパイプの第1の変形例を示す図である。It is a figure which shows the 1st modification of the flat heat pipe used for the cooling and heating structure of FIG. 図1の冷却兼加熱構造に用いられる平板状ヒートパイプの第2の変形例を示す図である。It is a figure which shows the 2nd modification of the flat heat pipe used for the cooling and heating structure of FIG. 図1の冷却兼加熱構造に用いられる平板状ヒートパイプの第3の変形例を示す図である。It is a figure which shows the 3rd modification of the flat heat pipe used for the cooling and heating structure of FIG. 図1の冷却兼加熱構造に用いられる平板状ヒートパイプの第4の変形例を示す図である。It is a figure which shows the 4th modification of the flat heat pipe used for the cooling and heating structure of FIG. この発明による組電池の冷却兼加熱構造の実施形態2の全体構成を示す一部切り欠き正面図である。It is a partially notched front view which shows the whole structure of Embodiment 2 of the cooling and heating structure of the assembled battery by this invention.

以下、この発明の実施形態を、図面を参照して説明する。なお、以下の説明において、図1および図7の左右を左右というものとする。   Embodiments of the present invention will be described below with reference to the drawings. In the following description, left and right in FIGS. 1 and 7 are referred to as left and right.

また、以下の説明において、「アルミニウム」という用語には、純アルミニウムの他にアルミニウム合金を含むものとする。   In the following description, the term “aluminum” includes aluminum alloys in addition to pure aluminum.

実施形態1
この実施形態は図1および図2に示すものである。
Embodiment 1
This embodiment is shown in FIG. 1 and FIG.

図1はこの発明による組電池の冷却兼加熱構造の全体構成を示し、図2はその一部の構成を示す。   FIG. 1 shows the overall structure of a cooling and heating structure for an assembled battery according to the present invention, and FIG. 2 shows a part of the structure.

図1および図2において、組電池の冷却兼加熱構造は、複数の扁平直方体状単電池(1)と複数の平板状ヒートパイプ(2)とが、単電池(1)および平板状ヒートパイプ(2)が鉛直状となり、かつ平板状ヒートパイプ(2)が隣り合う単電池(1)どうしの間および左端の単電池(1)の左側(外側)に位置するように積層状に配置されたものである。単電池(1)と平板状ヒートパイプ(2)とは熱的に接触させられている。図示は省略したが、単電池(1)と平板状ヒートパイプ(2)との間には電気絶縁フィルムが介在させられれるか、あるいは平板状ヒートパイプ(2)の左右両面に電気絶縁コーティングが施されることによって、単電池(1)と平板状ヒートパイプ(2)との間が電気絶縁状態となっていることが好ましい。   In FIG. 1 and FIG. 2, the cooling and heating structure of the assembled battery is such that a plurality of flat rectangular unit cells (1) and a plurality of flat plate heat pipes (2) include a single cell (1) and a flat plate heat pipe ( 2) is vertical, and the flat heat pipes (2) are arranged in a stack so that they are located between adjacent cells (1) and on the left side (outside) of the leftmost cell (1) Is. The unit cell (1) and the flat plate heat pipe (2) are in thermal contact. Although illustration is omitted, an electric insulation film is interposed between the unit cell (1) and the flat plate heat pipe (2), or an electric insulation coating is provided on both the left and right sides of the flat plate heat pipe (2). By being applied, it is preferable that the unit cell (1) and the flat plate heat pipe (2) are in an electrically insulated state.

単電池(1)の上端に1対の端子(3)が上方突出状に設けられており、図示は省略したが、端子(3)を利用して全ての単電池(1)が直列状または並列状に接続されることにより組電池(4)が構成されている。   A pair of terminals (3) are provided on the upper end of the unit cell (1) so as to protrude upwards, and although not shown, all the unit cells (1) are connected in series using the terminal (3). The assembled battery (4) is configured by being connected in parallel.

平板状ヒートパイプ(2)は、互いに接合された2枚のアルミニウム板からなり、かつ1つのヒートパイプ部(6)が設けられた鉛直状本体部分(5a)を有する縦長方形基板(5)を備えている。平板状ヒートパイプ(2)の基板(5)のヒートパイプ部(6)は、基板(5)のいずれか一方のアルミニウム板を外側に膨出させることにより形成された1つの中空状作動液封入部(7)内に作動液が封入されることによって形成されている。なお、作動液封入部(7)は、両アルミニウム板をそれぞれ外方に膨出させることにより形成されていてもよい。作動液封入部(7)は、基板(5)の鉛直状本体部分(5a)全体に形成された縦長方形の格子状となっている。平板状ヒートパイプ(2)の基板(5)の鉛直状本体部分(5a)の上端は単電池(1)の上端よりも上方に大きく突出しており、ヒートパイプ部(6)の上部も単電池(1)の上端よりも上方に位置している。平板状ヒートパイプ(2)の基板(5)の鉛直状本体部分(5a)の下端は単電池(1)の下端よりも基板(5)の厚み以上下方に位置している。   The flat plate heat pipe (2) is composed of two aluminum plates joined together, and a vertical rectangular substrate (5) having a vertical main body portion (5a) provided with one heat pipe portion (6). I have. The heat pipe portion (6) of the substrate (5) of the flat plate heat pipe (2) is filled with one hollow working fluid formed by expanding one of the aluminum plates of the substrate (5) outward. The hydraulic fluid is formed in the part (7). The hydraulic fluid enclosing part (7) may be formed by bulging both aluminum plates outward. The hydraulic fluid enclosing portion (7) has a vertical rectangular lattice shape formed on the entire vertical main body portion (5a) of the substrate (5). The upper end of the vertical body part (5a) of the substrate (5) of the flat plate heat pipe (2) protrudes greatly upward from the upper end of the unit cell (1), and the upper part of the heat pipe part (6) is also a unit cell. It is located above the upper end of (1). The lower end of the vertical main body portion (5a) of the substrate (5) of the flat plate heat pipe (2) is positioned lower than the lower end of the unit cell (1) by the thickness of the substrate (5).

平板状ヒートパイプ(2)の基板(5)は、たとえば2枚のアルミニウム板の合わせ面のうちの少なくともいずれか一方の面に圧着防止剤を所要パターンに印刷し、この状態で2枚のアルミニウム板を圧着して合わせ板をつくり、合わせ板の非圧着部に流体圧を導入することによって作動液封入部(7)を一挙に形成する、所謂ロールボンド方によって製造される。合せ板の非圧着部は、作動液封入部(7)に対応する形状の作動液封入部(7)用非圧着部と、作動液封入部(7)用非圧着部から合せ板の周縁に至る流体圧導入用非圧着部とからなる。流体圧導入用非圧着部から流体圧を導入して作動液封入部(7)を形成すると、流体圧導入用非圧着部は、一端が作動液封入部(7)に連なるとともに他端が合せ板の周縁に開口した作動液注入部となる。作動液注入部は作動液の注入後封止される。   For the substrate (5) of the flat plate heat pipe (2), for example, an anti-bonding agent is printed in a required pattern on at least one of the two aluminum plate mating surfaces. It is manufactured by a so-called roll bonding method in which a working plate is formed by pressing a plate to make a laminated plate and introducing fluid pressure into a non-crimped portion of the laminated plate at once. The non-crimping part of the laminating plate is located on the periphery of the laminating plate from the non-crimping part for the hydraulic fluid enclosing part (7) and the non-crimping part for the hydraulic fluid enclosing part (7) corresponding to the working fluid enclosing part And a non-crimping part for introducing fluid pressure. When fluid pressure is introduced from the non-crimped portion for introducing fluid pressure to form the hydraulic fluid enclosing portion (7), one end of the non-crimped portion for introducing fluid pressure is connected to the hydraulic fluid enclosing portion (7) and the other end is aligned. It becomes the hydraulic fluid injection | pouring part opened to the peripheral edge of the board. The hydraulic fluid injection part is sealed after the hydraulic fluid is injected.

なお、基板(5)は、少なくとも1枚のアルミニウム板が作動液封入部(7)を形成するための外方膨出部を有する2枚のアルミニウム板を、たとえばろう付することにより形成してもよい。   The substrate (5) is formed by brazing, for example, two aluminum plates having at least one aluminum plate having an outward bulging portion for forming the hydraulic fluid enclosing portion (7). Also good.

平板状ヒートパイプ(2)の基板(5)における鉛直状本体部分(5a)の上端に、基板(5)が鉛直状本体部分(5a)に対して左右いずれか一方、ここでは右方に直角をなすように曲げられることによって、鉛直状本体部分(5a)と直角をなす水平状放熱部(8)が設けられ、同じく鉛直状本体部分(5a)の下端に、基板(5)が鉛直状本体部分(5a)に対して左右いずれか一方、ここでは右方に直角をなすように曲げられることによって、鉛直状本体部分(5a)と直角をなしかつ単電池(1)の下方に位置する水平状受熱部(9)が設けられている。すべての放熱部(8)は同一水平面内に位置しており、複数、ここではすべての放熱部(8)に跨って1つの冷却源(11)が熱的に接触させられている。図示の例では、冷却源(11)は、放熱部(8)に熱的に接触させられる放熱基板(11a)と、放熱基板(11a)の片面に間隔をおいて並列状に一体に形成された複数のフィン(11b)とからなる。また、冷却源(11)としては、内部に低温流体が流される流体冷却式クーラなどが用いられてもよい。また、すべての受熱部(9)は同一水平面内に位置しており、複数、ここではすべての受熱部(9)に跨って1つの加熱源(12)が熱的に接触させられている。加熱源(12)としては、内部に高温流体が流される流体加熱式ヒータや、電気ヒータなどが用いられる。なお、図2に鎖線で示すように、放熱部(8)および受熱部(9)は、基板(5)が鉛直状本体部分(5a)に対して左方に直角をなすように曲げられることによって設けられていてもよい。   At the upper end of the vertical body part (5a) in the substrate (5) of the flat plate heat pipe (2), the substrate (5) is either left or right with respect to the vertical body part (5a), here right-angled to the right The horizontal heat dissipating part (8) perpendicular to the vertical main body part (5a) is provided, and the substrate (5) is vertically formed at the lower end of the vertical main body part (5a). Either right or left with respect to the main body part (5a), here, it is bent to form a right angle to the right, thereby forming a right angle with the vertical main body part (5a) and positioned below the unit cell (1) A horizontal heat receiving portion (9) is provided. All the heat dissipating parts (8) are located in the same horizontal plane, and one cooling source (11) is in thermal contact with the plurality of heat dissipating parts (8) here. In the example shown in the figure, the cooling source (11) is integrally formed in parallel with a space between one side of the heat dissipation substrate (11a) and the heat dissipation substrate (11a) that is in thermal contact with the heat dissipation portion (8). And a plurality of fins (11b). Further, as the cooling source (11), a fluid cooling type cooler in which a low-temperature fluid is allowed to flow inside may be used. Moreover, all the heat receiving parts (9) are located in the same horizontal plane, and one heating source (12) is thermally contacted across multiple, here all the heat receiving parts (9). As the heating source (12), a fluid heating heater in which a high-temperature fluid flows inside, an electric heater, or the like is used. As shown by the chain line in FIG. 2, the heat radiating part (8) and the heat receiving part (9) are bent so that the substrate (5) is perpendicular to the left side with respect to the vertical main body part (5a). May be provided.

上述した冷却兼加熱構造において、単電池(1)を冷却する際には、単電池(1)から発せられる熱によって、平板状ヒートパイプ(2)の基板(5)の鉛直状本体部分(5a)における単電池(1)に熱的に接触している部分が加熱され、この熱がヒートパイプ部(6)の作動液封入部(7)内の作動液に伝わって作動液が蒸発する。一方、平板状ヒートパイプ部(2)の基板(5)の放熱部(8)に熱的に接触している冷却源(11)によって、基板(5)の鉛直状本体部分(5a)における放熱部(8)に近い部分から熱が奪われ、放熱部(8)に近い上部において作動液封入部(7)内の気相の作動液が凝縮し、作動液封入部(7)の上部内の圧力が低下する。そして、作動液封入部(7)内で発生した気相の作動液が、作動液封入部(7)内における気相作動液が凝縮して圧力が低下した上部に流れるとともに、再凝縮した液相作動液が、重力により下方に流れるので、ヒートパイプ部(6)において、気相作動液の上方への流れと液相作動液の下方への流れが発生し、作動液の循環がおきる。ヒートパイプ部(6)の作動液封入部(7)の上部内で凝縮した液相の作動液は、ヒートパイプ部(6)の下部に戻るまでの間においても、平板状ヒートパイプ(2)の基板(5)の鉛直状本体部分(5a)における単電池(1)に熱的に接触している部分の作動液封入部(7)内で単電池(1)から熱を奪って蒸発する。したがって、単電池(1)における平板状ヒートパイプ(2)に熱的に接触している部分の全体が均等に冷却される。   In the cooling and heating structure described above, when the unit cell (1) is cooled, the vertical body portion (5a) of the substrate (5) of the flat plate heat pipe (2) is generated by the heat generated from the unit cell (1). The portion in thermal contact with the unit cell (1) in () is heated, and this heat is transmitted to the hydraulic fluid in the hydraulic fluid enclosing portion (7) of the heat pipe portion (6) to evaporate the hydraulic fluid. On the other hand, by the cooling source (11) in thermal contact with the heat radiating part (8) of the substrate (5) of the flat plate heat pipe part (2), heat is radiated in the vertical main body part (5a) of the substrate (5). Heat is taken away from the part close to the part (8), and the gas-phase hydraulic fluid in the hydraulic fluid enclosure (7) condenses in the upper part near the heat radiating part (8), and the inside of the upper part of the hydraulic fluid enclosure (7) The pressure drops. Then, the gas-phase hydraulic fluid generated in the hydraulic fluid enclosure (7) flows into the upper part where the vapor-phase hydraulic fluid in the hydraulic fluid enclosure (7) is condensed and the pressure is reduced, and the liquid is condensed again. Since the phase hydraulic fluid flows downward due to gravity, in the heat pipe (6), an upward flow of the vapor phase hydraulic fluid and a downward flow of the liquid phase hydraulic fluid are generated, and the hydraulic fluid circulates. The liquid phase hydraulic fluid condensed in the upper part of the hydraulic fluid enclosing part (7) of the heat pipe part (6) is returned to the lower part of the heat pipe part (6), and the flat plate heat pipe (2) Of the vertical body portion (5a) of the substrate (5) in the portion of the hydraulic fluid enclosing portion (7) in thermal contact with the single cell (1) to remove heat from the single cell (1) and evaporate . Therefore, the entire portion of the unit cell (1) that is in thermal contact with the flat plate heat pipe (2) is cooled uniformly.

寒冷地において、使用開始前に単電池(1)を加熱する際には、加熱源(12)から平板状ヒートパイプ(2)の基板(5)の受熱部(9)に熱を供給する。受熱部(9)に供給された熱は、基板(5)の鉛直状本体部分(5a)における受熱部(9)に近い部分に伝わるとともに、ヒートパイプ部(6)の作動液封入部(7)内の作動液に伝わって作動液が蒸発する。一方、単電池(1)の温度は低いので、単電池(1)に熱的に接触している部分においては、単電池(1)によって基板(5)から熱が奪われて単電池(1)が加熱され、作動液封入部(7)内の気相の作動液が凝縮し、作動液封入部(7)内の気相作動液が凝縮した部分の圧力が低下する。そして、作動液封入部(7)内で発生した気相作動液が、作動液封入部(7)内における圧力が低下した部分に流れるとともに、再凝縮した液相作動液が、重力により下方に流れるので、ヒートパイプ部(6)において、気相作動液の上方への流れと液相作動液の下方への流れとが発生し、作動液の循環が起きるとともに蒸発凝縮の潜熱変化が起こる。したがって、単電池(1)における平板状ヒートパイプ(2)に熱的に接触している部分の全体が均等に加熱され、単電池(1)の全体が短時間で適正温度に加熱される。   When the unit cell (1) is heated before the start of use in a cold region, heat is supplied from the heating source (12) to the heat receiving part (9) of the substrate (5) of the flat plate heat pipe (2). The heat supplied to the heat receiving part (9) is transmitted to a portion close to the heat receiving part (9) in the vertical main body part (5a) of the substrate (5) and at the same time, the working fluid enclosing part (7 The hydraulic fluid is transmitted to the hydraulic fluid inside) and evaporates. On the other hand, since the temperature of the unit cell (1) is low, in the part that is in thermal contact with the unit cell (1), the unit cell (1) is deprived of heat from the substrate (5) by the unit cell (1). ) Is heated, the vapor phase hydraulic fluid in the hydraulic fluid enclosure (7) is condensed, and the pressure in the portion of the hydraulic fluid enclosure (7) where the vapor phase hydraulic fluid is condensed is reduced. The gas-phase hydraulic fluid generated in the hydraulic fluid enclosure (7) flows to the portion where the pressure in the hydraulic fluid enclosure (7) has decreased, and the recondensed liquid-phase hydraulic fluid is moved downward by gravity. Therefore, in the heat pipe section (6), an upward flow of the gas-phase hydraulic fluid and a downward flow of the liquid-phase hydraulic fluid are generated, and the hydraulic fluid circulates and changes in the latent heat of evaporation condensation. Therefore, the entire portion of the unit cell (1) that is in thermal contact with the flat plate heat pipe (2) is heated uniformly, and the entire unit cell (1) is heated to an appropriate temperature in a short time.

上記実施形態1において、図1に鎖線で示すように、組電池(4)の単電池(1)および平板状ヒートパイプ(2)が、たとえばアルミニウムなどの高熱伝導性材料からなる1つの外装ケーシング(13)内に収納されて用いられることがある。この場合、平板状ヒートパイプ(2)の放熱部(8)が外装ケーシング(13)の頂壁内面に熱的に接触させられ、同じく受熱部(9)が外装ケーシング(13)の底壁内面に熱的に接触させられる。   In the first embodiment, as shown by a chain line in FIG. 1, the single battery (1) and the flat plate heat pipe (2) of the assembled battery (4) are made of a highly heat-conductive material such as aluminum, for example. (13) There are cases where it is housed and used. In this case, the heat radiating portion (8) of the flat plate heat pipe (2) is brought into thermal contact with the inner surface of the top wall of the outer casing (13), and the heat receiving portion (9) is also used as the inner surface of the bottom wall of the outer casing (13). In thermal contact.

図3〜図6は上述した実施形態1の冷却兼加熱構造に用いられる平板状ヒートパイプの変形例を示す。   3-6 shows the modification of the flat plate-shaped heat pipe used for the cooling and heating structure of Embodiment 1 mentioned above.

図3に示す平板状ヒートパイプ(15)の場合、実施形態1の平板状ヒートパイプ(2)と同様な構成を有する基板(5)の鉛直状本体部分(5a)の長さ方向の上端側でかつ幅方向の両側部分が切除されることによって、基板(5)の鉛直状本体部分(5a)の幅方向の中央部に、基板(5)の幅方向に一定の幅を有しかつ長手方向外側に突出した突出部(16)が設けられている。基板(5)の鉛直状本体部分(5a)に設けられたヒートパイプ部(17)の作動液封入部(18)は、突出部(16)を含んで基板(5)の全体に形成された異形の格子状となっている。また、放熱部(8)は突出部(16)の上端に設けられている。   In the case of the flat plate heat pipe (15) shown in FIG. 3, the upper end side in the length direction of the vertical main body portion (5a) of the substrate (5) having the same configuration as the flat plate heat pipe (2) of the first embodiment. In addition, both side portions in the width direction are cut off, so that the vertical portion (5a) of the substrate (5) has a constant width in the width direction of the substrate (5) at the center in the width direction and the longitudinal direction. A protruding portion (16) protruding outward in the direction is provided. The hydraulic fluid enclosing part (18) of the heat pipe part (17) provided in the vertical main body part (5a) of the substrate (5) is formed on the entire substrate (5) including the projecting part (16). It has an irregular lattice shape. Further, the heat radiating portion (8) is provided at the upper end of the protruding portion (16).

図4に示す平板状ヒートパイプ(20)の場合、実施形態1の平板状ヒートパイプ(2)と同様な構成を有する基板(5)の鉛直状本体部分(5a)の長さ方向の上端側でかつ幅方向の中央部分が切除されることによって、基板(5)の鉛直状本体部分(5a)の幅方向の両側部分に、基板(5)の幅方向に一定の幅を有しかつ長手方向外側に突出した2つの突出部(21)が間隔をおいて設けられている。基板(5)の鉛直状本体部分(5a)に設けられたヒートパイプ部(22)の作動液封入部(23)は、両突出部(21)を含んで基板(5)の全体に形成された異形の格子状となっている。また、放熱部(8)は両突出部(21)の上端に設けられている。   In the case of the flat plate heat pipe (20) shown in FIG. 4, the upper end side in the length direction of the vertical main body portion (5a) of the substrate (5) having the same configuration as the flat plate heat pipe (2) of the first embodiment. In addition, by cutting away the central portion in the width direction, both sides of the vertical body portion (5a) of the substrate (5) have a certain width in the width direction of the substrate (5) and are elongated. Two projecting portions (21) projecting outward in the direction are provided at an interval. The hydraulic fluid enclosing part (23) of the heat pipe part (22) provided in the vertical main body part (5a) of the substrate (5) is formed on the entire substrate (5) including both projecting parts (21). It has an irregular lattice shape. Further, the heat radiating portion (8) is provided at the upper ends of both projecting portions (21).

図3および図4に示す平板状ヒートパイプ(15)(20)は、単電池(1)の1対の端子(3)を利用して、全ての単電池(1)を直列状または並列状に接続するの際に好ましい形態である。   The flat heat pipes (15) and (20) shown in FIGS. 3 and 4 use a pair of terminals (3) of the cells (1) to connect all the cells (1) in series or in parallel. This is a preferred form when connecting to the.

図5に示す平板状ヒートパイプ(25)の場合、基板(5)の鉛直状本体部分(5a)に設けられたヒートパイプ部(26)の作動液封入部(27)は、基板(5)を構成する2枚のアルミニウム板のいずれか一方のアルミニウム板に、縦長方形の外方膨出部(28)が形成されるとともに、外方膨出部(28)の膨出頂壁に複数のディンプル部(29)が他方のアルミニウム板側に突出するように千鳥配置状に形成され、さらにすべてのディンプル部(29)の突出端が他方のアルミニウム板に接合されることによって形成されている。   In the case of the flat plate-like heat pipe (25) shown in FIG. 5, the hydraulic fluid enclosing portion (27) of the heat pipe portion (26) provided in the vertical main body portion (5a) of the substrate (5) is the substrate (5). A vertical rectangular outward bulge portion (28) is formed on one of the two aluminum plates constituting the slab, and a plurality of bulge top walls of the outward bulge portion (28) are formed. The dimple portions (29) are formed in a staggered manner so as to protrude toward the other aluminum plate, and the protruding ends of all the dimple portions (29) are joined to the other aluminum plate.

図6に示す平板状ヒートパイプ(30)の場合、基板(5)の鉛直状本体部分(5a)に設けられたヒートパイプ部(31)の作動液封入部(32)は、基板(5)の中央部に位置する縦長方形の格子部(33)と、格子部(33)から放射状に外側にのびた複数の直線部(34)と、複数の直線部(34)の先端どうしを連結する縦長方形額縁状の連結部(35)とよりなる。   In the case of the flat plate heat pipe (30) shown in FIG. 6, the hydraulic fluid enclosing part (32) of the heat pipe part (31) provided in the vertical main body part (5a) of the substrate (5) is the substrate (5). A vertical rectangular lattice portion (33) located at the center of the plurality of straight portions (34) extending radially outward from the lattice portion (33), and a plurality of straight portions (34) connecting the tips of the straight portions. It consists of a rectangular frame-shaped connecting part (35).

実施形態2
この実施形態は図7に示すものである。
Embodiment 2
This embodiment is shown in FIG.

図7はこの発明による組電池の冷却兼加熱構造の全体構成を示す。   FIG. 7 shows the overall structure of the cooling and heating structure for a battery pack according to the present invention.

図7において、組電池の冷却兼加熱構造は、複数の扁平直方体状単電池(1)と複数の平板状ヒートパイプ(2)とが、単電池(1)および平板状ヒートパイプ(2)が水平状となり、かつ平板状ヒートパイプ(2)が隣り合う単電池(1)どうしの間および左端の単電池(1)の下側(外側)に位置するように積層状に配置されたものである。単電池(1)と平板状ヒートパイプ(2)とは熱的に接触させられている。図示は省略したが、単電池(1)と平板状ヒートパイプ(2)との間には電気絶縁フィルムが介在させられれるか、あるいは平板状ヒートパイプ(2)の左右両面に電気絶縁コーティングが施されることによって、単電池(1)と平板状ヒートパイプ(2)との間が電気絶縁状態となっていることが好ましい。   In FIG. 7, the cooling and heating structure of the assembled battery includes a plurality of flat rectangular parallelepiped cells (1) and a plurality of flat plate heat pipes (2), and a single cell (1) and a flat plate heat pipe (2). It is horizontal and the flat heat pipes (2) are arranged in a stacked manner so that they are positioned between adjacent single cells (1) and below the leftmost single cell (1) (outside). is there. The unit cell (1) and the flat plate heat pipe (2) are in thermal contact. Although illustration is omitted, an electric insulation film is interposed between the unit cell (1) and the flat plate heat pipe (2), or an electric insulation coating is provided on both the left and right sides of the flat plate heat pipe (2). By being applied, it is preferable that the unit cell (1) and the flat plate heat pipe (2) are in an electrically insulated state.

単電池(1)の左端に1対の端子(3)が上方突出状に設けられており、図示は省略したが、端子(3)を利用して全ての単電池(1)が直列状または並列状に接続されることにより組電池(4)が構成されている。   A pair of terminals (3) are provided at the left end of the unit cell (1) so as to protrude upwards, and although not shown, all the unit cells (1) are connected in series using the terminal (3). The assembled battery (4) is configured by being connected in parallel.

平板状ヒートパイプ(2)は、実施形態1の平板状ヒートパイプ(2)とほぼ同一の構成であるとともに、基板(5)の本体部分(5a)を水平状にして用いられたものであり、同一部分には同一符号を付す。   The flat plate heat pipe (2) has substantially the same configuration as the flat plate heat pipe (2) of the first embodiment, and is used with the main body portion (5a) of the substrate (5) being horizontal. The same parts are denoted by the same reference numerals.

実施形態2の平板状ヒートパイプ(2)と実施形態1の平板状ヒートパイプ(2)との相違点は次の通りである。   The difference between the flat plate heat pipe (2) of the second embodiment and the flat plate heat pipe (2) of the first embodiment is as follows.

平板状ヒートパイプ(2)の基板(5)の水平状本体部分(5a)の左端は単電池(1)の左端よりも左方に大きく突出しており、ヒートパイプ部(6)の左側部分も単電池(1)の左端よりも左方に位置している。平板状ヒートパイプ(2)の基板(5)の水平状本体部分(5a)の右端は単電池(1)の右端とほぼ同一位置にある。   The left end of the horizontal body part (5a) of the substrate (5) of the flat plate heat pipe (2) protrudes to the left more than the left end of the unit cell (1), and the left part of the heat pipe part (6) is also It is located to the left of the left end of the cell (1). The right end of the horizontal main body portion (5a) of the substrate (5) of the flat plate heat pipe (2) is substantially at the same position as the right end of the unit cell (1).

平板状ヒートパイプ(2)の基板(5)における水平状本体部分(5a)の左端に、基板(5)が水平状本体部分に対して上下いずれか一方、ここでは上方に直角をなすように曲げられることによって、水平状本体部分(5a)と直角をなす鉛直状放熱兼受熱部(40)が設けられている。すべての放熱兼受熱部(40)は同一鉛直面内に位置しており、複数、ここではすべての放熱兼受熱部(40)に跨って1つの冷却兼加熱源(41)が熱的に接触させられている。冷却兼加熱源(41)は、図示は省略したが、内部に高温流体および低温流体が選択的に流される流体式ヒータ兼クーラなどからなる。また、各平板状ヒートパイプ(2)の基板(5)の他端には何も設けられていない。なお、放熱兼受熱部(40)は、基板(5)が水平状本体部分(5a)に対して下方に直角をなすように曲げられることによって設けられていてもよい。   At the left end of the horizontal body part (5a) in the substrate (5) of the flat plate heat pipe (2), the substrate (5) is either up or down with respect to the horizontal body part, in this case, making a right angle upward By being bent, a vertical heat radiating and heat receiving portion (40) perpendicular to the horizontal main body portion (5a) is provided. All the heat radiating and heat receiving parts (40) are located in the same vertical plane, and a single cooling and heating source (41) is in thermal contact across a plurality of, here all the heat radiating and heat receiving parts (40). It has been made. Although not shown, the cooling / heating source (41) includes a fluid heater / cooler in which a high-temperature fluid and a low-temperature fluid are selectively flowed. Also, nothing is provided on the other end of the substrate (5) of each flat plate heat pipe (2). The heat radiating and heat receiving part (40) may be provided by bending the substrate (5) so as to form a right angle downward with respect to the horizontal main body part (5a).

上述した冷却兼加熱構造において、単電池(1)を冷却する際には、単電池(1)から発せられる熱によって、平板状ヒートパイプ(2)の基板(5)の水平状本体部分(5a)における単電池(1)に熱的に接触している部分が加熱され、この熱がヒートパイプ部(6)の作動液封入部(7)内の作動液に伝わって作動液が蒸発する。一方、放熱兼受熱部(40)の近傍においては、放熱兼受熱部(40)に熱的に接触している冷却兼加熱源(41)によって、基板(5)における放熱兼受熱部(40)に近い部分から熱が奪われ、放熱兼受熱部(40)に近い部分において作動液封入部(7)内の気相の作動液が凝縮し、作動液封入部(7)内の気相作動液が凝縮した部分の圧力が低下する。そして、作動液封入部(7)内で発生した気相作動液が、作動液封入部(7)内における気相作動液が凝縮して圧力が低下した部分に流れるとともに、再凝縮した液相作動液が、作動液封入部(7)内の液面高さのバランスを取るように、液相作動液が蒸発した部分に流れるので、ヒートパイプ部(6)において、気相作動液の流れと液相作動液の流れとが発生し、作動液の循環が起きる。ヒートパイプ部(6)の作動液封入部(7)内で気相作動液が凝縮した液相作動液は、液相作動液が蒸発した部分に流れるまでの間においても、単電池(1)から熱を奪って蒸発する。したがって、単電池(1)における平板状ヒートパイプ(2)に熱的に接触している部分の全体が均等に冷却される。   In the cooling and heating structure described above, when cooling the unit cell (1), the horizontal body portion (5a) of the substrate (5) of the flat plate heat pipe (2) is generated by the heat generated from the unit cell (1). The portion in thermal contact with the unit cell (1) in () is heated, and this heat is transmitted to the hydraulic fluid in the hydraulic fluid enclosing portion (7) of the heat pipe portion (6) to evaporate the hydraulic fluid. On the other hand, in the vicinity of the heat radiating and heat receiving part (40), the heat radiating and heat receiving part (40) in the substrate (5) by the cooling and heating source (41) in thermal contact with the heat radiating and heat receiving part (40). Heat is deprived from the part close to the heat radiation and heat receiving part (40), and the gas phase working liquid in the working liquid enclosing part (7) condenses in the part near the heat radiating and receiving part (40), and the gas phase operation in the working liquid enclosing part (7) The pressure in the part where the liquid has condensed decreases. Then, the gas phase hydraulic fluid generated in the hydraulic fluid enclosure (7) flows to the portion where the gas phase hydraulic fluid in the hydraulic fluid enclosure (7) is condensed and the pressure is reduced, and the recondensed liquid phase Since the hydraulic fluid flows to the portion where the liquid-phase hydraulic fluid has evaporated so as to balance the liquid level in the hydraulic fluid enclosure (7), the flow of the gas-phase hydraulic fluid in the heat pipe (6) And a flow of the liquid phase hydraulic fluid are generated, and the hydraulic fluid is circulated. The liquid phase hydraulic fluid in which the gas phase hydraulic fluid is condensed in the hydraulic fluid enclosing portion (7) of the heat pipe portion (6) is the single cell (1) until the liquid phase hydraulic fluid flows to the evaporated portion. It takes heat away from it and evaporates. Therefore, the entire portion of the unit cell (1) that is in thermal contact with the flat plate heat pipe (2) is cooled uniformly.

寒冷地において、使用開始前に単電池(1)を加熱する際には、冷却兼加熱源(41)から平板状ヒートパイプ(2)の基板(5)の放熱兼受熱部(40)に熱を供給する。冷却兼加熱源(41)から供給された熱は、基板(5)の水平状本体部分(5a)における放熱兼受熱部(40)に近い部分に伝わるとともに、ヒートパイプ部(6)の作動液封入部(7)内の作動液に伝わって作動液が蒸発する。一方、単電池(1)の温度は低いので、単電池(1)に熱的に接触している部分においては、単電池(1)によって基板(5)から熱が奪われて単電池(1)が加熱され、作動液封入部(7)内の気相の作動液が凝縮し、作動液封入部(7)内の気相作動液が凝縮した部分の圧力が低下する。そして、作動液封入部(7)内で発生した気相作動液が、作動液封入部(7)内における圧力が低下した部分に流れるとともに、再凝縮した液相作動液が、作動液封入部(7)内の液面高さのバランスを取るように、液相作動液が蒸発した部分に流れるので、ヒートパイプ部(6)において、気相作動液の右方への流れと液相作動液の左方への流れとが発生し、作動液の循環が起きるとともに蒸発凝縮の潜熱変化が起こる。したがって、単電池(1)における平板状ヒートパイプ(2)に熱的に接触している部分の全体が均等に加熱され、単電池(1)の全体が短時間で適正温度に加熱される。   When heating the cell (1) before starting use in a cold region, heat is supplied from the cooling / heating source (41) to the heat radiation / heat receiving part (40) of the substrate (5) of the flat plate heat pipe (2). Supply. The heat supplied from the cooling and heating source (41) is transmitted to the portion near the heat radiating and heat receiving portion (40) in the horizontal main body portion (5a) of the substrate (5) and the working fluid of the heat pipe portion (6). The hydraulic fluid is transmitted to the hydraulic fluid in the enclosure (7) and evaporates. On the other hand, since the temperature of the unit cell (1) is low, in the part that is in thermal contact with the unit cell (1), the unit cell (1) is deprived of heat from the substrate (5) by the unit cell (1). ) Is heated, the vapor phase hydraulic fluid in the hydraulic fluid enclosure (7) is condensed, and the pressure in the portion of the hydraulic fluid enclosure (7) where the vapor phase hydraulic fluid is condensed is reduced. Then, the gas-phase hydraulic fluid generated in the hydraulic fluid enclosure (7) flows to the portion where the pressure in the hydraulic fluid enclosure (7) decreases, and the recondensed liquid-phase hydraulic fluid is supplied to the hydraulic fluid enclosure. (7) Since the liquid level hydraulic fluid flows to the part where the liquid level has evaporated to balance the liquid level in the heat pipe (6), the gas phase hydraulic fluid flows to the right and the liquid phase operation. A flow of liquid to the left occurs, and the working fluid circulates and changes in the latent heat of evaporation and condensation. Therefore, the entire portion of the unit cell (1) that is in thermal contact with the flat plate heat pipe (2) is heated uniformly, and the entire unit cell (1) is heated to an appropriate temperature in a short time.

上記実施形態2において、図7に鎖線で示すように、組電池(4)の単電池(1)および平板状ヒートパイプ(2)が、たとえばアルミニウムなどの高熱伝導性材料からなる1つの外装ケーシング(42)内に収納されて用いられることがある。この場合、平板状ヒートパイプ(2)の放熱兼受熱部(40)が外装ケーシング(42)の一方の側壁内面に熱的に接触させられる。   In the second embodiment, as shown by the chain line in FIG. 7, the single battery (1) and the flat plate heat pipe (2) of the assembled battery (4) are made of one highly-conductive material such as aluminum, for example. (42) There are cases where it is housed and used. In this case, the heat radiating and heat receiving portion (40) of the flat plate heat pipe (2) is brought into thermal contact with the inner surface of one side wall of the outer casing (42).

上記実施形態2において、平板状ヒートパイプとして、基板(5)の水平状本体部分(5a)の構成が、図3〜図6に示す平板状ヒートパイプ(15)(20)(25)(30)の基板(5)の鉛直状本体部分(5a)と同一の構成を有するものを用いてもよい。また、上記実施形態2において、平板状ヒートパイプ(5)の基板(5)における1つの縁部に水平状本体部と直角をなす放熱部が設けられるとともに、他の縁部に水平状本体部と直角をなす受熱部が設けられ、すべての平板状ヒートパイプの基板の放熱部に跨って、1つの冷却源が熱的に接触するようになされ、すべての平板状ヒートパイプの基板の放熱部に跨って、1つの加熱源が熱的に接触するようになされていてもよい。   In the said Embodiment 2, the structure of the horizontal main-body part (5a) of a board | substrate (5) is flat plate heat pipe (15) (20) (25) (30) shown in FIGS. A substrate having the same configuration as that of the vertical main body portion (5a) of the substrate (5) may be used. In the second embodiment, a heat dissipating part perpendicular to the horizontal main body is provided at one edge of the substrate (5) of the flat plate heat pipe (5), and the horizontal main body is provided at the other edge. A heat receiving part that is perpendicular to each other is provided, and one cooling source is in thermal contact with the heat radiating part of all flat plate heat pipe substrates, and the heat radiating part of all flat plate heat pipe substrates One heating source may be in thermal contact with each other.

この発明による組電池の冷却兼加熱構造は、たとえば複数のLi二次電池からなる組電池を備えたハイブリッドカーに好適に用いられる。   The cooling and heating structure for an assembled battery according to the present invention is suitably used for a hybrid car including an assembled battery composed of a plurality of Li secondary batteries, for example.

(1):単電池
(2)(15)(29)(25)(30):平板状ヒートパイプ
(4):組電池
(5):基板
(5a):本体部分
(6)(17)(22)(31):ヒートパイプ部
(7)(18)(23)(32):作動液封入部
(8):放熱部
(9):受熱部
(11):冷却源
(12):加熱源
(40):放熱兼受熱部
(41):冷却兼加熱源
(1): Single cell
(2) (15) (29) (25) (30): Flat heat pipe
(4): Battery pack
(5): Board
(5a): Body part
(6) (17) (22) (31): Heat pipe part
(7) (18) (23) (32): Hydraulic fluid enclosure
(8): Heat radiation part
(9): Heat receiving part
(11): Cooling source
(12): Heat source
(40): Heat dissipation / heat receiving part
(41): Cooling and heating source

Claims (10)

複数の扁平直方体状の単電池と、1つのヒートパイプ部が設けられた基板を有する複数の平板状ヒートパイプとが、単電池の少なくとも片面に平板状ヒートパイプが熱的に接触するように積層状に配置されており、基板の周縁部の少なくとも一部に、単電池よりも外方に突出しかつ冷却源に熱的に接触させられる放熱部と、単電池よりも外方に突出しかつ加熱源に熱的に接触させられる受熱部とが設けられている組電池の冷却兼加熱構造。 A plurality of flat rectangular unit cells and a plurality of flat plate heat pipes having a substrate provided with one heat pipe portion are stacked so that the flat plate heat pipes are in thermal contact with at least one side of the unit cell. A heat dissipating part that protrudes outward from the unit cell and is in thermal contact with the cooling source, and protrudes outward from the unit cell and is a heating source. An assembled battery cooling and heating structure provided with a heat receiving portion that is brought into thermal contact with the battery. 平板状ヒートパイプの基板が互いに接合された2枚の金属板からなり、平板状ヒートパイプの基板のヒートパイプ部が、基板の少なくともいずれか一方の金属板を膨出させることにより形成された1つの中空状作動液封入部内に作動液が封入されることによって形成されている請求項1記載の組電池の冷却兼加熱構造。 A flat heat pipe substrate is composed of two metal plates joined together, and the heat pipe portion of the flat heat pipe substrate is formed by expanding at least one of the metal plates of the substrate 1 The cooling and heating structure for an assembled battery according to claim 1, which is formed by enclosing a hydraulic fluid in two hollow hydraulic fluid enclosures. 単電池および平板状ヒートパイプが鉛直状に配置されており、平板状ヒートパイプの基板の上部に単電池の上端部よりも上方に突出した放熱部が設けられ、同じく基板の下部に単電池の下端部よりも下方に突出した受熱部が設けられている請求項1または2記載の組電池の冷却兼加熱構造。 The unit cell and the plate-like heat pipe are arranged vertically, and a heat radiating portion protruding above the upper end of the unit cell is provided at the upper part of the substrate of the plate-like heat pipe, and the unit cell is also arranged at the lower part of the substrate. The cooling and heating structure for an assembled battery according to claim 1, wherein a heat receiving portion protruding downward from the lower end portion is provided. 平板状ヒートパイプの基板が、ヒートパイプ部が設けられた鉛直状本体部分を備えており、鉛直状本体部分の上端に、鉛直状本体部分と直角をなす水平状放熱部が設けられ、鉛直状本体部分の下端に、鉛直状本体部分と直角をなす水平状受熱部が設けられている請求項3記載の組電池の冷却兼加熱構造。 The flat heat pipe substrate is provided with a vertical main body portion provided with a heat pipe portion, and a horizontal heat dissipating portion perpendicular to the vertical main body portion is provided at the upper end of the vertical main body portion. The cooling and heating structure for an assembled battery according to claim 3, wherein a horizontal heat receiving portion perpendicular to the vertical main body portion is provided at a lower end of the main body portion. すべての平板状ヒートパイプの基板の放熱部に跨って、1つの冷却源が熱的に接触するようになされ、すべての平板状ヒートパイプの基板の受熱部に跨って、1つの加熱源が熱的に接触するようになされている請求項4記載の組電池の冷却兼加熱構造。 One cooling source is brought into thermal contact with the heat dissipation part of all flat plate heat pipe substrates, and one heating source is heated across the heat receiving unit of all flat plate heat pipe substrates. 5. A cooling and heating structure for an assembled battery according to claim 4, wherein the cooling and heating structure is in contact with each other. 単電池および平板状ヒートパイプが水平状に配置されており、平板状ヒートパイプの基板の周縁部の一部に放熱部と受熱部とが設けられている請求項1または2記載の組電池の冷却兼加熱構造。 The assembled battery according to claim 1 or 2, wherein the unit cell and the flat plate heat pipe are arranged horizontally, and a heat radiating portion and a heat receiving portion are provided at a part of the peripheral portion of the substrate of the flat plate heat pipe. Cooling and heating structure. 平板状ヒートパイプの基板が、ヒートパイプ部が設けられた水平状本体部分を備えており、水平状本体部分の周縁の一部に、水平状本体部分と直角をなす鉛直状放熱部と、水平状本体部分と直角をなす鉛直状受熱部とが設けられている請求項6記載の組電池の冷却兼加熱構造。 The flat heat pipe substrate includes a horizontal main body portion provided with a heat pipe portion, a vertical heat radiation portion perpendicular to the horizontal main body portion, and a horizontal 7. A cooling and heating structure for an assembled battery according to claim 6, further comprising a vertical heat receiving portion that forms a right angle with the main body portion. すべての平板状ヒートパイプの基板の放熱部に跨って、1つの冷却源が熱的に接触するようになされ、すべての平板状ヒートパイプの基板の受熱部に跨って、1つの加熱源が熱的に接触するようになされている請求項7記載の組電池の冷却兼加熱構造。 One cooling source is brought into thermal contact with the heat dissipation part of all flat plate heat pipe substrates, and one heating source is heated across the heat receiving unit of all flat plate heat pipe substrates. 8. The cooling and heating structure for an assembled battery according to claim 7, wherein the cooling and heating structure is configured to come into contact. 放熱部および受熱部が兼用されるとともに、冷却源および加熱源が兼用されるようになされている請求項7または8記載の組電池の冷却兼加熱構造。 9. The cooling and heating structure for an assembled battery according to claim 7 or 8, wherein both the heat radiating portion and the heat receiving portion are used, and the cooling source and the heating source are also used. 両面に平板状ヒートパイプが熱的に接触させられた単電池と、同じく片面のみに平板状ヒートパイプが熱的に接触させられた単電池とが混在している請求項1〜9のうちのいずれかに記載の組電池の冷却兼加熱構造。 The single cell in which the flat heat pipe is thermally contacted on both sides and the single cell in which the flat heat pipe is thermally contacted only on one side are mixed. A cooling and heating structure for an assembled battery according to any one of the above.
JP2012014967A 2012-01-27 2012-01-27 Cooling and heating structure of battery pack Pending JP2013157111A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012014967A JP2013157111A (en) 2012-01-27 2012-01-27 Cooling and heating structure of battery pack
CN2013100441245A CN103227354A (en) 2012-01-27 2013-01-25 A cooling and heating structure
CN201320053329.5U CN203406391U (en) 2012-01-27 2013-01-25 Cooling and heating structure of battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012014967A JP2013157111A (en) 2012-01-27 2012-01-27 Cooling and heating structure of battery pack

Publications (1)

Publication Number Publication Date
JP2013157111A true JP2013157111A (en) 2013-08-15

Family

ID=48837702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012014967A Pending JP2013157111A (en) 2012-01-27 2012-01-27 Cooling and heating structure of battery pack

Country Status (2)

Country Link
JP (1) JP2013157111A (en)
CN (2) CN203406391U (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015041558A (en) * 2013-08-23 2015-03-02 昭和電工株式会社 Cooling and heating structure of battery pack
JP2015103324A (en) * 2013-11-22 2015-06-04 昭和電工株式会社 Cooling structure for battery pack
CN104716362A (en) * 2013-12-15 2015-06-17 中国科学院大连化学物理研究所 Honeycomb metal-based pipe belt type heat exchanger and application thereof
WO2015130746A1 (en) * 2014-02-25 2015-09-03 Tesla Motors, Inc. Energy storage system with heat pipe thermal management
CN105633509A (en) * 2016-03-17 2016-06-01 华南理工大学 Power battery composite heat management system and method thereof
JP2017503330A (en) * 2014-01-15 2017-01-26 コルネリア ナイドル−シュティプラー Passive temperature control of rechargeable batteries
WO2017051648A1 (en) * 2015-09-24 2017-03-30 株式会社オートネットワーク技術研究所 Cooling member and electricity storage module with same
JP2017103110A (en) * 2015-12-02 2017-06-08 株式会社オートネットワーク技術研究所 Power storage module
JP2018088305A (en) * 2016-11-28 2018-06-07 昭和電工株式会社 Cooling system
KR20190112354A (en) * 2018-03-26 2019-10-07 인지컨트롤스 주식회사 Heat sink for battery module and manufacturing method thereof
KR20200104616A (en) 2019-02-27 2020-09-04 에이치엘그린파워 주식회사 Battery pack having heat pipe
JP2021057187A (en) * 2019-09-30 2021-04-08 豊田鉄工株式会社 Battery cooler
JP2021096917A (en) * 2019-12-16 2021-06-24 豊田鉄工株式会社 Battery module
WO2022006270A1 (en) * 2020-06-30 2022-01-06 Valeo North America, Inc. Heat exchange interface and a method of configuring the same
US11631908B2 (en) 2019-12-20 2023-04-18 Ford Global Technologies, Llc Battery systems and methods
WO2023204504A1 (en) * 2022-04-20 2023-10-26 한국해양대학교 산학협력단 Battery module comprising three-dimensional pulsating heat pipe

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101795260B1 (en) * 2016-05-24 2017-11-07 현대자동차주식회사 Heat sink for battery using aluminum alloy for diecasting improved thermal conductivity and castability and manufacturing method thereof
JP6670449B2 (en) * 2016-08-16 2020-03-25 株式会社オートネットワーク技術研究所 Power storage module
CN106207309A (en) * 2016-08-30 2016-12-07 华霆(合肥)动力技术有限公司 A kind of heat management device and battery modules
CN106329003B (en) * 2016-10-13 2019-09-20 安徽巨大电池技术有限公司 Lithium battery pack
CN108987641A (en) * 2018-07-26 2018-12-11 珠海格力电器股份有限公司 Battery case and vehicle
CN110534841A (en) * 2019-08-22 2019-12-03 华南理工大学 A kind of the phase transformation soaking plate structure and its manufacturing method of integrated water-cooling system
CN111816955A (en) * 2020-08-04 2020-10-23 中国华能集团清洁能源技术研究院有限公司 Heat pipe type heat management device and method for energy storage battery module

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015041558A (en) * 2013-08-23 2015-03-02 昭和電工株式会社 Cooling and heating structure of battery pack
JP2015103324A (en) * 2013-11-22 2015-06-04 昭和電工株式会社 Cooling structure for battery pack
CN104716362A (en) * 2013-12-15 2015-06-17 中国科学院大连化学物理研究所 Honeycomb metal-based pipe belt type heat exchanger and application thereof
JP2017503330A (en) * 2014-01-15 2017-01-26 コルネリア ナイドル−シュティプラー Passive temperature control of rechargeable batteries
WO2015130746A1 (en) * 2014-02-25 2015-09-03 Tesla Motors, Inc. Energy storage system with heat pipe thermal management
US9761919B2 (en) 2014-02-25 2017-09-12 Tesla, Inc. Energy storage system with heat pipe thermal management
US10714798B2 (en) 2015-09-24 2020-07-14 Autonetworks Technologies, Ltd. Cooling member and power storage module with same
WO2017051648A1 (en) * 2015-09-24 2017-03-30 株式会社オートネットワーク技術研究所 Cooling member and electricity storage module with same
JPWO2017051648A1 (en) * 2015-09-24 2018-07-12 株式会社オートネットワーク技術研究所 Cooling member and power storage module provided with the same
JP2017103110A (en) * 2015-12-02 2017-06-08 株式会社オートネットワーク技術研究所 Power storage module
WO2017094821A1 (en) * 2015-12-02 2017-06-08 株式会社オートネットワーク技術研究所 Power storage module
US10396412B2 (en) 2015-12-02 2019-08-27 Autonetworks Technologies, Ltd. Power storage module
CN105633509B (en) * 2016-03-17 2018-07-20 华南理工大学 A kind of power battery compound thermal management system and method
CN105633509A (en) * 2016-03-17 2016-06-01 华南理工大学 Power battery composite heat management system and method thereof
JP2018088305A (en) * 2016-11-28 2018-06-07 昭和電工株式会社 Cooling system
KR20190112354A (en) * 2018-03-26 2019-10-07 인지컨트롤스 주식회사 Heat sink for battery module and manufacturing method thereof
KR102083462B1 (en) 2018-03-26 2020-03-02 인지컨트롤스 주식회사 Heat sink for battery module and manufacturing method thereof
KR20200104616A (en) 2019-02-27 2020-09-04 에이치엘그린파워 주식회사 Battery pack having heat pipe
WO2021066010A1 (en) 2019-09-30 2021-04-08 豊田鉄工株式会社 Battery cooler
JP2021057187A (en) * 2019-09-30 2021-04-08 豊田鉄工株式会社 Battery cooler
JP7128165B2 (en) 2019-09-30 2022-08-30 豊田鉄工株式会社 battery cooler
JP2021096917A (en) * 2019-12-16 2021-06-24 豊田鉄工株式会社 Battery module
JP7271409B2 (en) 2019-12-16 2023-05-11 豊田鉄工株式会社 battery module
US11631908B2 (en) 2019-12-20 2023-04-18 Ford Global Technologies, Llc Battery systems and methods
WO2022006270A1 (en) * 2020-06-30 2022-01-06 Valeo North America, Inc. Heat exchange interface and a method of configuring the same
WO2023204504A1 (en) * 2022-04-20 2023-10-26 한국해양대학교 산학협력단 Battery module comprising three-dimensional pulsating heat pipe

Also Published As

Publication number Publication date
CN203406391U (en) 2014-01-22
CN103227354A (en) 2013-07-31

Similar Documents

Publication Publication Date Title
JP2013157111A (en) Cooling and heating structure of battery pack
JP6043555B2 (en) Battery cooling structure
JP6049752B2 (en) Newly structured bus bar
JP6167023B2 (en) Battery cooling structure
JP5256324B2 (en) Battery module
JP6043578B2 (en) Battery cooling structure
WO2011092773A1 (en) Cell module
JP6564596B2 (en) Lithium ion secondary battery device
JP2010192207A (en) Cooling device for battery, and battery pack
JP7091971B2 (en) Battery unit
JP2018088305A (en) Cooling system
TWI463724B (en) Heat-conduction structure
JP6412456B2 (en) Secondary battery cooling system
JP6186209B2 (en) Battery cooling and heating structure
JP2013038001A (en) Battery module
JP5906921B2 (en) Battery module and vehicle
WO2012161002A1 (en) Flat plate cooling device, and method for using same
JP2014220087A (en) Battery pack
JP2015002105A (en) Cooling device for battery module
TWI528614B (en) Battery module
JP2013041741A (en) Secondary battery
JP2016080315A (en) Heat storage member
TWI378763B (en) Heat dissipation device for lithium battery
KR20200073721A (en) Battery Pack
JP2020035688A (en) Secondary battery pack