JP6167023B2 - Battery cooling structure - Google Patents
Battery cooling structure Download PDFInfo
- Publication number
- JP6167023B2 JP6167023B2 JP2013241481A JP2013241481A JP6167023B2 JP 6167023 B2 JP6167023 B2 JP 6167023B2 JP 2013241481 A JP2013241481 A JP 2013241481A JP 2013241481 A JP2013241481 A JP 2013241481A JP 6167023 B2 JP6167023 B2 JP 6167023B2
- Authority
- JP
- Japan
- Prior art keywords
- hydraulic fluid
- heat pipe
- plate heat
- meandering
- plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001816 cooling Methods 0.000 title claims description 37
- 239000012530 fluid Substances 0.000 claims description 198
- 239000000758 substrate Substances 0.000 claims description 42
- 238000004891 communication Methods 0.000 claims description 27
- 239000012809 cooling fluid Substances 0.000 claims description 19
- 238000007789 sealing Methods 0.000 claims description 13
- 238000010438 heat treatment Methods 0.000 claims description 11
- 239000012071 phase Substances 0.000 claims description 11
- 239000007791 liquid phase Substances 0.000 claims description 8
- 238000005452 bending Methods 0.000 claims description 3
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 claims 1
- 238000010276 construction Methods 0.000 claims 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 9
- 229910052782 aluminium Inorganic materials 0.000 description 9
- 238000002788 crimping Methods 0.000 description 7
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000012808 vapor phase Substances 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Mounting, Suspending (AREA)
Description
この発明は組電池の冷却構造に関する。 The present invention relates to a cooling structure for an assembled battery.
この明細書および特許請求の範囲において、図1〜図3の上下を上下というものとする。 In this specification and claims, the top and bottom of FIGS.
近年、環境問題などから、ハイブリッド自動車、電気自動車等が注目されており、そのために各種の二次電池が開発されている。各種の二次電池の中でもリチウムイオン二次電池は、エネルギー密度が高く、密閉性に優れ、かつメンテナンスフリーであるため、ハイブリッド自動車や電気自動車用のバッテリとして優れているが、大型のものは実用化されていない。そこで、複数個の小型の単電池を直列または並列に接続して組電池の形態とすることにより、所望の電圧や容量を確保している。 In recent years, hybrid vehicles, electric vehicles, and the like have attracted attention due to environmental problems, and various secondary batteries have been developed for this purpose. Among various types of secondary batteries, lithium ion secondary batteries have high energy density, excellent sealing properties, and are maintenance-free, so they are excellent as batteries for hybrid vehicles and electric vehicles. It has not been converted. Therefore, a desired voltage and capacity are secured by connecting a plurality of small cells in series or in parallel to form a battery pack.
リチウムイオン二次電池は、使用温度によって性能や寿命が変化するので、長時間にわたって効率良く使用するためには適正な温度で使用する必要があるが、上述したような組電池の形態で用いた場合、各単電池自体から発せられる熱を放熱することが困難であり、各単電池の温度が上昇して寿命が短くなるという問題がある。 Lithium ion secondary batteries vary in performance and life depending on the operating temperature, so it is necessary to use them at an appropriate temperature in order to use them efficiently over a long period of time. In this case, it is difficult to dissipate heat generated from each unit cell itself, and there is a problem that the temperature of each unit cell rises and the life is shortened.
そこで、上述したような組電池における単電池の温度上昇を抑制することを目的として、複数の扁平状の単電池と、複数の平板状ヒートパイプとが、両者が水平となるように交互に積層状に配置されており、平板状ヒートパイプの周縁部の少なくとも一部に、単電池よりも外方に突出しかつ放熱用ヒートシンクに接触させられる放熱部が設けられている冷却構造が提案されている(特許文献1参照)。 Therefore, for the purpose of suppressing the temperature rise of the unit cell in the assembled battery as described above, a plurality of flat unit cells and a plurality of flat plate heat pipes are alternately stacked so that both are horizontal. A cooling structure is proposed in which a heat dissipating part is provided on at least a part of the peripheral part of the flat plate heat pipe that protrudes outward from the unit cell and is brought into contact with a heat dissipating heat sink. (See Patent Document 1).
しかしながら、特許文献1記載の組電池の冷却構造では、部品点数が多くなるとともに、組み立て作業が面倒になるという問題がある。
However, the assembled battery cooling structure described in
この発明の目的は、上記問題を解決し、部品点数を削減しうるとともに、組み立て作業が簡単になる組電池の冷却構造を提供することにある。 An object of the present invention is to provide an assembled battery cooling structure that can solve the above-described problems, reduce the number of parts, and simplify an assembling operation.
本発明は、上記目的を達成するために以下の態様からなる。 In order to achieve the above object, the present invention comprises the following aspects.
1)ヒートパイプ部が設けられた基板が蛇行状に曲げられることによって形成された蛇行板状ヒートパイプと、鉛直状に配置されかつ蛇行板状ヒートパイプとの間で熱の授受が行われる複数の扁平状単電池と、蛇行板状ヒートパイプの上方に設けられ、かつ蛇行板状ヒートパイプのヒートパイプ部で発生した液相作動液から熱を奪う冷却器と、蛇行板状ヒートパイプのヒートパイプ部と冷却器との間で作動液を循環させる作動液循環回路とを備えており、ヒートパイプ部が、蛇行板状ヒートパイプの基板に形成された中空状作動液封入部内に作動液が封入されることによって設けられており、
蛇行板状ヒートパイプの基板が、互いに平行に配置されかつ単電池が熱的に接触する鉛直平板状受熱部と、隣り合う鉛直平板状受熱部を、平面から見て長手方向のいずれか一端で交互に連結する板状連結部とよりなり、ヒートパイプ部の作動液封入部が、基板の下部に一端の鉛直平板状受熱部から他端の鉛直平板状受熱部にかけて形成された下部流通部と、基板の上部に一端の鉛直平板状受熱部から他端の鉛直平板状受熱部にかけて形成された上部流通部と、各鉛直平板状受熱部に形成されて下部流通部と上部流通部とを長さ方向の中間部で通じさせる連通部とを有し、作動液封入部の下部流通部、上部流通部および連通部のうち少なくとも下部流通部の全体が作動液で満たされ、下部流通部の一端に、前記一端の鉛直平板状受熱部の周縁に開口した作動液入口が設けられ、上部流通部の他端に、前記他端の鉛直平板状受熱部の周縁に開口しかつ作動液入口よりも上方に位置する作動液出口が設けられ、
扁平状単電池が、少なくとも片面が蛇行板状ヒートパイプの基板の鉛直平板状受熱部に熱的に接触するように隣り合う鉛直平板状受熱部間に配置され、
冷却器が、中空状の外側流体流通部材と、外側流体流通部材内に間隔をおいて配置された中空状の内側流体流通部材とを備えており、外側流体流通部材と内側流体流通部材との間の間隙が気相作動液が流れる第1流路となり、内側流体流通部材内が気相作動液を冷却する冷却流体が流れる第2流路となっており、外側流体流通部材に、気相作動液を第1流路内に送り込む作動液流入口、および第1流路内から液相作動液を送り出す作動液流出口が設けられ、内側流体流通部材の両端が外側流体流通部材の外部に開口し、内側流体流通部材の一端開口が冷却流体流入口となるとともに同他端開口が冷却流体流出口となっており、
作動液循環回路が、蛇行板状ヒートパイプの基板に形成された作動液封入部の作動液出口と冷却器の外側流体流通部材の作動液流入口とを通じさせる第1連通配管、および蛇行板状ヒートパイプの基板に形成された作動液封入部の作動液入口と冷却器の外側流体流通部材の作動液流出口とを通じさせる第2連通配管とを備えている組電池の冷却構造。
1) Heat transfer between a meandering plate-shaped heat pipe formed by bending a substrate provided with a heat pipe portion in a meandering manner and a vertically arranged meandering plate-like heat pipe A flat cell, a cooler that is provided above the meandering plate heat pipe and takes heat away from the liquid-phase working fluid generated in the heat pipe part of the meandering plate heat pipe, and the heat of the meandering plate heat pipe A hydraulic fluid circulation circuit that circulates the hydraulic fluid between the pipe portion and the cooler, and the hydraulic fluid is contained in the hollow hydraulic fluid sealing portion formed on the substrate of the meandering plate heat pipe. It is provided by being enclosed,
A vertical plate-shaped heat receiving part in which the substrates of the meandering plate-shaped heat pipe are arranged in parallel with each other and the unit cell is in thermal contact with the adjacent vertical plate-shaped heat receiving part at one end in the longitudinal direction when viewed from the plane. It consists of plate-like connecting portions that are connected alternately, and a lower fluid circulation portion in which the hydraulic fluid enclosing portion of the heat pipe portion is formed from the vertical flat plate heat receiving portion at one end to the vertical flat plate heat receiving portion at the other end of the substrate. The upper circulation part formed from the vertical flat plate heat receiving part at one end to the vertical flat plate heat receiving part at the other end of the substrate, and the lower circulation part and the upper circulation part formed at each vertical flat plate heat receiving part are long. A communication portion that communicates with the intermediate portion in the vertical direction, and at least the entire lower circulation portion of the lower fluid circulation portion, the upper circulation portion, and the communication portion of the hydraulic fluid sealing portion is filled with the hydraulic fluid, and one end of the lower circulation portion On the periphery of the vertical flat plate heat receiving portion at one end Provided mouth with hydraulic fluid inlet, the other end of the upper distribution part, hydraulic fluid outlet which is located above the opening vital hydraulic fluid inlet to the periphery of the vertical plate-shaped heat receiving portion of the other end is provided,
A flat unit cell is disposed between adjacent vertical flat plate heat receiving parts so that at least one surface is in thermal contact with the vertical flat plate heat receiving unit of the meandering plate heat pipe substrate,
The cooler includes a hollow outer fluid circulation member, and a hollow inner fluid circulation member disposed at intervals in the outer fluid circulation member, and the outer fluid circulation member and the inner fluid circulation member The gap between them becomes the first flow path through which the gas-phase hydraulic fluid flows, and the inside fluid circulation member becomes the second flow path through which the cooling fluid for cooling the gas-phase hydraulic fluid flows. A hydraulic fluid inlet for feeding the hydraulic fluid into the first flow path and a hydraulic fluid outlet for sending the liquid phase hydraulic fluid from the first flow path are provided, and both ends of the inner fluid circulation member are outside the outer fluid circulation member. Opening, one end opening of the inner fluid circulation member is a cooling fluid inlet and the other end opening is a cooling fluid outlet,
A first communication pipe in which the hydraulic fluid circulation circuit passes through the hydraulic fluid outlet of the hydraulic fluid sealing portion formed on the substrate of the meandering plate heat pipe and the hydraulic fluid inlet of the outer fluid circulation member of the cooler, and the meandering plate shape A cooling structure for an assembled battery, comprising a second communication pipe that passes through a hydraulic fluid inlet of a hydraulic fluid sealing portion formed on a substrate of a heat pipe and a hydraulic fluid outlet of an outer fluid circulation member of a cooler.
2)蛇行板状ヒートパイプの基板に形成された作動液封入部の作動液入口が、基板の前記一端の鉛直平板状受熱部における板状連結部とは反対側の端縁に開口し、同じく作動液出口が、基板の前記他端の鉛直平板状受熱部における板状連結部とは反対側の端縁に開口している上記1)記載の組電池の冷却構造。 2) The hydraulic fluid inlet of the hydraulic fluid enclosing part formed on the substrate of the meandering plate heat pipe opens at the edge opposite to the plate-like connecting part in the vertical flat plate heat receiving part at the one end of the substrate, The assembled battery cooling structure according to 1), wherein the hydraulic fluid outlet is open at an edge of the vertical flat plate heat receiving portion at the other end of the substrate opposite to the plate-like connecting portion.
3)ヒートパイプ部の作動液封入部の連通部が、蛇行板状ヒートパイプの基板の各鉛直平板状受熱部において、下部流通部および上部流通部の長さ方向に間隔をおいて複数設けられている上記1)または2)記載の組電池の冷却構造。 3) A plurality of communication parts of the hydraulic fluid enclosing part of the heat pipe part are provided at intervals in the length direction of the lower circulation part and the upper circulation part in each vertical flat plate heat receiving part of the board of the meandering plate heat pipe. The assembled battery cooling structure according to 1) or 2) above.
4)蛇行板状ヒートパイプの基板における少なくとも1つの板状連結部の下部に加熱源が熱的に接触させられており、単電池を加熱する機能を備えている上記1)〜3)のうちのいずれかに記載の組電池の冷却構造。 4) Among the above 1) to 3), a heating source is in thermal contact with the lower part of at least one plate-like connecting portion of the board of the meandering plate-like heat pipe, and has a function of heating the unit cell. The assembled battery cooling structure according to any one of the above.
5)冷却器の第1流路における作動液の流れ方向と、第2流路における冷却流体の流れ方向とが逆向きになっている上記1)〜4)のうちのいずれかに記載の組電池の冷却構造。 5) The set according to any one of 1) to 4) above, wherein the flow direction of the hydraulic fluid in the first flow path of the cooler is opposite to the flow direction of the cooling fluid in the second flow path. Battery cooling structure.
6)冷却器の外側流体流通部材の作動液流入口が、作動液流出口よりも上方に位置している上記1)〜5)のうちのいずれかに記載の組電池の冷却構造。 6) The assembled battery cooling structure according to any one of 1) to 5) above, wherein the hydraulic fluid inlet of the outer fluid circulation member of the cooler is positioned above the hydraulic fluid outlet.
上記1)〜6)の冷却構造によれば、以下に述べるように単電池を効率良く冷却することが可能になる。 According to the cooling structures 1) to 6), it is possible to efficiently cool the unit cell as described below.
すなわち、単電池を冷却する際には、単電池から発せられる熱によって、蛇行板状ヒートパイプの基板における単電池に熱的に接触している鉛直平板状受熱部が加熱され、この熱がヒートパイプ部の作動液封入部内の作動液に伝わって、少なくとも下部流通部内を満たしている作動液が蒸発する。発生した気相作動液は、連通部を通って上部流通部内に入り、上部流通部内を流れて作動液出口から作動液循環回路の第1連通配管内に入る。第1連通配管内に入った気相作動液は、作動液流入口を通って冷却器の第1流路内に入り、第1流路内を流れる間に冷却器の第2流路内を流れる冷却流体により冷却されて凝縮し、作動液循環回路の第2連通配管内を流れて作動液入口から作動液封入部の下部流通部に戻る。こうして蛇行板状ヒートパイプと冷却器との間で作動液の循環が起きることによって、単電池における蛇行板状ヒートパイプの基板の鉛直平板状受熱部に熱的に接触している部分の全体が均等に冷却される。 That is, when cooling the unit cell, the vertical plate-shaped heat receiving portion that is in thermal contact with the unit cell on the substrate of the meandering plate heat pipe is heated by the heat generated from the unit cell, and this heat is heated. The hydraulic fluid is transferred to the hydraulic fluid in the hydraulic fluid sealing portion of the pipe portion, and at least the hydraulic fluid filling the lower flow portion is evaporated. The generated gas-phase hydraulic fluid enters the upper circulation portion through the communication portion, flows through the upper circulation portion, and enters the first communication pipe of the hydraulic fluid circulation circuit from the hydraulic fluid outlet. The gas-phase hydraulic fluid that has entered the first communication pipe passes through the hydraulic fluid inlet, enters the first flow path of the cooler, and passes through the first flow path to pass through the second flow path of the cooler. It is cooled and condensed by the flowing cooling fluid, flows in the second communication pipe of the hydraulic fluid circulation circuit, and returns from the hydraulic fluid inlet to the lower circulation portion of the hydraulic fluid enclosure. By circulating the working fluid between the meandering plate heat pipe and the cooler in this way, the entire portion of the unit that is in thermal contact with the vertical plate heat receiving portion of the substrate of the meandering plate heat pipe in the unit cell is obtained. Cool evenly.
そして、1つの蛇行板状ヒートパイプを使用するだけであり、しかも蛇行板状ヒートパイプの基板の隣り合う鉛直平板状受熱部間に単電池を配置するだけで組み立てることができるので、特許文献1記載の冷却構造に比較して、部品点数を削減しうるとともに、組み立て作業が簡単になる。
Since only one meandering plate-like heat pipe is used, and a single cell can be assembled between adjacent vertical plate-shaped heat receiving portions of the board of the meandering plate-like heat pipe,
上記2)および3)の冷却構造によれば、蛇行板状ヒートパイプと冷却器との間での作動液の循環が、スムーズに行われる。 According to the cooling structures 2) and 3), the circulation of the working fluid between the meandering plate heat pipe and the cooler is performed smoothly.
上記4)の冷却構造によれば、使用開始前には使用環境温度の影響により単電池の温度が適正温度よりも低くなり、単電池の温度が適正温度に上昇するまでは効率良く使用することができなるおそれがある寒冷地において、以下に述べるように、単電池の全体を短時間で適正温度に加熱することが可能になる。すなわち、加熱源から蛇行板状ヒートパイプの基板の板状連結部に熱を供給すると、供給された熱は蛇行板状ヒートパイプの基板の板状連結部の作動液封入部内の作動液に伝わって、少なくとも下部流通部内を満たしている作動液が均一に加熱されて蒸発する。その結果、全ての鉛直平板状受熱部の温度も均一に上昇し、単電池における蛇行板状ヒートパイプの基板の鉛直平板状受熱部に熱的に接触している部分の全体が均等に加熱される。蒸発した気相作動液は、上述した単電池を冷却する場合と同様にして、冷却器において凝縮し、蛇行板状ヒートパイプの作動液封入部に戻る。こうして単電池における蛇行板状ヒートパイプの基板の受熱部に熱的に接触している部分の全体が均等に加熱され、単電池の全体が短時間で適正温度に加熱される。 According to the cooling structure of 4) above, the cell temperature is lower than the appropriate temperature due to the influence of the use environment temperature before the start of use, and it is used efficiently until the cell temperature rises to the appropriate temperature. In a cold district where there is a risk of being able to occur, the entire cell can be heated to an appropriate temperature in a short time as described below. That is, when heat is supplied from the heating source to the plate-like connecting portion of the board of the meandering plate heat pipe, the supplied heat is transferred to the working fluid in the working fluid sealing portion of the plate-like connecting portion of the substrate of the meandering plate heat pipe. Thus, the hydraulic fluid that fills at least the lower flow section is uniformly heated and evaporates. As a result, the temperature of all the vertical plate-shaped heat receiving portions also rises uniformly, and the entire portion of the unit of the meander plate-shaped heat pipe in the unit cell that is in thermal contact with the vertical plate-shaped heat receiving portion is heated uniformly. The The evaporated vapor-phase hydraulic fluid is condensed in the cooler in the same manner as in the case of cooling the unit cell described above, and returns to the hydraulic fluid enclosing portion of the meandering plate heat pipe. In this way, the entire portion of the unit cell that is in thermal contact with the heat receiving portion of the board of the meandering plate heat pipe is heated uniformly, and the entire unit cell is heated to an appropriate temperature in a short time.
上記5)の冷却構造によれば、冷却器の第1流路において、作動液流入口側と作動液流出口側とで作動液の温度差が大きくなり、第1流路内での作動液の流れが促進されるので、蛇行板状ヒートパイプと冷却器との間での作動液の循環が起こりやすくなる。したがって、上述した単電池の冷却および加熱を効果的に行うことができる。 According to the cooling structure of 5) above, in the first flow path of the cooler, the temperature difference of the hydraulic fluid increases between the hydraulic fluid inlet side and the hydraulic fluid outlet side, and the hydraulic fluid in the first flow path This facilitates the circulation of the hydraulic fluid between the meandering plate heat pipe and the cooler. Therefore, the above-described unit cell can be effectively cooled and heated.
上記6)の冷却構造によれば、蛇行板状ヒートパイプと冷却器との間での作動液の循環の際に第1流路内で凝縮した液相作動液は、重力によって下方に位置する作動液流出口側に流れやすくなる。 According to the cooling structure of the above 6), the liquid-phase hydraulic fluid condensed in the first flow path during the circulation of the hydraulic fluid between the meandering plate heat pipe and the cooler is positioned below by gravity. It becomes easy to flow to the hydraulic fluid outlet side.
以下、この発明の実施形態を、図面を参照して説明する。なお、以下の説明において、図1の矢印Xで示す側を左、これと反対側を右といい、矢印Yで示す側を前、これと反対側を後というものとする。 Embodiments of the present invention will be described below with reference to the drawings. In the following description, the side indicated by the arrow X in FIG. 1 is referred to as the left, the opposite side is referred to as the right, the side indicated by the arrow Y is referred to as the front, and the opposite side is referred to as the rear.
また、以下の説明において、「アルミニウム」という用語には、純アルミニウムの他にアルミニウム合金を含むものとする。 In the following description, the term “aluminum” includes aluminum alloys in addition to pure aluminum.
図1はこの発明による組電池の冷却構造の全体構成を示し、図2は図1の冷却構造の一部の構成を示す。 FIG. 1 shows an overall configuration of a cooling structure for an assembled battery according to the present invention, and FIG. 2 shows a partial configuration of the cooling structure of FIG.
図1および図2において、組電池の冷却構造は、ヒートパイプ部(3)が設けられた基板(2)が蛇行状に曲げられることによって形成された蛇行板状ヒートパイプ(1)と、リチウムイオン二次電池からなり、かつ鉛直状に配置されて蛇行板状ヒートパイプ(1)との間で熱の授受が行われる複数の扁平状単電池(4)と、蛇行板状ヒートパイプ(1)の上方に設けられ、かつ蛇行板状ヒートパイプ(1)のヒートパイプ部(3)で発生した液相作動液から熱を奪う冷却器(5)と、蛇行板状ヒートパイプ(1)のヒートパイプ部(3)と冷却器(5)との間で作動液を循環させる作動液循環回路(6)とを備えている。 1 and 2, the cooling structure of the assembled battery includes a meandering plate heat pipe (1) formed by bending a substrate (2) provided with a heat pipe portion (3) in a meandering manner, and lithium A plurality of flat single cells (4) that are made of ion secondary batteries and arranged vertically and transfer heat to and from the meandering plate heat pipe (1), and meandering plate heat pipes (1 ) And a heat sink (5) that takes heat from the liquid phase hydraulic fluid generated in the heat pipe part (3) of the meandering plate heat pipe (1), and the meandering plate heat pipe (1) A hydraulic fluid circulation circuit (6) for circulating hydraulic fluid between the heat pipe (3) and the cooler (5) is provided.
蛇行板状ヒートパイプ(1)の基板(2)は互いに接合された2枚のアルミニウム板からなり、長手方向を前後方向に向けるとともに幅方向を上下方向に向けた状態で、左右方向に間隔をおいて互いに平行に配置され、かつ単電池(4)が熱的に接触する複数の鉛直平板状受熱部(7)と、隣り合う鉛直平板状受熱部(7)を、平面から見て長手方向のいずれか一端で交互に連結する水平断面円弧状の板状連結部(8)とよりなる。 The board (2) of the meandering plate-like heat pipe (1) is made of two aluminum plates joined to each other, with the longitudinal direction facing in the front-rear direction and the width direction facing in the up-down direction, with a gap in the left-right direction. The plurality of vertical flat plate heat receiving portions (7) and the adjacent vertical flat plate heat receiving portions (7) that are arranged in parallel with each other and in which the single cells (4) are in thermal contact with each other are viewed in the longitudinal direction as viewed from the plane. It comprises a plate-like connecting portion (8) having an arcuate horizontal section that is alternately connected at either one end.
蛇行板状ヒートパイプ(1)のヒートパイプ部(3)は、基板(2)に形成された1つの中空状作動液封入部(9)内に作動液が封入されることによって、一端の鉛直平板状受熱部(7)から他端の鉛直平板状受熱部(7)にかけて設けられている。ヒートパイプ部(3)の作動液封入部(9)は、基板(2)の下部において一端の鉛直平板状受熱部(7)から他端の鉛直平板状受熱部(7)にかけて形成された下部流通部(11)と、基板(2)の上部において一端の鉛直平板状受熱部(7)から他端の鉛直平板状受熱部(7)にかけて形成された上部流通部(12)と、基板(2)の上下方向の中間部において一端の鉛直平板状受熱部(7)から他端の鉛直平板状受熱部(7)にかけて形成された中間流通部(13)と、各鉛直平板状受熱部(7)において下部流通部(11)、中間流通部(13)および上部流通部(12)を通じさせるように、これらの流通部(11)(12)(13)の長さ方向に間隔をおいて設けられた複数の鉛直状連通部(14)とを有する。そして、作動液封入部(9)の下部流通部(11)、上部流通部(12)、中間流通部(13)および連通部(14)のうち少なくとも下部流通部(11)の全体が作動液で満たされている。たとえば、作動液は、中間流通部(13)内まで満たすように、作動液封入部(9)内に封入されている。作動液封入部(9)の連通部(14)は板状連結部(8)には設けられておらず、下部流通部(11)、上部流通部(12)および中間流通部(13)だけが板状連結部(8)に設けられている。作動液封入部(9)の下部流通部(11)の一端に、一端(左端)の鉛直平板状受熱部(7)における板状連結部(8)とは反対側の端縁(後端縁)に開口した作動液入口(15)が設けられ、作動液封入部(9)の上部流通部(12)の他端に、他端(右端)の鉛直平板状受熱部(7)における板状連結部(8)とは反対側の端縁(後端縁)に開口し、かつ作動液入口(15)よりも上方に位置しする作動液出口(16)が設けられている。 The heat pipe portion (3) of the meandering plate-like heat pipe (1) has a vertical end at one end when the hydraulic fluid is enclosed in one hollow hydraulic fluid enclosure (9) formed on the substrate (2). It is provided from the flat plate heat receiving portion (7) to the vertical flat plate heat receiving portion (7) at the other end. The hydraulic fluid enclosing part (9) of the heat pipe part (3) is a lower part formed from the vertical flat plate heat receiving part (7) at one end to the vertical flat plate heat receiving part (7) at the other end in the lower part of the substrate (2). A circulation part (11), an upper circulation part (12) formed from the vertical flat plate heat receiving part (7) at one end to the vertical flat plate heat receiving part (7) at the other end in the upper part of the substrate (2), and a substrate ( 2) In the intermediate portion in the vertical direction, the intermediate flow portion (13) formed from the vertical flat plate heat receiving portion (7) at one end to the vertical flat plate heat receiving portion (7) at the other end, and each vertical flat plate heat receiving portion ( 7) in the longitudinal direction of these circulation parts (11), (12) and (13) so as to pass through the lower circulation part (11), the intermediate circulation part (13) and the upper circulation part (12). And a plurality of vertical communication portions (14) provided. And, at least the whole of the lower flow part (11) of the lower flow part (11), the upper flow part (12), the intermediate flow part (13) and the communication part (14) of the hydraulic fluid sealing part (9) is hydraulic fluid. Is filled with. For example, the hydraulic fluid is enclosed in the hydraulic fluid enclosure (9) so as to fill the intermediate flow portion (13). The communication part (14) of the hydraulic fluid sealing part (9) is not provided in the plate-like connection part (8), only the lower circulation part (11), the upper circulation part (12) and the intermediate circulation part (13). Is provided in the plate-like connecting portion (8). At the end of the lower circulation part (11) of the hydraulic fluid enclosing part (9), the edge (rear edge) on the opposite side of the plate-like connection part (8) in the vertical flat plate heat receiving part (7) at one end (left end) ) With a hydraulic fluid inlet (15) open to the other end (12) of the upper portion of the hydraulic fluid enclosing portion (9), and the plate shape in the vertical flat plate heat receiving portion (7) at the other end (right end) A hydraulic fluid outlet (16) is provided at the end edge (rear end edge) opposite to the connecting portion (8) and positioned above the hydraulic fluid inlet (15).
蛇行板状ヒートパイプ(1)の基板(2)は、たとえば2枚のアルミニウム板の合わせ面のうちの少なくともいずれか一方の面に圧着防止剤を所要パターンに印刷し、この状態で2枚のアルミニウム板を圧着して合わせ板をつくり、合わせ板の非圧着部に流体圧を導入することによって作動液封入部(9)を一挙に形成する、所謂ロールボンド法によって製造される。合せ板の非圧着部は、作動液封入部(9)に対応する形状の作動液封入部用非圧着部と、作動液封入部用非圧着部から合せ板の周縁に至る流体圧導入用非圧着部とからなる。流体圧導入用非圧着部から流体圧を導入して作動液封入部(9)を形成すると、流体圧導入用非圧着部は、一端が作動液封入部(9)に連なるとともに他端が合せ板の周縁に開口した作動液注入部となる。作動液注入部は作動液の注入後封止される。 For example, the substrate (2) of the meandering plate-like heat pipe (1) is printed on a required pattern on at least one of the two aluminum plate mating surfaces. It is manufactured by a so-called roll bond method in which an aluminum plate is crimped to produce a laminated plate, and fluid pressure is introduced into the non-crimped portion of the laminated plate to form the hydraulic fluid enclosing portion (9) all at once. The non-crimping part of the laminating plate includes a non-crimping part for the hydraulic fluid enclosing part having a shape corresponding to the hydraulic fluid enclosing part (9), and a non-crimping part for fluid pressure introduction from the non-crimping part for the hydraulic fluid enclosing part to the periphery of the laminating plate. It consists of a crimping part. When fluid pressure is introduced from the non-crimping part for introducing fluid pressure to form the hydraulic fluid enclosing part (9), one end of the non-crimping part for introducing fluid pressure is connected to the hydraulic fluid enclosing part (9) and the other end is aligned. It becomes the hydraulic fluid injection | pouring part opened to the peripheral edge of the board. The hydraulic fluid injection part is sealed after the hydraulic fluid is injected.
なお、基板(2)は、少なくとも1枚のアルミニウム板が作動液封入部(9)を形成するための外方膨出部を有する2枚のアルミニウム板を、たとえばろう付することにより形成してもよい。 The substrate (2) is formed by brazing, for example, two aluminum plates having at least one aluminum plate having an outward bulging portion for forming the hydraulic fluid enclosing portion (9). Also good.
単電池(4)は扁平直方体状であり、少なくとも片面が蛇行板状ヒートパイプ(1)の基板(2)の鉛直平板状受熱部(7)に熱的に接触するように、隣り合う鉛直平板状受熱部(7)間に1つまたは2つ、ここでは2つずつ積層状に配置されている。なお、この明細書において、「直方体」という用語には、数学的に定義される厳密な直方体だけではなく、直方体に近似した形状も含むものとする。また、単電池(4)は扁平直方体状に限らず、扁平状であればよい。 The unit cell (4) has a flat rectangular parallelepiped shape, and at least one surface is adjacent to the vertical flat plate so that it is in thermal contact with the vertical flat plate heat receiving part (7) of the substrate (2) of the meandering plate heat pipe (1). One or two, in this case, two layers are arranged between the heat receiving portions (7). In this specification, the term “cuboid” includes not only a strict cuboid defined mathematically but also a shape approximated to a cuboid. Further, the unit cell (4) is not limited to a flat rectangular parallelepiped shape, and may be a flat shape.
図示は省略したが、単電池(4)の上端に1対の端子が上方突出状に設けられており、端子を利用して全ての単電池(4)が直列状または並列状に接続されることにより組電池(17)が構成されている。図示は省略したが、単電池(4)と平板状ヒートパイプ(1)の鉛直平板状受熱部(7)との間には電気絶縁フィルムが介在させられるか、あるいは鉛直平板状受熱部(7)の左右両面に電気絶縁コーティングが施されることによって、単電池(4)と平板状ヒートパイプ(1)の鉛直平板状受熱部(7)との間が電気絶縁状態となっていることが好ましい。 Although not shown in the figure, a pair of terminals are provided at the upper end of the unit cell (4) so as to protrude upward, and all the unit cells (4) are connected in series or in parallel using the terminals. Thus, the assembled battery (17) is configured. Although illustration is omitted, an electric insulating film is interposed between the unit cell (4) and the vertical flat plate heat receiving portion (7) of the flat plate heat pipe (1) or the vertical flat plate heat receiving portion (7 ) Is electrically insulated between the single cell (4) and the vertical flat plate heat receiving part (7) of the flat plate heat pipe (1). preferable.
冷却器(5)は、アルミニウム製外管(18)(外側流体流通部材)と、外管(18)内に間隔をおいて配置されたアルミニウム製内管(19)(内側流体流通部材)とを備えており、外管(18)と内管(19)との間の間隙が気相作動液が流れる第1流路(21)となり、内管(19)内が気相作動液を冷却する冷却流体が流れる第2流路(22)となっている。第1流路(21)の両端は閉鎖されている。 The cooler (5) includes an aluminum outer pipe (18) (outer fluid circulation member), an aluminum inner pipe (19) (inner fluid circulation member) disposed in the outer pipe (18) at intervals. The gap between the outer pipe (18) and the inner pipe (19) becomes the first flow path (21) through which the gas phase working fluid flows, and the inside of the inner pipe (19) cools the gas phase working fluid. It becomes the 2nd flow path (22) through which the cooling fluid which flows. Both ends of the first flow path (21) are closed.
冷却器(5)の外管(18)の一端に、気相作動液を第1流路(21)内に送り込む作動液流入口(23)が設けられるとともに、同他端に第1流路(21)内から液相作動液を送り出す作動液流出口(24)が設けられている。内管(19)の両端は、外管(18)の外部に突出して開口しており、内管(19)の一端開口が冷却流体流入口(25)となるとともに同他端開口が冷却流体流出口(26)となっている。冷却器(5)の第1流路(21)における作動液の流れ方向と、第2流路(22)における冷却流体の流れ方向とが逆向きになるように、作動液流入口(23)が設けられた側に冷却流体流出口(26)が設けられ、作動液流出口(24)が設けられた側に冷却流体流入口(25)が設けられている。また、冷却器(5)の外管(18)の作動液流入口(23)が、作動液流出口(24)よりも上方に位置するように、外管(18)および内管(19)は傾斜状に配置されている。 One end of the outer pipe (18) of the cooler (5) is provided with a working fluid inlet (23) for sending the gas-phase working fluid into the first channel (21), and the first channel is provided at the other end. (21) A hydraulic fluid outlet (24) for feeding out the liquid phase hydraulic fluid from the inside is provided. Both ends of the inner pipe (19) project outward from the outer pipe (18), and one end opening of the inner pipe (19) serves as a cooling fluid inlet (25) and the other end opening serves as a cooling fluid. It has an outlet (26). The hydraulic fluid inlet (23) so that the flow direction of the hydraulic fluid in the first flow path (21) of the cooler (5) is opposite to the flow direction of the cooling fluid in the second flow path (22). The cooling fluid outlet (26) is provided on the side where the hydraulic fluid is provided, and the cooling fluid inlet (25) is provided on the side where the hydraulic fluid outlet (24) is provided. Further, the outer pipe (18) and the inner pipe (19) so that the hydraulic fluid inlet (23) of the outer pipe (18) of the cooler (5) is located above the hydraulic fluid outlet (24). Are arranged in an inclined manner.
作動液循環回路(6)は、蛇行板状ヒートパイプ(1)の基板(2)に形成された作動液封入部(9)の作動液出口(16)と冷却器(5)の外管(18)の作動液流入口(23)とを通じさせる第1連通配管(27)と、蛇行板状ヒートパイプ(1)の基板(2)に形成された作動液封入部(9)の作動液入口(15)と冷却器(5)の外管(18)の作動液流出口(24)とを通じさせる第2連通配管(28)とを備えている。 The hydraulic fluid circulation circuit (6) includes a hydraulic fluid outlet (16) of the hydraulic fluid enclosure (9) formed on the substrate (2) of the meandering plate heat pipe (1) and an outer pipe ( 18) The first communication pipe (27) through the hydraulic fluid inlet (23) and the hydraulic fluid inlet (9) formed in the substrate (2) of the meandering plate heat pipe (1) (15) and a second communication pipe (28) connected to the hydraulic fluid outlet (24) of the outer pipe (18) of the cooler (5).
蛇行板状ヒートパイプ(1)の基板(2)における少なくとも1つ、ここでは1つの板状連結部(8)の下部に加熱源(29)が熱的に接触させられており、単電池(4)を加熱する機能を備えている。加熱源(29)は、1つの板状連結部(8)において、下部流通部(11)と中間流通部(13)とに跨るように配置されている。 A heating source (29) is in thermal contact with at least one of the substrates (2) of the meandering plate-like heat pipe (1), here, one plate-like connecting portion (8), and a single cell ( 4) Has the function of heating. The heating source (29) is arranged so as to straddle the lower circulation part (11) and the intermediate circulation part (13) in one plate-like connection part (8).
上述した冷却構造において、単電池(4)を冷却する際には、単電池(4)から発せられる熱によって、蛇行板状ヒートパイプ(1)の基板(2)における単電池(4)に熱的に接触している鉛直平板状受熱部(7)が加熱され、この熱がヒートパイプ部(3)における鉛直平板状受熱部(7)の作動液封入部(9)内の作動液に伝わって、下部流通部(11)、中間流通部(13)および連通部(14)の下側部分内を満たしている作動液が蒸発する。 In the cooling structure described above, when the unit cell (4) is cooled, the unit cell (4) in the substrate (2) of the meandering plate heat pipe (1) is heated by the heat generated from the unit cell (4). The vertical plate-shaped heat receiving portion (7) that is in contact with the heat is heated, and this heat is transferred to the working fluid in the hydraulic fluid sealing portion (9) of the vertical plate-shaped heat receiving portion (7) in the heat pipe portion (3). Thus, the hydraulic fluid filling the lower portions of the lower flow portion (11), the intermediate flow portion (13), and the communication portion (14) evaporates.
発生した気相作動液は、連通部(14)を通って上部流通部(12)内に入り、上部流通部(12)内を流れて作動液出口(16)から作動液循環回路(6)の第1連通配管(27)内に入る。第1連通配管(27)内に入った気相作動液は、作動液流入口(23)を通って冷却器(5)の第1流路(21)内に入り、第1流路(21)内を流れる間に冷却器(5)の第2流路(22)内を流れる冷却流体により冷却されて凝縮する。このとき、冷却器(5)の第1流路(21)における作動液の流れ方向と、第2流路(22)における冷却流体の流れ方向とが逆向きになるので、第1流路(21)において、作動液流入口(23)側と作動液流出口(24)側とで作動液の温度差が大きくなり、第1流路(21)内での作動液の流れが促進される。第1流路(21)内を流れる間に凝縮した液相作動液は、作動液流出口(24)を通って作動液循環回路(6)の第2連通配管(28)内に入り、第2連通配管(28)内を流れて作動液入口(15)から作動液封入部(9)の下部流通部(11)に戻る。こうして蛇行板状ヒートパイプ(1)と冷却器(5)との間で作動液の循環が起きることによって、単電池(4)における蛇行板状ヒートパイプ(1)の基板(2)の鉛直平板状受熱部(7)に熱的に接触している部分の全体が均等に冷却される。 The generated gas-phase hydraulic fluid enters the upper circulation portion (12) through the communication portion (14), flows through the upper circulation portion (12), and flows from the hydraulic fluid outlet (16) to the hydraulic fluid circulation circuit (6). Enter the first communication pipe (27). The gas-phase hydraulic fluid that has entered the first communication pipe (27) passes through the hydraulic fluid inlet (23), enters the first flow path (21) of the cooler (5), and enters the first flow path (21 ) Is cooled and condensed by the cooling fluid flowing in the second flow path (22) of the cooler (5) while flowing in the inside. At this time, the flow direction of the hydraulic fluid in the first flow path (21) of the cooler (5) and the flow direction of the cooling fluid in the second flow path (22) are opposite to each other. 21), the temperature difference of the working fluid increases between the working fluid inlet (23) and the working fluid outlet (24), and the flow of the working fluid in the first flow path (21) is promoted. . The liquid phase hydraulic fluid condensed while flowing in the first flow path (21) passes through the hydraulic fluid outlet (24) and enters the second communication pipe (28) of the hydraulic fluid circulation circuit (6). It flows through the two communication pipes (28) and returns from the hydraulic fluid inlet (15) to the lower flow passage (11) of the hydraulic fluid enclosure (9). Thus, by circulating the working fluid between the meandering plate heat pipe (1) and the cooler (5), the vertical plate of the substrate (2) of the meandering plate heat pipe (1) in the unit cell (4). The entire portion in thermal contact with the heat receiving portion (7) is cooled evenly.
寒冷地において、使用開始前に単電池(4)を加熱する際には、加熱源(29)から蛇行板状ヒートパイプ(1)の基板(2)の板状連結部(8)に熱を供給する。供給された熱は蛇行板状ヒートパイプ(1)の基板(2)の板状連結部(8)の作動液封入部(9)内の作動液に伝わって、下部流通部(11)および中間流通部(13)内を満たしている作動液が均一に加熱されて蒸発する。その結果、全ての鉛直平板状受熱部(7)の温度も均一に上昇し、単電池(4)における蛇行板状ヒートパイプ(1)の基板(2)の鉛直平板状受熱部(7)に熱的に接触している部分の全体が均等に加熱される。蒸発した気相作動液は、上述した単電池(4)を冷却する場合と同様にして、冷却器(5)において凝縮し、蛇行板状ヒートパイプ(1)の作動液封入部(9)に戻る。 When heating the single cell (4) before starting use in a cold region, heat is applied from the heating source (29) to the plate-like connecting portion (8) of the board (2) of the meandering plate-like heat pipe (1). Supply. The supplied heat is transferred to the hydraulic fluid in the hydraulic fluid enclosing portion (9) of the plate-like connecting portion (8) of the substrate (2) of the meandering plate-like heat pipe (1), and the lower circulation portion (11) and the middle The hydraulic fluid filling the circulation part (13) is uniformly heated and evaporates. As a result, the temperature of all the vertical plate-shaped heat receiving parts (7) also rises uniformly, and the vertical plate-shaped heat receiving part (7) of the substrate (2) of the meandering plate-shaped heat pipe (1) in the unit cell (4). The entire part in thermal contact is heated evenly. The evaporated vapor phase working fluid is condensed in the cooler (5) in the same manner as in the case of cooling the unit cell (4) described above, and is filled in the working fluid enclosure (9) of the meandering plate heat pipe (1). Return.
図3はこの発明による組電池の冷却構造に用いられる蛇行板状ヒートパイプの変形例を示す。 FIG. 3 shows a modification of the meandering plate heat pipe used for the cooling structure of the battery pack according to the present invention.
図3に示す蛇行板状ヒートパイプ(30)の場合、基板(31)の隣り合う鉛直平板状受熱部(7)を、平面から見て長手方向のいずれか一端で交互に連結する板状連結部(32)は、鉛直平板状受熱部(7)と直角をなす平板状であり、鉛直平板状受熱部(7)と板状連結部(32)との連接部に丸みがつけられている。 In the case of the meandering plate heat pipe (30) shown in FIG. 3, adjacent plate-like heat receiving portions (7) of the substrate (31) are alternately connected at one end in the longitudinal direction when viewed from the plane. The part (32) has a flat plate shape perpendicular to the vertical flat plate heat receiving portion (7), and the connecting portion between the vertical flat plate heat receiving portion (7) and the plate connecting portion (32) is rounded. .
その他の構成は、図1および図2に示す蛇行板状ヒートパイプ(1)と同様である。 The other structure is the same as that of the meandering plate heat pipe (1) shown in FIGS.
この発明による組電池の冷却構造は、たとえば複数のLi二次電池からなる組電池を備えたハイブリッドカーに好適に用いられる。 The assembled battery cooling structure according to the present invention is suitably used for a hybrid car including an assembled battery including a plurality of Li secondary batteries, for example.
(1)(30):蛇行板状ヒートパイプ
(2)(31):基板
(3):ヒートパイプ部
(4):単電池
(5):冷却器
(6):作動液循環回路
(7):鉛直平板状受熱部
(8)(32):板状連結部
(9):作動液封入部
(11):下部流通部
(12):上部流通部
(14):連通部
(15):作動液入口
(16):作動液出口
(17):組電池
(18):外管(外側流体流通部材)
(19):内管(内側流体流通部材)
(21):第1流路
(22):第2流路
(23):作動液流入口
(24):作動液流出口
(25):冷却流体流入口
(26):冷却流体流出口
(27):第1連通配管
(28):第2連通配管
(29):加熱源
(1) (30): Meandering plate heat pipe
(2) (31): Board
(3): Heat pipe section
(4): Single cell
(5): Cooler
(6): Hydraulic fluid circulation circuit
(7): Vertical flat plate heat receiving part
(8) (32): Plate-like connecting part
(9): Hydraulic fluid enclosure
(11): Lower Distribution Department
(12): Upper distribution department
(14): Communication part
(15): Hydraulic fluid inlet
(16): Hydraulic fluid outlet
(17): Battery pack
(18): Outer pipe (outer fluid flow member)
(19): Inner pipe (inner fluid flow member)
(21): First flow path
(22): Second flow path
(23): Hydraulic fluid inlet
(24): Hydraulic fluid outlet
(25): Cooling fluid inlet
(26): Cooling fluid outlet
(27): First communication pipe
(28): Second communication pipe
(29): Heating source
Claims (6)
蛇行板状ヒートパイプの基板が、互いに平行に配置されかつ単電池が熱的に接触する鉛直平板状受熱部と、隣り合う鉛直平板状受熱部を、平面から見て長手方向のいずれか一端で交互に連結する板状連結部とよりなり、ヒートパイプ部の作動液封入部が、基板の下部に一端の鉛直平板状受熱部から他端の鉛直平板状受熱部にかけて形成された下部流通部と、基板の上部に一端の鉛直平板状受熱部から他端の鉛直平板状受熱部にかけて形成された上部流通部と、各鉛直平板状受熱部に形成されて下部流通部と上部流通部とを長さ方向の中間部で通じさせる連通部とを有し、作動液封入部の下部流通部、上部流通部および連通部のうち少なくとも下部流通部の全体が作動液で満たされ、下部流通部の一端に、前記一端の鉛直平板状受熱部の周縁に開口した作動液入口が設けられ、上部流通部の他端に、前記他端の鉛直平板状受熱部の周縁に開口しかつ作動液入口よりも上方に位置する作動液出口が設けられ、
扁平状単電池が、少なくとも片面が蛇行板状ヒートパイプの基板の鉛直平板状受熱部に熱的に接触するように隣り合う鉛直平板状受熱部間に配置され、
冷却器が、中空状の外側流体流通部材と、外側流体流通部材内に間隔をおいて配置された中空状の内側流体流通部材とを備えており、外側流体流通部材と内側流体流通部材との間の間隙が気相作動液が流れる第1流路となり、内側流体流通部材内が気相作動液を冷却する冷却流体が流れる第2流路となっており、外側流体流通部材に、気相作動液を第1流路内に送り込む作動液流入口、および第1流路内から液相作動液を送り出す作動液流出口が設けられ、内側流体流通部材の両端が外側流体流通部材の外部に開口し、内側流体流通部材の一端開口が冷却流体流入口となるとともに同他端開口が冷却流体流出口となっており、
作動液循環回路が、蛇行板状ヒートパイプの基板に形成された作動液封入部の作動液出口と冷却器の外側流体流通部材の作動液流入口とを通じさせる第1連通配管、および蛇行板状ヒートパイプの基板に形成された作動液封入部の作動液入口と冷却器の外側流体流通部材の作動液流出口とを通じさせる第2連通配管とを備えている組電池の冷却構造。 A plurality of flat plates in which heat is transferred between a meandering plate-like heat pipe formed by bending a substrate provided with a heat pipe portion in a meandering manner and a serpentine plate-like heat pipe arranged vertically. Unit cell, a cooler that is provided above the meandering plate heat pipe and takes heat away from the liquid phase working fluid generated in the meandering plate heat pipe, and the heat pipe portion of the meandering plate heat pipe A hydraulic fluid circulation circuit that circulates the hydraulic fluid between the heat pipe and the cooler, and the heat pipe is enclosed in a hollow hydraulic fluid enclosure formed on the board of the meandering plate heat pipe. Is provided by
A vertical plate-shaped heat receiving part in which the substrates of the meandering plate-shaped heat pipe are arranged in parallel with each other and the unit cell is in thermal contact with the adjacent vertical plate-shaped heat receiving part at one end in the longitudinal direction when viewed from the plane. It consists of plate-like connecting portions that are connected alternately, and a lower fluid circulation portion in which the hydraulic fluid enclosing portion of the heat pipe portion is formed from the vertical flat plate heat receiving portion at one end to the vertical flat plate heat receiving portion at the other end of the substrate. The upper circulation part formed from the vertical flat plate heat receiving part at one end to the vertical flat plate heat receiving part at the other end of the substrate, and the lower circulation part and the upper circulation part formed at each vertical flat plate heat receiving part are long. A communication portion that communicates with the intermediate portion in the vertical direction, and at least the entire lower circulation portion of the lower fluid circulation portion, the upper circulation portion, and the communication portion of the hydraulic fluid sealing portion is filled with the hydraulic fluid, and one end of the lower circulation portion At the periphery of the vertical flat plate heat receiving portion at one end Provided mouth with hydraulic fluid inlet, the other end of the upper distribution part, hydraulic fluid outlet which is located above the opening vital hydraulic fluid inlet to the periphery of the vertical plate-shaped heat receiving portion of the other end is provided,
A flat unit cell is disposed between adjacent vertical flat plate heat receiving parts so that at least one surface is in thermal contact with the vertical flat plate heat receiving unit of the meandering plate heat pipe substrate,
The cooler includes a hollow outer fluid circulation member, and a hollow inner fluid circulation member disposed at intervals in the outer fluid circulation member, and the outer fluid circulation member and the inner fluid circulation member The gap between them becomes the first flow path through which the gas-phase hydraulic fluid flows, and the inside fluid circulation member becomes the second flow path through which the cooling fluid for cooling the gas-phase hydraulic fluid flows. A hydraulic fluid inlet for feeding the hydraulic fluid into the first flow path and a hydraulic fluid outlet for sending the liquid phase hydraulic fluid from the first flow path are provided, and both ends of the inner fluid circulation member are outside the outer fluid circulation member. Opening, one end opening of the inner fluid circulation member is a cooling fluid inlet and the other end opening is a cooling fluid outlet,
A first communication pipe in which the hydraulic fluid circulation circuit passes through the hydraulic fluid outlet of the hydraulic fluid sealing portion formed on the substrate of the meandering plate heat pipe and the hydraulic fluid inlet of the outer fluid circulation member of the cooler, and the meandering plate shape A cooling structure for an assembled battery, comprising a second communication pipe that passes through a hydraulic fluid inlet of a hydraulic fluid sealing portion formed on a substrate of a heat pipe and a hydraulic fluid outlet of an outer fluid circulation member of a cooler.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013241481A JP6167023B2 (en) | 2013-11-22 | 2013-11-22 | Battery cooling structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013241481A JP6167023B2 (en) | 2013-11-22 | 2013-11-22 | Battery cooling structure |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015103324A JP2015103324A (en) | 2015-06-04 |
JP6167023B2 true JP6167023B2 (en) | 2017-07-19 |
Family
ID=53378883
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013241481A Active JP6167023B2 (en) | 2013-11-22 | 2013-11-22 | Battery cooling structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6167023B2 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102562682B1 (en) | 2016-05-25 | 2023-08-03 | 삼성에스디아이 주식회사 | Battery module |
JP2018088305A (en) * | 2016-11-28 | 2018-06-07 | 昭和電工株式会社 | Cooling system |
DE102017218248A1 (en) * | 2017-10-12 | 2019-04-18 | Volkswagen Aktiengesellschaft | Battery cell module, secondary battery and motor vehicle |
CN108400407B (en) * | 2018-04-14 | 2018-12-11 | 黄河科技学院 | Batteries of electric automobile cooling device |
JP2020030970A (en) * | 2018-08-22 | 2020-02-27 | 株式会社デンソー | Battery module |
JP2020098681A (en) * | 2018-12-17 | 2020-06-25 | 株式会社デンソー | Battery temperature rising device |
JP2020145116A (en) * | 2019-03-07 | 2020-09-10 | 株式会社デンソー | Battery pack |
JP7493297B2 (en) * | 2019-11-25 | 2024-05-31 | 三恵技研工業株式会社 | Battery insulation structure |
CN117374481A (en) * | 2022-06-30 | 2024-01-09 | 比亚迪股份有限公司 | Power battery heat exchanger, power battery system and electric vehicle |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0730450U (en) * | 1993-11-15 | 1995-06-06 | 三菱自動車工業株式会社 | Battery cooling device for electric vehicles |
JPH11204151A (en) * | 1998-01-08 | 1999-07-30 | Nissan Motor Co Ltd | Battery cooling device of electric vehicle |
JP2011146320A (en) * | 2010-01-18 | 2011-07-28 | Kawasaki Heavy Ind Ltd | Cooling system of secondary battery |
US8632923B2 (en) * | 2010-07-02 | 2014-01-21 | Samsung Sdi Co., Ltd. | Battery pack |
JP5484301B2 (en) * | 2010-12-08 | 2014-05-07 | 住友重機械工業株式会社 | Power storage module and work machine |
JP2013157111A (en) * | 2012-01-27 | 2013-08-15 | Showa Denko Kk | Cooling and heating structure of battery pack |
-
2013
- 2013-11-22 JP JP2013241481A patent/JP6167023B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2015103324A (en) | 2015-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6167023B2 (en) | Battery cooling structure | |
JP6043555B2 (en) | Battery cooling structure | |
JP2013157111A (en) | Cooling and heating structure of battery pack | |
EP3163673B1 (en) | Battery cell cooling device and battery module including same | |
JP5893133B2 (en) | Battery module | |
KR101597403B1 (en) | Battery | |
US9761919B2 (en) | Energy storage system with heat pipe thermal management | |
JP7091971B2 (en) | Battery unit | |
KR101750066B1 (en) | Water-cooled type secondary battery | |
JP2018088305A (en) | Cooling system | |
KR102072765B1 (en) | Battery module, battery pack comprising the battery module and vehicle comprising the battery pack | |
JP6043578B2 (en) | Battery cooling structure | |
JP7155168B2 (en) | Power supply and electric vehicle equipped with power supply | |
KR20140143854A (en) | Battery Pack Having Improved Safety against Leakage of Liquid Refrigerant | |
JP6186209B2 (en) | Battery cooling and heating structure | |
JP6412456B2 (en) | Secondary battery cooling system | |
JP2018147607A (en) | Heat transfer device for battery pack | |
JP6921528B2 (en) | Heat transfer device | |
JP2014093240A (en) | Battery module | |
JP2018536975A (en) | Battery module, battery pack including the same, and automobile | |
JP2014093241A (en) | Battery module | |
WO2020179355A1 (en) | Battery pack | |
JP5906921B2 (en) | Battery module and vehicle | |
CN218241977U (en) | Heat exchanger and battery package, vehicle that have it | |
KR102683482B1 (en) | Battery Pack |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160804 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170525 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170530 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170626 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6167023 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |