JPH0484500A - Superconductive magnetic shielding seal material - Google Patents

Superconductive magnetic shielding seal material

Info

Publication number
JPH0484500A
JPH0484500A JP20001490A JP20001490A JPH0484500A JP H0484500 A JPH0484500 A JP H0484500A JP 20001490 A JP20001490 A JP 20001490A JP 20001490 A JP20001490 A JP 20001490A JP H0484500 A JPH0484500 A JP H0484500A
Authority
JP
Japan
Prior art keywords
magnetic
resin
magnetic shielding
shields
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20001490A
Other languages
Japanese (ja)
Inventor
Koichi Numata
幸一 沼田
Kazutomo Hoshino
和友 星野
Hidefusa Takahara
高原 秀房
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP20001490A priority Critical patent/JPH0484500A/en
Publication of JPH0484500A publication Critical patent/JPH0484500A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To dispense with the baking merely by filling up the space and make it show complete opposite polarity among superconductive properties by making the seal material, which fills up the space between magnetic shields, contain a specified amount of oxide superconductive powder within its resin. CONSTITUTION:It is because magnetic shielding effect is not recognized below 5wt.% and if it exceeds 99wt.% the formation is difficult that the content of oxide superconductive powder dispersed in resin shall be 5-99%. As the resin used, any of epoxy, acrylic, silicon, etc., is applicable. Moreover, as the oxide superconductive powder, Y-Ba-Cu-0, Bi-Pb-Sr-Ca-Cu-0, Tl-Ba-Ca-Cu-0, etc., are applicable. This is one which becomes itself a magnetic shield after solidification by applying heat treatment after mixing in a cross linking agent, with the resin which constitutes a matrix and solidifies by the cross linking agent, and after filling up the space between the superconductive shields, etc., with the thermosetting resin. Hereby, the magnetic shield of desired size can be manufactured easily.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は地磁気等の弱磁場および超電導磁石等から発生
する強磁場を遮蔽する磁気遮蔽体の隙間を補填する超電
導磁気遮蔽シール材に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a superconducting magnetic shielding sealing material that compensates for gaps in a magnetic shield that shields weak magnetic fields such as earth's magnetism and strong magnetic fields generated from superconducting magnets and the like.

〔従来の技術およびその問題点〕[Conventional technology and its problems]

超電導材料は、臨界温度Tc以下でゼロ抵抗。 Superconducting materials have zero resistance below the critical temperature Tc.

完全反磁性、ジョセフソン効果等の特性を示す材料であ
る。この特性のうち、完全反磁性を利用すると高性能な
磁気遮蔽体の製造が可能となる。
It is a material that exhibits properties such as perfect diamagnetic properties and the Josephson effect. Among these characteristics, if perfect diamagnetism is utilized, it becomes possible to manufacture a high-performance magnetic shield.

磁気遮蔽体の用途としては、■生体磁気等の超微細磁気
を検出する際にノイズとなる地磁気の揺らぎを遮蔽する
、■超電導磁気浮上列車、超電導電磁推進船、核磁気共
鳴診断装置等の超電導磁石を利用したものから発せられ
る強磁場を遮蔽する1等が挙げられる。
Applications of magnetic shields include: - Shielding the earth's magnetic fluctuations that cause noise when detecting ultrafine magnetism such as biomagnetism; - Superconducting magnetic levitation trains, superconducting electromagnetic propulsion vessels, nuclear magnetic resonance diagnostic equipment, etc. The first type is one that shields strong magnetic fields emitted from devices that use magnets.

1987年に発見されたY−Ba−Cu−0系超電導体
や1988年に発見されたB1−5r−Ca−CuO系
超電導体等の酸化物超電導体は臨界温度が液体窒素温度
以上であり、77にという比較的高い温度で超電導状態
が実現されるので、上記用途に適用される磁気遮蔽体と
して有望である。
Oxide superconductors such as the Y-Ba-Cu-0 superconductor discovered in 1987 and the B1-5r-Ca-CuO superconductor discovered in 1988 have a critical temperature higher than the liquid nitrogen temperature. Since a superconducting state is achieved at a relatively high temperature of 77°C, it is promising as a magnetic shield for the above-mentioned applications.

これまで一端を閉した円筒を一体物で成形したり、円筒
状の基材の上にプラズマ溶射等の手法で酸化物超電導皮
膜を形成する等により磁気遮蔽効果が報告されているが
、これらは粉末調製後に成形、焼成あるいは溶射する等
、大型化に難点がある工程が必要である。また、−旦、
クランク等が発生すると、補修が困難である。
Until now, magnetic shielding effects have been reported by forming a cylinder with one end closed or by forming an oxide superconducting film on a cylindrical base material using methods such as plasma spraying. After powder preparation, processes such as molding, firing, or thermal spraying are required, which are difficult to increase in size. Also, -dan,
If a crank occurs, it is difficult to repair.

そこで、大型化のためには、予め焼成して超電導特性を
付与せしめたタイル状の磁気遮蔽体を張りあわせる方法
が有効と考えられるが、磁気遮蔽体の隙間から磁場が漏
れる等の問題点があった。
Therefore, in order to increase the size, it is thought to be effective to attach tile-shaped magnetic shields that have been pre-fired to give them superconducting properties, but this method has problems such as the magnetic field leaking from the gaps in the magnetic shields. there were.

本発明は磁気遮蔽体の隙間を補填するだけで焼成が不要
となり超電導特性のうちの完全反磁性を示す磁気遮蔽シ
ール材を提供することを目的とするものである。
An object of the present invention is to provide a magnetic shielding sealing material that eliminates the need for firing by simply filling gaps in a magnetic shielding material, and exhibits complete diamagnetic properties among superconducting properties.

〔問題点を解決するための手段〕[Means for solving problems]

一般に、超電導磁気遮蔽効果は超電導体が充填された一
体物により発現されるものと考えられるが、本発明者ら
の研究によれば、酸化物超電導粉末を樹脂マトリックス
中に所定量分散させることによりマイスナー効果を示す
という驚くべき現象を発見した。すなわち、酸化物超電
導粉末を樹脂中に分散させたディスク状試料を作製して
磁気遮蔽効果を調べたところ、樹脂中に5〜99重量%
の酸化物超電導粉末の含有で磁気遮蔽効果があることが
明らかとなり本発明を完成するに至った。
Generally, it is thought that the superconducting magnetic shielding effect is produced by an integrated object filled with superconductors, but according to the research of the present inventors, it has been found that by dispersing a predetermined amount of oxide superconducting powder in a resin matrix, We discovered a surprising phenomenon that shows the Meissner effect. That is, when we prepared a disk-shaped sample in which oxide superconducting powder was dispersed in a resin and examined the magnetic shielding effect, we found that 5 to 99% by weight of oxide superconducting powder was dispersed in the resin.
It has become clear that the inclusion of oxide superconducting powder has a magnetic shielding effect, leading to the completion of the present invention.

本発明は、磁気遮蔽体の隙間を補填するシール材であっ
て、樹脂中に5〜99重量%の酸化物超電導粉末を含有
することを特徴とし、これにより前記課題を達成したも
のである。
The present invention is a sealing material for filling gaps in a magnetic shield, and is characterized by containing 5 to 99% by weight of oxide superconducting powder in a resin, thereby achieving the above object.

〔作  用〕[For production]

このような本発明のシール材を用いた磁気遮蔽体では空
孔等の多くの欠陥を有しているのにもかかわらず磁気遮
蔽効果を示すのは、空孔回りの酸化物超電導粉末が遮蔽
電流を流すためと推定されるが、その詳細は明らかでな
い。
Although the magnetic shield using the sealing material of the present invention has many defects such as pores, it exhibits a magnetic shielding effect because the oxide superconducting powder around the pores provides shielding. It is presumed that the purpose is to pass current, but the details are not clear.

以下に本発明をさらに詳細に説明する。The present invention will be explained in more detail below.

本発明において、樹脂中に分散される酸化物超電導粉末
の含有量を5〜99重量%とじたのは、5重量%未満で
は磁気遮蔽効果が詔められす、99重量%を超えると成
形が困難であることによる。
In the present invention, the content of the oxide superconducting powder dispersed in the resin is limited to 5 to 99% by weight because if it is less than 5% by weight, the magnetic shielding effect will be impaired, and if it exceeds 99% by weight, molding will be difficult. By being difficult.

用いる樹脂としては、エポキシ系、アクリル系、シリコ
ン系等いずれも適用可能である。
As the resin to be used, epoxy, acrylic, silicone, etc. can be used.

また、酸化物超電導粉末としては、Y−BaCu−〇系
(臨界温度90K)、B1−Pb−5r−Ca−Cu−
0系(臨界温度110K)、Tl−Ba−Ca−Cu−
〇系(臨界温度125K)等が適用可能である。
In addition, as the oxide superconducting powder, Y-BaCu-○ system (critical temperature 90K), B1-Pb-5r-Ca-Cu-
0 system (critical temperature 110K), Tl-Ba-Ca-Cu-
○ system (critical temperature 125K) etc. are applicable.

このように本発明の超電導磁気遮蔽シール材は、樹脂中
に5〜99重量%の酸化物超電導粉末が分散されてなり
、マトリックスを構成する樹脂が架橋剤により固化する
樹脂では架橋剤を混合した後に超電導遮蔽体等の隙間に
充填し、また熱硬化性の樹脂では超電導遮蔽体等の隙間
に充填した後、熱処理を施し、固化後にはそれ自身も磁
気遮蔽体となるものである。さらに、本発明のシール材
は超電導磁気遮蔽体の接着の機能も期待できる。
In this way, the superconducting magnetic shielding sealing material of the present invention has 5 to 99% by weight of oxide superconducting powder dispersed in a resin, and in the case where the resin constituting the matrix is solidified by a cross-linking agent, a cross-linking agent is mixed therein. It is then filled into gaps in superconducting shields, etc., and in the case of thermosetting resins, it is heat-treated after being filled into gaps in superconducting shields, etc., and after solidification, it itself becomes a magnetic shield. Furthermore, the sealing material of the present invention can also be expected to function as an adhesive for superconducting magnetic shields.

〔発明の効果〕〔Effect of the invention〕

以上のような本発明によれば、以下のような効果を得る
ことができる。
According to the present invention as described above, the following effects can be obtained.

(イ)磁気遮蔽体を製造する際に、酸化物超電導タイル
等の超電導磁気遮蔽体の隙間を磁気遮蔽効果を持って簡
単に充填でき、従って所望の大きさの磁気遮蔽体が容易
に製造可能となる。
(b) When manufacturing magnetic shields, gaps in superconducting magnetic shields such as oxide superconducting tiles can be easily filled with a magnetic shielding effect, and therefore magnetic shields of desired size can be easily manufactured. becomes.

(ロ)磁気遮蔽体に欠損が生じた場合の補修材として適
用できる。
(b) It can be used as a repair material when a defect occurs in the magnetic shield.

〔実施例〕〔Example〕

以下に実施例を示す。 Examples are shown below.

実施例1 架橋剤により硬化するエポキシ樹脂(リファインチツク
(株)製試料理込樹脂、型番:27−770)にB1−
Pb−8r−Ca−Cu −O系酸化物超電導粉末(B
1:Pb:Sr:Ca:Cu=0.8:0.2:0.8
:1.O:1.4)を1.5.90重量%添加、混合し
、さらに架橋剤(リファインチツク(株)製試料理込用
エポキシ樹脂硬化材、型番:27−770)を加えて、
アルミナ基板(20X20X1mm)にエポキシ樹脂で
張付けた第1図に示すBi系酸化物超電導タイル(gx
9x5mmt)の隙間(2mm)に充填して24時間放
置した。
Example 1 B1-
Pb-8r-Ca-Cu-O based oxide superconducting powder (B
1:Pb:Sr:Ca:Cu=0.8:0.2:0.8
:1. 1.5.90% by weight of O: 1.4) was added and mixed, and a crosslinking agent (epoxy resin curing material for trial cooking manufactured by Refine Inch Co., Ltd., model number: 27-770) was added,
Bi-based oxide superconducting tile (gx
The mixture was filled into a gap (2 mm) measuring 9 x 5 mm, and left for 24 hours.

得られた20口の超電導タイルの中央にホール素子を設
置し、100ガウスの均一直流磁場中で磁気遮蔽効果を
調べた。その結果を第1表に示す。
A Hall element was installed in the center of the 20 superconducting tiles obtained, and the magnetic shielding effect was examined in a uniform DC magnetic field of 100 Gauss. The results are shown in Table 1.

比較例1 第1図に示した超電導タイルの隙間を本発明磁気遮蔽シ
ール材で充填せずに、実施例1と同様な方法で磁気遮蔽
効果を調べた。その結果を第1表に示す。
Comparative Example 1 The magnetic shielding effect was investigated in the same manner as in Example 1, without filling the gaps between the superconducting tiles shown in FIG. 1 with the magnetic shielding sealing material of the present invention. The results are shown in Table 1.

比較例2 20口のBi系酸化物超電導タイルについて、実施例1
と同様な方法で磁気遮蔽効果を調べた。
Comparative Example 2 Example 1 for 20 Bi-based oxide superconducting tiles
The magnetic shielding effect was investigated using the same method.

その結果を第1表に示す。The results are shown in Table 1.

第1表Table 1

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例で使用した酸化物超電導磁気タイルの説
明図である。 外部磁場 第1
FIG. 1 is an explanatory diagram of an oxide superconducting magnetic tile used in Examples. External magnetic field 1st

Claims (1)

【特許請求の範囲】[Claims] 1.磁気遮蔽体の隙間を補填するシール材であって、樹
脂中に5〜99重量%の酸化物超電導粉末を含有するこ
とを特徴とする超電導磁気遮蔽シール材。
1. A superconducting magnetic shielding sealing material for filling gaps in a magnetic shielding material, characterized in that the superconducting magnetic shielding sealing material contains 5 to 99% by weight of oxide superconducting powder in a resin.
JP20001490A 1990-07-27 1990-07-27 Superconductive magnetic shielding seal material Pending JPH0484500A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20001490A JPH0484500A (en) 1990-07-27 1990-07-27 Superconductive magnetic shielding seal material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20001490A JPH0484500A (en) 1990-07-27 1990-07-27 Superconductive magnetic shielding seal material

Publications (1)

Publication Number Publication Date
JPH0484500A true JPH0484500A (en) 1992-03-17

Family

ID=16417367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20001490A Pending JPH0484500A (en) 1990-07-27 1990-07-27 Superconductive magnetic shielding seal material

Country Status (1)

Country Link
JP (1) JPH0484500A (en)

Similar Documents

Publication Publication Date Title
Takagi et al. Superconductor-to-nonsuperconductor transition in (La 1− x Sr x) 2 CuO 4 as investigated by transport and magnetic measurements
Melamud et al. Magnetic Structure of CsCoCl3 at 4.2° K
Lee et al. Thermoelectric power and superconducting properties of Y 1 Ba 2 Cu 3 O 7− δ and R 1 Ba 2 Cu 3 O 7− δ
Kawashima et al. A new series of oxycarbonate superconductors (Cu0. 5C0. 5) 2Ba3Can− 1CunO2n+ 5 (n= 4, 5) prepared at high pressure
JPH0484500A (en) Superconductive magnetic shielding seal material
Mook et al. Superconductivity and magnetism in the Ho1− xErxRh4B4 alloy system
Tai et al. Vortex-lattice melting in superconducting fullerene Rb 3 C 60
JPH0487399A (en) Superconducting magnetic shielding material
Horii et al. Relationship between biaxial orientation degrees and grain in magnetically aligned (Y1− xErx) Ba2Cu3Oy powders with twin microstructures
JPH0487218A (en) Superconductive composite material
JPH0832599B2 (en) Cylindrical structure of oxide superconductor
EP3115998A1 (en) Oxide superconductive bulk magnet
JPS63258098A (en) Superconducting electromagnetic shield
US6482775B2 (en) Oxide superconductor
JPH01133941A (en) Compound superconductor
Xiaowen et al. A high Tc proximity effect superconductor and its superconductivity
Sheng et al. Preparation and characterization of unusual levitation Tl-Ba-Ca-Cu-O samples
JPH0489305A (en) Oxide superconductor
CN112143175A (en) Epoxy resin composite material for superconducting magnet and preparation method thereof
JP3221719B2 (en) Superconducting perforated plate
JPH01262603A (en) Magnet
JPH0488130A (en) Metal or alloy matrix oxide superconductor composite
JPH01163266A (en) Magnetic shielding part
DD292810A5 (en) SUPERCONDUCTIVE MATERIAL
JPH01138798A (en) Magnetic shielding device utilizing oxide superconductor