JPH0487694A - Waste water treating device - Google Patents

Waste water treating device

Info

Publication number
JPH0487694A
JPH0487694A JP2199899A JP19989990A JPH0487694A JP H0487694 A JPH0487694 A JP H0487694A JP 2199899 A JP2199899 A JP 2199899A JP 19989990 A JP19989990 A JP 19989990A JP H0487694 A JPH0487694 A JP H0487694A
Authority
JP
Japan
Prior art keywords
aeration tank
water
pressurized
pressure
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2199899A
Other languages
Japanese (ja)
Inventor
Teruhisa Yoshida
輝久 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kiden Kogyo Ltd
Original Assignee
Hitachi Kiden Kogyo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kiden Kogyo Ltd filed Critical Hitachi Kiden Kogyo Ltd
Priority to JP2199899A priority Critical patent/JPH0487694A/en
Publication of JPH0487694A publication Critical patent/JPH0487694A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Abstract

PURPOSE:To remove the sludge stuck to the surfaces of ultrafilter membranes by the flow in a pressurized aeration tank by immersing these membranes into the aeration tank, permeating purified water through the inside of the membranes by the pressure in the pressurized aeration tank and draining this water as treated water. CONSTITUTION:The circulating flow in the aeration tank 5 is risen in an inside cylinder 8 by withdrawing the liquid mixture on the outer side of the inside cylinder by a circulating pump 10 and ejecting the same from a nozzle 7 of a diffuser in the bottom of the aeration tank, by which the flow falling on the outside of the inside cylinder is occurred. The pressurized air from a compressor 6 is mixed with the circulating water and the air is sheared at the time of ejecting the water from the nozzle 7, by which fine bubbles are generated and the water is aerated. The circulating pump 10 withdraws the liquid from the pressurized aeration tank 5 and maintains this water under the same pressure and, therefore, there is no need for such a pressurizing pump which is heretofore used for ultrafiltration. The pump of the pressure as low as to correspond to the pressure drop of the nozzle and piping is thus usable.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、有機性排水を活性汚泥法によって浄化する限
外濾過膜を用いた排水処理装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a wastewater treatment device using an ultrafiltration membrane for purifying organic wastewater by an activated sludge method.

〔従来の技術〕[Conventional technology]

従来、限外濾過膜と生物処理を組み合わせて、汚水を処
理する方法として第3図に示す方法が知られている。生
物処理は通常の曝気槽31を使用し、曝気槽31から引
き抜いた汚泥混合液を加圧ポンプ32で加圧し、限外濾
過装置i33に送水し、膜によって汚泥と処理水に分離
し、分IIl後の汚:&濃縮液は曝気槽3】に返送する
が、余剰活況として排出するものである。
Conventionally, a method shown in FIG. 3 has been known as a method for treating wastewater by combining an ultrafiltration membrane and biological treatment. Biological treatment uses a normal aeration tank 31, pressurizes the sludge mixture drawn from the aeration tank 31 with a pressurizing pump 32, sends it to an ultrafiltration device i33, separates it into sludge and treated water with a membrane, and separates it. The dirt and concentrated liquid after IIl is returned to the aeration tank 3], but it is discharged as surplus.

〔発明が解決しようとするnH〕[nH that the invention attempts to solve]

しかしこの公知の方法では、処理の経過と共に、膜面に
汚泥やコロイド状物質が付着して、処理水の透過量が減
少するため、洗浄水槽34から洗剤や薬液を定期的に限
外濾過装置に注入し、膜面を洗浄しなければならなかっ
た。
However, in this known method, as the treatment progresses, sludge and colloidal substances adhere to the membrane surface and the amount of permeation of the treated water decreases. The membrane surface had to be cleaned.

本発明は、加圧曝気槽と限外濾過膜を組み合わせて、コ
ンパクトで効率的で、かつ膜の洗浄装置が不要な排水処
理を提供することを目的とする。
An object of the present invention is to combine a pressurized aeration tank and an ultrafiltration membrane to provide wastewater treatment that is compact, efficient, and does not require a membrane cleaning device.

〔ff!題を解決するための手段〕[ff! Means to solve the problem]

本発明は上記目的を達成するためになしたもので、加圧
曝気槽内に限外濾過膜を浸漬させ、加圧曝気槽内の圧力
で浄化水を膜内に透過させて処理水として排水し、曝気
槽内の流れによって護の表面に付着した汚泥やコロイド
状物質を剥離させることにより、セルフクリーニングす
ることを要旨とする。
The present invention was made in order to achieve the above object, and an ultrafiltration membrane is immersed in a pressurized aeration tank, and purified water is permeated through the membrane by the pressure in the pressurized aeration tank and is discharged as treated water. The gist of the system is that it self-cleans by peeling off sludge and colloidal substances adhering to the surface of the shield due to the flow in the aeration tank.

〔実施例〕〔Example〕

以下本発明の排水処理装置を図示の実施例にもとづいて
説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The wastewater treatment apparatus of the present invention will be explained below based on the illustrated embodiments.

第1図において下水、雑排水、その他の有機性排水lは
前処理槽2においてスクリーン3による除塵あるいは除
砂等の前処理を行った後、原水ポンプ4により、加圧曝
気槽5に送水される。加圧曝気槽5は、底部にデイフユ
ーザのノズル7、内部に内筒8、上部に空気排出弁9を
設ける。内@8の内部など、槽内の流れの大きい位置に
限外濾過膜11を設け、膜透過水を#を水管12により
糸外に排出する。使用する限外濾過膜は特に限定される
ものではないが、透過水量や配置スペースを考慮すると
、中空糸状の膜を流動させる方法が最適である。
In FIG. 1, sewage, gray water, and other organic wastewater l is pretreated in a pretreatment tank 2 by removing dust or sand using a screen 3, and then sent to a pressurized aeration tank 5 by a raw water pump 4. Ru. The pressurized aeration tank 5 is provided with a diffuser nozzle 7 at the bottom, an inner cylinder 8 inside, and an air discharge valve 9 at the top. An ultrafiltration membrane 11 is provided at a position in the tank where the flow is large, such as inside the inner chamber 8, and the membrane-permeated water is discharged to the outside of the thread through a water pipe 12. The ultrafiltration membrane to be used is not particularly limited, but in consideration of the amount of permeated water and the installation space, a method in which a hollow fiber membrane is flowed is most suitable.

曝気槽内の循環流は、循環ポンプ10により、内1!J
8の外側の混合液を引き抜き、曝気槽底部のデイフユー
ザのノズル7がら噴出することにより、内筒内の上昇し
て内筒の外を降下する沃れを生しさせる。この時コンプ
レッサ6から加圧空気を循環水に混合し、ノズル7から
噴出する際に空気をせん断することにより、微細な気泡
を発生させ、曝気を行う。循環ポンプ】0は加圧曝気槽
から引き抜いて同じ圧力にするため、従来限外濾過に用
いていたような加圧ポンプは不要で、ノズルや配管の圧
損に見合うだけの低圧のポンプを使用することができる
。また、コンプレッサ6は加圧曝気槽5の圧力の適正範
囲が2〜4 kg/cdであるため、これにノズル配管
の圧損を加えた3〜5kg/aIi程度の圧力で使用す
る。
The circulating flow in the aeration tank is controlled by the circulation pump 10. J
By drawing out the mixed liquid outside of the aeration tank 8 and spouting it from the nozzle 7 of the diffuser at the bottom of the aeration tank, a welt rises inside the inner cylinder and descends outside the inner cylinder. At this time, pressurized air is mixed with the circulating water from the compressor 6, and the air is sheared when it is ejected from the nozzle 7, thereby generating fine bubbles and performing aeration. Circulation Pump] 0 draws water from the pressurized aeration tank to maintain the same pressure, so there is no need for a pressurizing pump like the one used for conventional ultrafiltration, and a low-pressure pump that is sufficient to compensate for the pressure loss in the nozzle and piping is used. be able to. Further, since the appropriate pressure range of the pressurized aeration tank 5 is 2 to 4 kg/cd, the compressor 6 is used at a pressure of about 3 to 5 kg/aIi, which is the pressure loss of the nozzle piping added thereto.

第2図は、本発明の別の実施例を示したもので、加圧曝
気槽5の底部全体に散気装置を設け、全面曝気を行って
限外濾過[111を流動させるもので、第1図に比べる
と、槽内の流速は妓分小さい。数気装W21は、散気板
、散気管、ディスクフェーザなと、従来の装置をそのま
ま使用することができるが、加圧曝気の場合、特に高濃
度の汚泥を保持する点に特徴があるため、できるだけ目
詰まりしにくい方式を用いる必要がある。
FIG. 2 shows another embodiment of the present invention, in which an aeration device is provided over the entire bottom of the pressurized aeration tank 5, and the entire surface is aerated to flow the ultrafiltration [111]. Compared to Figure 1, the flow velocity inside the tank is much smaller. Conventional equipment such as air diffusers, air diffuser pipes, and disc phasers can be used as is for the air diffuser W21, but in the case of pressurized aeration, it is unique in that it holds particularly high-concentration sludge. , it is necessary to use a method that is as unlikely to cause clogging as possible.

次に本発明の作用について説明する。Next, the operation of the present invention will be explained.

限外濾過膜て汚泥混合液を固液する場合、2%以下の汚
泥濃度であれば、固液分離の速度及び処理水質がほとん
ど変化しない。汚泥濃度が高いほど流入原水の負荷を上
げ、短時間で処理できるため、汚泥の引き抜きを行わず
に運転を続けると、 1%以上の高濃度の活性汚泥を得
ることができる。従来の活性汚泥法では、重力沈澱によ
り固液分離を行うため、固液分離の観点から標準活性汚
泥法では0.2%以下、長時間曝気のような変法でも0
.5〜0.7%が限界であるが、限外濾過で固液分離を
行えば、従来の2倍以上の汚泥を保持できるため、単位
容積当たりの流入負荷を2倍以上にすることができる。
When converting a sludge mixture into solid-liquid using an ultrafiltration membrane, if the sludge concentration is 2% or less, the solid-liquid separation speed and treated water quality will hardly change. The higher the sludge concentration, the higher the load on the incoming raw water and the faster it can be processed, so if the operation is continued without sludge extraction, activated sludge with a high concentration of 1% or more can be obtained. In the conventional activated sludge method, solid-liquid separation is performed by gravity sedimentation, so from the viewpoint of solid-liquid separation, the standard activated sludge method has a concentration of 0.2% or less, and even modified methods such as long-term aeration can achieve 0.2% or less.
.. The limit is 5 to 0.7%, but if solid-liquid separation is performed using ultrafiltration, it is possible to hold more than twice as much sludge as conventional methods, making it possible to more than double the inflow load per unit volume. .

一方、汚泥濃度が高いほど多量の酸素が必要になるため
、酸素溶解効率が高く、また単位容積当たりの酸素供給
能力が大きいB1気装置が必要になる。従来の常圧lI
気槽と限外濾過の紹み合わせでは、曝気装置の能力の面
から、0.8〜1%程度の:If3洸濃度で運転を行う
のに対し、加圧琴気槽では、#I素溶解効率が高い力め
、 1〜2%の汚泥濃度で運転することが可能になる。
On the other hand, the higher the sludge concentration, the more oxygen is required, so a B1 gas device with high oxygen dissolution efficiency and large oxygen supply capacity per unit volume is required. Conventional normal pressure lI
When introducing an aeration tank and ultrafiltration, operation is performed at an :If3 concentration of about 0.8 to 1% due to the capacity of the aeration system, whereas a pressurized air tank operates at a #I element concentration of about 0.8 to 1%. Due to its high dissolution efficiency, it is possible to operate at a sludge concentration of 1 to 2%.

加圧曝気槽で#l素溶解効率が高くなるのは次の理由に
よる。水中に散気した空気に含まれるm素が水中に溶解
する速度は、曝気装置の性能と飽和溶存M素tごよって
決まる。同し曝気装置を用いた場合は、飽和溶存酸素濃
度が高いほど、酸素溶解効率が高くなる。飽和M素濃度
を高くするためには、散気空気中の酸素濃度を高くする
方法と、加圧条件下に置く方法があるが、本発明の加圧
曝気槽では、従来の曝気装置を用いて、大気中の空気を
散気しても、飽和酸素濃度が高くなるため、酸素溶解の
速度が早く、曝気槽の圧力に比例して酸素溶解効率が向
上する。
The reason why the #l elementary dissolution efficiency becomes high in the pressurized aeration tank is as follows. The rate at which the m element contained in the air diffused into the water dissolves into the water is determined by the performance of the aeration device and the saturated dissolved m element t. When the same aeration device is used, the higher the saturated dissolved oxygen concentration, the higher the oxygen dissolution efficiency. In order to increase the saturated M element concentration, there are two methods: increasing the oxygen concentration in the diffused air and placing it under pressurized conditions, but the pressurized aeration tank of the present invention uses a conventional aeration device. Even if the air in the atmosphere is diffused, the saturated oxygen concentration increases, so the rate of oxygen dissolution is fast, and the oxygen dissolution efficiency improves in proportion to the pressure of the aeration tank.

以上のように、加圧曝気槽と限外濾過を組み合わせたシ
ステムでは高濃度の汚泥を保持しながら効率よく曝気処
理することができるため、BOD容積負荷は枦準活性汚
泥法の0.3〜0.8μ1rrj日に対し、25yi=
日以上と高く、下水や生活雑排水であれば、2時間片度
の短時間で処理することができる。
As mentioned above, a system that combines a pressurized aeration tank and ultrafiltration can efficiently aerate while retaining high-concentration sludge, so the BOD volumetric load can be reduced from 0.3 to 0.3 for the semi-activated sludge method. 25yi= for 0.8μ1rrj days
However, if it is sewage or gray water, it can be treated in as little as two hours.

生物処理された水は加圧曝気槽の限外濾過膜の外側から
内側に透過し、集められて処理水として槽外に排出され
る。このような膜による固液分離では、膜表面に汚泥や
コロイド状物質が次第に蓄積してくるため、従来は定期
的に限外濾過装置を中断して、第3間に示すような洗浄
水槽34から洗浄や薬液を膜に注入し、膜面を行ってい
た。しかし本発明では膜を加圧111気槽内に入れ、I
l気槽の流れによって膜面に付着した汚泥等を剥離させ
るため、特別な膜洗浄装置を必要としない。ただし、通
常の処理状態の流れでは洗浄効果が不十分なときは、第
】図では循環ポンプ10の循環水量を増加、第2図では
コンプレッサ6からの送気空気量を増すことによって、
セルフクリーニングの効果を高めることができる。
The biologically treated water permeates from the outside to the inside of the ultrafiltration membrane of the pressurized aeration tank, is collected, and is discharged outside the tank as treated water. In solid-liquid separation using such a membrane, sludge and colloidal substances gradually accumulate on the membrane surface. The membrane surface was cleaned by injecting cleaning and chemical solutions into the membrane. However, in the present invention, the membrane is placed in a pressurized 111 gas tank and
Since sludge, etc. adhering to the membrane surface is removed by the flow of the air tank, no special membrane cleaning equipment is required. However, if the cleaning effect is insufficient with the flow in the normal processing state, by increasing the amount of water circulated by the circulation pump 10 in Fig. 2, and by increasing the amount of air supplied from the compressor 6 in Fig. 2,
The self-cleaning effect can be enhanced.

〔本発明の効果〕[Effects of the present invention]

本発明によれば、加圧q!気槽内に、限外濾過膜を浸漬
させ、加圧曝気槽内の圧力で浄化水を膜内に透過させて
、処理水として排水し、曝気槽内の流れによって膜面に
付着した汚泥の除去及び、付着防止を図るため、81%
槽がコンパクトで、膜の洗浄装置が不要であり、短時間
の処理で良好な水質が安定して得られるという効果を有
する。
According to the invention, pressurization q! An ultrafiltration membrane is immersed in the aeration tank, and purified water is permeated through the membrane by the pressure in the pressurized aeration tank, and is discharged as treated water. 81% to remove and prevent adhesion
The tank is compact, no membrane cleaning equipment is required, and good water quality can be stably obtained in a short treatment time.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明排水処理装置の実施例を示し、第1図は第
1実施例の説明図、第2図は第2実施例の説明図、第3
図は公知例の説明間である。 1は原水、2は前処理槽、3はスクリーン、4は原水ポ
ンプ、5は加圧曝気槽、6はコンプレッサ、 7はノズ
ル、 8は内筒、9は空気排出弁、 10は循環ポンプ
、 ]1は限外濾過膜、 12は排水管、21は散気装
置、 31は曝気槽、32は加圧ポンプ、33は限外濾
過装置、34は洗浄水槽、 35は余剰汚泥配管。
The drawings show embodiments of the wastewater treatment apparatus of the present invention, and FIG. 1 is an explanatory diagram of the first embodiment, FIG. 2 is an explanatory diagram of the second embodiment, and FIG.
The figure is between explanations of known examples. 1 is raw water, 2 is a pre-treatment tank, 3 is a screen, 4 is a raw water pump, 5 is a pressurized aeration tank, 6 is a compressor, 7 is a nozzle, 8 is an inner cylinder, 9 is an air discharge valve, 10 is a circulation pump, ] 1 is an ultrafiltration membrane, 12 is a drain pipe, 21 is an aeration device, 31 is an aeration tank, 32 is a pressure pump, 33 is an ultrafiltration device, 34 is a washing water tank, and 35 is an excess sludge pipe.

Claims (1)

【特許請求の範囲】[Claims] (1)有機性排水を活性汚泥により生物処理する排水処
理装置において加圧条件で曝気を行う加圧曝気槽と該曝
気槽内に設けた限外濾過膜により構成し、加圧曝気槽内
の圧力で、膜内に処理水を透過させて固液分離を行うこ
とを特徴とする排水処理。
(1) A wastewater treatment equipment that biologically treats organic wastewater using activated sludge is composed of a pressurized aeration tank that performs aeration under pressurized conditions and an ultrafiltration membrane installed in the aeration tank. Wastewater treatment is characterized by solid-liquid separation by permeating treated water through a membrane using pressure.
JP2199899A 1990-07-27 1990-07-27 Waste water treating device Pending JPH0487694A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2199899A JPH0487694A (en) 1990-07-27 1990-07-27 Waste water treating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2199899A JPH0487694A (en) 1990-07-27 1990-07-27 Waste water treating device

Publications (1)

Publication Number Publication Date
JPH0487694A true JPH0487694A (en) 1992-03-19

Family

ID=16415456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2199899A Pending JPH0487694A (en) 1990-07-27 1990-07-27 Waste water treating device

Country Status (1)

Country Link
JP (1) JPH0487694A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2737202A1 (en) * 1995-07-25 1997-01-31 Omnium Traitement Valorisa INSTALLATION FOR THE BIOLOGICAL TREATMENT OF WATERS FOR THEIR POTABILIZATION
US5932099A (en) * 1995-07-25 1999-08-03 Omnium De Traitements Et De Valorisation (Otv) Installation for biological water treatment for the production of drinkable water
KR20040051963A (en) * 2002-12-13 2004-06-19 (주)멤브레인워터 Membrane coupled High-performance Compact Reactor System

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2737202A1 (en) * 1995-07-25 1997-01-31 Omnium Traitement Valorisa INSTALLATION FOR THE BIOLOGICAL TREATMENT OF WATERS FOR THEIR POTABILIZATION
WO1997005072A1 (en) * 1995-07-25 1997-02-13 Otv Omnium De Traitements Et De Valorisation Biological water treatment plant for producing drinking water
US5932099A (en) * 1995-07-25 1999-08-03 Omnium De Traitements Et De Valorisation (Otv) Installation for biological water treatment for the production of drinkable water
KR20040051963A (en) * 2002-12-13 2004-06-19 (주)멤브레인워터 Membrane coupled High-performance Compact Reactor System

Similar Documents

Publication Publication Date Title
US7276171B2 (en) Method for cleaning separation membrane
KR100649261B1 (en) External-submersed membrane bioreactor with minimized air scrubbing of membrane module
JP2001190937A (en) Water purification equipment and method of cleaning membrane element
JPH07313850A (en) Method for backward washing immersion-type ceramic membrane separator
JPH0665371B2 (en) Organic wastewater biological treatment equipment
CN106132518A (en) Use method for treating water and the water treatment facilities of film
JP2009061349A (en) Sewage treatment method by membrane separation activated sludge process
JP5120106B2 (en) Method and apparatus for treating organic alkaline wastewater
JPH0487694A (en) Waste water treating device
JP5423184B2 (en) Filtration membrane module cleaning method and cleaning apparatus
JP3284903B2 (en) Biological treatment method
JP2003033764A (en) Method and apparatus for washing filtration body by using ozone
JPH02268890A (en) Device for treating sewage by hollow-fiber membrane
JP3858282B2 (en) Immersion membrane separator
JP2008238042A (en) Method for reducing amount of organic sludge
JP2001062480A (en) Treatment of sewage
JPH11244893A (en) Operation method of organic sewage treating device
JPH09117646A (en) Cleaning liquid for filter membrane and anaerobic digestion process for sludge containing organic material
JPH02268889A (en) Treatment of sewage by hollow-fiber membrane
JP2000005780A (en) River purifying method using membrane
JP3726404B2 (en) Membrane separation device and operation method thereof, activated sludge treatment device and water treatment facility
JPH06182338A (en) Membrane separating device
JPH0691288A (en) Method for treating organic waste water
JP3369834B2 (en) Biofilm filtration device
JP2021159909A (en) Membrane filtration system and its operation method