JPH04196154A - Semiconductor cooling device - Google Patents

Semiconductor cooling device

Info

Publication number
JPH04196154A
JPH04196154A JP32384290A JP32384290A JPH04196154A JP H04196154 A JPH04196154 A JP H04196154A JP 32384290 A JP32384290 A JP 32384290A JP 32384290 A JP32384290 A JP 32384290A JP H04196154 A JPH04196154 A JP H04196154A
Authority
JP
Japan
Prior art keywords
heat
container
heat pipe
cooling
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32384290A
Other languages
Japanese (ja)
Inventor
Chihiro Ishibashi
石橋 千尋
Susumu Matsuoka
進 松岡
Kazuaki Kato
和昭 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP32384290A priority Critical patent/JPH04196154A/en
Publication of JPH04196154A publication Critical patent/JPH04196154A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To miniatuarize the device by inserting the edge of a heat pipe into the evaporating part of a container in which cooling medium is filled so as to provide the evaporating part and a condensing part. CONSTITUTION:A heat pipe 3 is inserted into a container 6, the container is filled with cooling medium 7 which has a low boiling point and the container is sealed leaving a space at the top. The part lower than the liquid level in the container 6 is permitted to be an evaporating part 8, and the part upper than the liquid level is permitted to be a condensing part 9. The top edge of the pipe 3 is impregnated in the evaporating part 8, the heat transmitted through the pipe 3 evaporates the cooling medium 7 and boil cooling is performed. The cooling medium 7 gasified at the evaporating part 8 is liquefied at the condensing part 9, and heat is released to the outside. Such constitution allows heat to be directly transmitted to the liquid cooling medium 7 from the heat pipe 3 and the cooling ability is remarkably improved. The shape of the conventional complicated cooling fin is not necessitated and the constitution is simplified.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は主として電力用半導体素子の冷却に使用される
ヒートパイプを利用した半導体冷却装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a semiconductor cooling device using a heat pipe, which is mainly used for cooling power semiconductor elements.

(従来の技術) ザイリスタのような電力用半導体素子に電流を流すと大
量の熱か発生するため、冷却装置を取り付けて放熱させ
る必要かある。
(Prior Art) When a current is passed through a power semiconductor device such as a Zyristor, a large amount of heat is generated, so it is necessary to install a cooling device to dissipate the heat.

このために用いられている従来の半導体冷却装置は例え
ば第6図に示すとおりのもので、半導体基体(1)の両
面の導電部を銅のような熱伝導率のよい材料からなる大
型のものとするとともに、更にその外側に受熱ブロック
(2)を密着させ、この受熱ブロック(2)にヒートパ
イプ(3)を挿入してその先端に多数枚の冷却フィン(
4)を取り付けた構造となっている。
The conventional semiconductor cooling device used for this purpose is, for example, as shown in Figure 6, in which the conductive parts on both sides of the semiconductor substrate (1) are made of a material with good thermal conductivity such as copper. At the same time, a heat receiving block (2) is closely attached to the outside of the heat receiving block (2), a heat pipe (3) is inserted into this heat receiving block (2), and a large number of cooling fins (3) are attached to the tip of the heat pipe (3).
4) is installed.

ところかこのような構造の半導体冷却装置は、ヒートパ
イプ(3)の先端に多数枚の冷却フィン(4)か取り付
けられているので構造か複雑で取扱いか不便となるうえ
、装置が大型化して組立て及びメンテナンスを含めたコ
ストか高くなってしまう欠点かあった。また屋外に設置
した場合には冷却フィン(4)の間にゴミかたまり冷却
性能か低下するという欠点があった。
However, a semiconductor cooling device with such a structure has a large number of cooling fins (4) attached to the tip of the heat pipe (3), which makes the structure complicated and inconvenient to handle, and the device becomes large. The disadvantage was that the costs including assembly and maintenance were high. Furthermore, when installed outdoors, there is a drawback that dust particles accumulate between the cooling fins (4) and the cooling performance deteriorates.

(発明か解決しようとする課題) 本発明は上記したような従来の問題点を解決して、構造
が簡単てしかも高い冷却性能を持つ半導体冷却装置を提
供するために完成されたものである。
(Problems to be Solved by the Invention) The present invention has been completed in order to solve the above-mentioned conventional problems and provide a semiconductor cooling device having a simple structure and high cooling performance.

(課題を解決するための手段) 上記の課題を解決するためになされた第1の発明は、半
導体素子に密接する受熱ブロックにヒートパイプの一端
を埋設するとともに、このヒートパイプの他端を、蒸発
部と凝縮部とを持つよう液体冷媒を封入した容器の蒸発
部に挿入したことを特徴とするものである。
(Means for Solving the Problems) A first invention made to solve the above problems is to embed one end of a heat pipe in a heat receiving block that is in close contact with a semiconductor element, and to embed the other end of the heat pipe in It is characterized in that it is inserted into the evaporation section of a container sealed with liquid refrigerant so as to have an evaporation section and a condensation section.

また第2の発明は、半導体基体を封入している絶縁容器
を貫通させてヒートパイプを取付け、ヒートパイプの内
部の絶縁冷媒を半導体基体に直接接触させるとともに、
このヒートパイプの他端を、蒸発部と凝縮部とを持つよ
う液体冷媒を封入した容器の蒸発部に挿入したことを特
徴とするものである。
Further, the second invention provides a heat pipe that is attached by penetrating an insulating container enclosing a semiconductor substrate, and an insulating refrigerant inside the heat pipe is brought into direct contact with the semiconductor substrate.
This heat pipe is characterized in that the other end of the heat pipe is inserted into the evaporation section of a container containing liquid refrigerant so as to have an evaporation section and a condensation section.

(作用) 第1の発明の半導体冷却装置においては、半導体素子の
動作により生じた熱を半導体素子に密接する受熱ブロッ
クによりヒートパイプに導き、ヒートパイプの先端に取
り付けられた容器の蒸発部で液体冷媒を蒸発させること
により沸騰冷却を行わせる。そして蒸発部てヒートパイ
プから熱を受取り気相化した液体冷媒は容器の凝縮部で
液相化し、その際に外部への放熱か行われる。
(Function) In the semiconductor cooling device of the first invention, the heat generated by the operation of the semiconductor element is guided to the heat pipe by the heat receiving block that is in close contact with the semiconductor element, and the heat is transferred to the evaporator of the container attached to the tip of the heat pipe. Boiling cooling is performed by evaporating the refrigerant. The liquid refrigerant that has received heat from the heat pipe in the evaporation section and is turned into a vapor phase is converted into a liquid phase in the condensation section of the container, at which time heat is radiated to the outside.

第2の発明の半導体冷却装置においては、半導体素子の
動作により生じた熱は半導体基体に接触しているヒート
パイプの絶縁冷媒に直接伝わる。
In the semiconductor cooling device of the second invention, heat generated by the operation of the semiconductor element is directly transmitted to the insulating coolant of the heat pipe that is in contact with the semiconductor substrate.

そしてこの熱は第1の発明と同様にヒートパイプの先端
に取り付けられた容器の蒸発部で液体冷媒を蒸発させ、
気相化した液体冷媒は容器の凝縮部で液相化して外部へ
の放熱が行われる。
As in the first invention, this heat evaporates the liquid refrigerant in the evaporation section of the container attached to the tip of the heat pipe.
The vaporized liquid refrigerant is converted into a liquid phase in the condensing section of the container, and heat is radiated to the outside.

以下にこれらの発明の実施例を示す。Examples of these inventions are shown below.

(実施例) 〔第1の発明の実施例〕 第1図において、(5)はザイリスタのような半導体基
体を絶縁容器に収納した半導体素子、(2)はこの半導
体素子(5)の両側に密接させた受熱ブロックである。
(Embodiment) [Embodiment of the first invention] In Fig. 1, (5) is a semiconductor element in which a semiconductor substrate such as Zyristor is housed in an insulating container, and (2) is a semiconductor element on both sides of this semiconductor element (5). These are heat receiving blocks that are placed in close contact with each other.

(3)は一端をこれらの受熱ブロック(2)に埋設した
ヒートパイプであり、これらのヒー1へパイプ(3)の
他端は容器(6)の内部に挿入されている。
(3) is a heat pipe whose one end is buried in these heat receiving blocks (2), and the other end of the pipe (3) to these heat 1 is inserted into the inside of the container (6).

容器(6)は例えば銅、アルミニウムのような熱伝導性
の良好な金属材料からなるもので、その内部ニハバーフ
ロロカーボンのような低沸点の液体冷媒(7)が上部に
空間を残して密封されている。そして容器(6)内の液
面よりも下の部分か蒸発部(8)、液面よりも上の部分
が凝縮部(9)とされている。ヒートパイプ(3)の上
端は蒸発部(8)内に浸漬されており、ヒートパイプ(
3)を通じて伝えられた熱か液体冷媒(7)を蒸発させ
て沸騰冷却か行われる。また蒸発部(8)で気相化した
液体冷媒(7)は凝縮部(9)て液相化し、外部への放
熱が行われる。第1図の実施例では、容器(6)の凝縮
部(9)の表面にひだ00)を形成して放熱面積を拡大
し、放熱効率を高めている。
The container (6) is made of a metal material with good thermal conductivity, such as copper or aluminum, and a low boiling point liquid refrigerant (7) such as Nihabara fluorocarbon is sealed inside with a space left at the top. ing. The portion below the liquid level in the container (6) is an evaporation section (8), and the section above the liquid surface is a condensation section (9). The upper end of the heat pipe (3) is immersed in the evaporator (8), and the heat pipe (
Boiling cooling is performed by evaporating the heat transferred through 3) or the liquid refrigerant (7). Further, the liquid refrigerant (7) that has been turned into a vapor phase in the evaporation section (8) is turned into a liquid phase in the condensation section (9), and heat is radiated to the outside. In the embodiment shown in FIG. 1, pleats 00) are formed on the surface of the condensing part (9) of the container (6) to expand the heat radiation area and improve the heat radiation efficiency.

このように構成された半導体冷却装置は、従来のように
ヒートパイプから冷却フィンに熱を移動させたうえ放熱
するものとは異なり、ヒートパイプ(3)から液体冷媒
(7)へ直接熱を移動させることかできるので、冷却性
能を大幅に向上させることができる。この液体冷媒(7
)には特に電気的な絶縁性は要求されないので水のよう
な安価な液体を使用することもてきる。また容器(6)
は箱型となるので組立てや取扱いが容易であり、ゴミの
付着等を防止することもできる。なお、電気的な絶縁性
を確保するため、ヒートパイプ(3)を受熱ブロック(
2)から引き出す部分に絶縁部材を挟んでおくこともて
きる。
Unlike conventional devices that transfer heat from a heat pipe to cooling fins and then dissipate the heat, the semiconductor cooling device configured in this way transfers heat directly from the heat pipe (3) to the liquid refrigerant (7). This allows the cooling performance to be significantly improved. This liquid refrigerant (7
) does not require particular electrical insulation, so an inexpensive liquid such as water can be used. Also container (6)
Since it is box-shaped, it is easy to assemble and handle, and it can also prevent dust from adhering to it. In addition, in order to ensure electrical insulation, the heat pipe (3) is connected to a heat receiving block (
It is also possible to sandwich an insulating member between the parts that are pulled out from 2).

第1図の実施例では各受熱ブロック(2)から引き出し
たヒートパイプ(3)の先端にそれぞれ容器(6)を取
り付けたか、第2図の実施例では共通の容器(6)を使
用している。たたしこの場合にはヒートパイプ(3)の
途中に絶縁部材01)を設けて電気的に絶縁しておく必
要かある。更に第3図の実施例では、直列に配置された
4つの受熱ブロック(2)から引き出したヒートパイプ
(3)の先端を共通の容器(6)の蒸発部(8)に浸漬
させである。これらの実施例のように共通の容器(6)
を使用した場合には、容器(6)の放熱面積を拡大し易
くなり、かつ全体の小型化を図ることかできる。
In the embodiment shown in Fig. 1, a container (6) is attached to the tip of each heat pipe (3) drawn out from each heat receiving block (2), or in the embodiment shown in Fig. 2, a common container (6) is used. There is. However, in this case, it is necessary to provide an insulating member 01) in the middle of the heat pipe (3) to electrically insulate it. Furthermore, in the embodiment shown in FIG. 3, the tips of heat pipes (3) drawn out from four heat receiving blocks (2) arranged in series are immersed in the evaporation section (8) of a common container (6). Common containers (6) as in these examples
If this is used, the heat dissipation area of the container (6) can be easily expanded, and the overall size can be reduced.

第4図の実施例では、容器(6)の凝縮部(9)に循環
経路(12か形成されている。これにより容器(6)内
における沸騰冷却の冷媒の流動経路か確保され易くなり
、冷媒の循環量か増加し冷却能力が向上することとなる
。またこの実施例では循環経路(121の外側にフィン
α3が設けてあり、更に放熱効果を高めている。
In the embodiment shown in FIG. 4, a circulation path (12) is formed in the condensing part (9) of the container (6). This makes it easier to secure a flow path for the refrigerant for evaporative cooling in the container (6). The amount of refrigerant circulated increases and the cooling capacity is improved.Furthermore, in this embodiment, fins α3 are provided on the outside of the circulation path (121) to further enhance the heat dissipation effect.

〔第2の発明の実施例〕 第5図は第2の発明の実施例を示すもので、半導体基体
(1)を封入している絶縁容器α4)を貫通させてヒー
トパイプ(3)を取付け、ヒートパイプ(3)の内部の
パーフロロカーボンのような絶縁冷媒(15)を半導体
基体(1)に直接接触させた構造となっている。
[Embodiment of the second invention] Fig. 5 shows an embodiment of the second invention, in which a heat pipe (3) is attached by penetrating the insulating container α4) enclosing the semiconductor substrate (1). , it has a structure in which an insulating coolant (15) such as perfluorocarbon inside the heat pipe (3) is brought into direct contact with the semiconductor substrate (1).

そしてヒートパイプ(3)の一端を液体冷媒(7)か封
入された容器(6)に挿入したことは第1の発明と同様
である。
This is similar to the first invention in that one end of the heat pipe (3) is inserted into a container (6) in which liquid refrigerant (7) is sealed.

このような構成とすることにより、半導体基体(1)か
ら発生する熱を半導体基体(1)に接触しているヒート
パイプ(3)の絶縁冷媒09に直接伝え、極めて迅速に
放熱を行わせることができ、放熱効率を著しく向上させ
ることができる。なおヒートパイプ(3)の絶縁冷媒(
151は半導体基体(1)の正極と負極とに同時に接触
することとなるか、パーフロロカーホン等を使用すれば
充分な絶縁性を持つためにトラブルを生ずることはない
。なお、図中OQは半導体基体(1)に電流を流す電極
となる導体部であり、07)は前記基体(1)を熱応力
より保護する温度補償板である。
With this configuration, the heat generated from the semiconductor substrate (1) is directly transmitted to the insulating coolant 09 of the heat pipe (3) that is in contact with the semiconductor substrate (1), and the heat is radiated extremely quickly. It is possible to significantly improve heat dissipation efficiency. Note that the insulating refrigerant (
If 151 comes into contact with the positive and negative electrodes of the semiconductor substrate (1) at the same time, or if perfluorocarbon or the like is used, it will not cause any trouble because it has sufficient insulation properties. Note that OQ in the figure is a conductor portion that serves as an electrode for passing a current through the semiconductor substrate (1), and 07) is a temperature compensating plate that protects the substrate (1) from thermal stress.

(発明の効果) 以」二に説明したように、本発明の半導体冷却装置はヒ
ートパイプの他端を蒸発部と凝縮部とを持つよう液体冷
媒を封入した容器の蒸発部に挿入したので、従来のよう
な複雑な冷却フィン形状が不要となり、構造を簡素化す
ることができる。また冷却性能が向上するために装置全
体が小型化し、コストも低下することとなる。更にヒー
トバイブプの配置やパイプ間隔に影響を受けずに放熱面
積を広く取ることができるとともに、放熱部の形状も自
由に設定することができることとなる。
(Effects of the Invention) As explained in Section 2 below, in the semiconductor cooling device of the present invention, the other end of the heat pipe is inserted into the evaporation section of a container containing liquid refrigerant so as to have an evaporation section and a condensation section. This eliminates the need for a complicated cooling fin shape as in the past, and the structure can be simplified. Furthermore, since the cooling performance is improved, the entire device becomes smaller and the cost is also reduced. Furthermore, the heat radiation area can be widened without being affected by the arrangement of the heat vibrator or the spacing between the pipes, and the shape of the heat radiation part can also be freely set.

よって本発明は従来の問題点を解消した半導体冷却装置
として、産業の発展に寄与するところは極めて大きいも
のがある。
Therefore, the present invention greatly contributes to the development of industry as a semiconductor cooling device that solves the problems of the conventional technology.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第4図は第1の発明の実施例を示す一部切欠正
面図、第5図は第2の発明の実施例を示す断面図、第6
図は従来例を示す一部切欠正面図である。 (1)・半導体基体、(2):受熱ブロック、(3):
ヒートパイプ、(5)二手導体素子、(6):容器、(
8):蒸発部、(9):凝縮部、02=循環経路、03
:フィン、(+41:絶縁容器、09:絶縁冷媒。 第2図 第 3 囚 2225−’: 第4図 第6図
1 to 4 are partially cutaway front views showing an embodiment of the first invention, FIG. 5 is a sectional view showing an embodiment of the second invention, and FIG. 6 is a sectional view showing an embodiment of the second invention.
The figure is a partially cutaway front view showing a conventional example. (1)・Semiconductor base, (2): Heat receiving block, (3):
Heat pipe, (5) Two-handed conductor element, (6): Container, (
8): Evaporation section, (9): Condensation section, 02=circulation path, 03
:Fin, (+41: Insulating container, 09: Insulating refrigerant. Figure 2 3 Prisoner 2225-': Figure 4 Figure 6

Claims (1)

【特許請求の範囲】 1、半導体素子(5)に密接する受熱ブロック(2)に
ヒートパイプ(3)の一端を埋設するとともに、このヒ
ートパイプ(3)の他端を、蒸発部(8)と凝縮部(9
)とを持つよう液体冷媒(7)を封入した容器(6)の
蒸発部(8)に挿入したことを特徴とする半導体冷却装
置。 2、容器(6)の凝縮部(9)にフィン(13)付きの
循環経路(12)を形成したことを特徴とする請求項1
に記載の半導体冷却装置。 3、半導体基体(1)を封入している絶縁容器(14)
を貫通させてヒートパイプ(3)を取付け、ヒートパイ
プ(3)の内部の絶縁冷媒(15)を半導体基体(1)
に直接接触させるとともに、このヒートパイプ(3)の
他端を、蒸発部(8)と凝縮部(9)とを持つよう液体
冷媒(7)を封入した容器(6)の蒸発部(8)に挿入
したことを特徴とする半導体冷却装置。
[Claims] 1. One end of a heat pipe (3) is embedded in a heat receiving block (2) that is in close contact with a semiconductor element (5), and the other end of this heat pipe (3) is embedded in an evaporation section (8). and condensing section (9
) A semiconductor cooling device characterized in that the semiconductor cooling device is inserted into an evaporation section (8) of a container (6) containing a liquid refrigerant (7). 2. Claim 1 characterized in that a circulation path (12) with fins (13) is formed in the condensing part (9) of the container (6).
The semiconductor cooling device described in . 3. Insulating container (14) enclosing the semiconductor substrate (1)
The heat pipe (3) is attached to the semiconductor substrate (1) by passing the insulating refrigerant (15) inside the heat pipe (3) through the semiconductor substrate (1).
The other end of the heat pipe (3) is connected to the evaporation section (8) of a container (6) filled with a liquid refrigerant (7) so as to have an evaporation section (8) and a condensation section (9). A semiconductor cooling device characterized by being inserted into.
JP32384290A 1990-11-26 1990-11-26 Semiconductor cooling device Pending JPH04196154A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32384290A JPH04196154A (en) 1990-11-26 1990-11-26 Semiconductor cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32384290A JPH04196154A (en) 1990-11-26 1990-11-26 Semiconductor cooling device

Publications (1)

Publication Number Publication Date
JPH04196154A true JPH04196154A (en) 1992-07-15

Family

ID=18159202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32384290A Pending JPH04196154A (en) 1990-11-26 1990-11-26 Semiconductor cooling device

Country Status (1)

Country Link
JP (1) JPH04196154A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7028757B1 (en) * 2004-10-21 2006-04-18 Hewlett-Packard Development Company, L.P. Twin fin arrayed cooling device with liquid chamber
US8047267B2 (en) * 2003-09-30 2011-11-01 Transpacific Sonic, Llc Apparatus for cooling communication equipment using heat pipe
JP2012190962A (en) * 2011-03-10 2012-10-04 Toyota Motor Corp Cooling device
WO2020054752A1 (en) * 2018-09-14 2020-03-19 古河電気工業株式会社 Cooling device and cooling system using same
JP2020063895A (en) * 2018-09-14 2020-04-23 古河電気工業株式会社 Cooling device and cooling system using cooling device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8047267B2 (en) * 2003-09-30 2011-11-01 Transpacific Sonic, Llc Apparatus for cooling communication equipment using heat pipe
US7028757B1 (en) * 2004-10-21 2006-04-18 Hewlett-Packard Development Company, L.P. Twin fin arrayed cooling device with liquid chamber
JP2012190962A (en) * 2011-03-10 2012-10-04 Toyota Motor Corp Cooling device
WO2020054752A1 (en) * 2018-09-14 2020-03-19 古河電気工業株式会社 Cooling device and cooling system using same
JP2020063895A (en) * 2018-09-14 2020-04-23 古河電気工業株式会社 Cooling device and cooling system using cooling device

Similar Documents

Publication Publication Date Title
US5508884A (en) System for dissipating heat energy generated by an electronic component and sealed enclosure used in a system of this kind
US3852806A (en) Nonwicked heat-pipe cooled power semiconductor device assembly having enhanced evaporated surface heat pipes
US4012770A (en) Cooling a heat-producing electrical or electronic component
US4145708A (en) Power module with isolated substrates cooled by integral heat-energy-removal means
US2883591A (en) Semiconductor rectifier device
US2886746A (en) Evaporative cooling system for electrical devices
US3543841A (en) Heat exchanger for high voltage electronic devices
US7106588B2 (en) Power electronic system with passive cooling
US20050083655A1 (en) Dielectric thermal stack for the cooling of high power electronics
US3826957A (en) Double-sided heat-pipe cooled power semiconductor device assembly using compression rods
US4260014A (en) Ebullient cooled power devices
JPH04196154A (en) Semiconductor cooling device
KR850001098B1 (en) Boiling / cooling system
US3852804A (en) Double-sided heat-pipe cooled power semiconductor device assembly
JPH10209355A (en) Boiling cooler
JP4360624B2 (en) Heat sink for semiconductor element cooling
JPH0897338A (en) Cooler for power semiconductor device
CN111124090A (en) Heat dissipation system for passive heat dissipation of computer
JPH0714029B2 (en) Power semiconductor device
JPH0320070B2 (en)
JPH0364950A (en) Electrically insulated heat pipe
JP2000018853A (en) Cooling structure using plate type heat pipe
JPH0442931Y2 (en)
JP4142334B2 (en) Electrically insulated heat pipe cooler
JP2001326310A (en) Electronic equipment cooling device