JPH0487218A - Superconductive composite material - Google Patents

Superconductive composite material

Info

Publication number
JPH0487218A
JPH0487218A JP2200015A JP20001590A JPH0487218A JP H0487218 A JPH0487218 A JP H0487218A JP 2200015 A JP2200015 A JP 2200015A JP 20001590 A JP20001590 A JP 20001590A JP H0487218 A JPH0487218 A JP H0487218A
Authority
JP
Japan
Prior art keywords
rubber
series
resin
weight
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2200015A
Other languages
Japanese (ja)
Inventor
Koichi Numata
幸一 沼田
Kazutomo Hoshino
和友 星野
Hidefusa Takahara
高原 秀房
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2200015A priority Critical patent/JPH0487218A/en
Publication of JPH0487218A publication Critical patent/JPH0487218A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To obtain a superconductive composite material easy to be applied, enable to be produced in mass, inexpensive and having a magnetic shielding effect by containing 5-99 percent by weight of oxide superconductive powder in resin or rubber. CONSTITUTION:Resin or rubber is made to contain 5-99wt. percent of oxide superconductive powder. Here, a magnetic shielding effect is not recognized if the contained amount is less than 5 percent by weight and forming becomes difficult if it is more than 99 percent by weight. As resin used, any one of epoxy series, acryl series, silicon series and the like is applicable, and as rubber, natural rubber or synthetic rubber can be irrespectively used. As oxide superconductive powder, Y-Ba-Cu-O series (critical temperature 90K), Bi-Pb-Sr- Ca-Cu-O series (critical temperature 110K), Tl-Ba-Ca-Cu-O series (critical temperature 125K) and the like are applicable. Thereby it is possible to obtain the superconductive composite material easy to be applied, enable to be produced in mass, inexpensive and further having a magnetic shielding effect.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は例えば地磁気等の弱磁場および超電導磁石等か
ら発生する強磁場を遮蔽する磁気遮蔽体あるいは軸受等
に供するのに好適な超電導複合材料に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides a superconducting composite material suitable for use in magnetic shields or bearings that shield weak magnetic fields such as geomagnetism and strong magnetic fields generated from superconducting magnets. Regarding.

〔従来の技術およびその問題点〕[Conventional technology and its problems]

超電導材料は、臨界温度Tc以下でゼロ抵抗、完全反磁
性、ジョセフソン効果等の特性を示す材料である。この
特性のうち、完全反磁性を利用すると高性能な磁気遮蔽
体あるいは軸受の製造が可能となる。
A superconducting material is a material that exhibits characteristics such as zero resistance, perfect diamagnetism, and the Josephson effect below a critical temperature Tc. Among these characteristics, the use of perfect diamagnetic properties makes it possible to manufacture high-performance magnetic shields or bearings.

磁気遮蔽体の用途としては、■生体磁気等の超微弱磁気
を検出する際にノイズとなる地磁気の揺らぎを遮蔽する
、■超電導磁気浮上列車、超電導電磁推進船、核磁気共
鳴診断装置等の超電導磁石を利用したものから発せられ
る強磁場を遮蔽する、等が挙げられる。
Applications of magnetic shields include: - Shielding the earth's magnetic fluctuations that cause noise when detecting ultra-weak magnetism such as biomagnetism; - Superconducting magnetic levitation trains, superconducting electromagnetic propulsion vessels, nuclear magnetic resonance diagnostic equipment, etc. Examples include shielding strong magnetic fields emitted from items that use magnets.

1987年に発見されたY−Ba−Cu−0系超電導体
や1988年に発見されたB1−5r−Ca−Cu−0
系超電導体等の酸化物超電導体は臨界温度が液体窒素温
度以上であり、77にという比較的高い温度で超電導状
態が実現されるので、上記用途に適用される材料として
有望である。
Y-Ba-Cu-0 superconductor discovered in 1987 and B1-5r-Ca-Cu-0 discovered in 1988.
Oxide superconductors, such as superconductors, have a critical temperature higher than the liquid nitrogen temperature, and a superconducting state is achieved at a relatively high temperature of 77°C, so they are promising materials for the above-mentioned applications.

これまで磁気遮蔽体として、一端を閉じた円筒を一体物
で成形したり、円筒状の基材の上にプラズマ溶射等の手
法で酸化物超電導皮膜を形成する等により磁気遮蔽効果
が報告されているが、これらは粉末調製後に成形、焼成
あるいは溶射する等、大型化に難点がある工程が必要で
ある。
So far, magnetic shielding effects have been reported by forming a cylinder with one end closed as a single piece, or by forming an oxide superconducting film on a cylindrical base material using a method such as plasma spraying. However, these require steps such as molding, firing, or thermal spraying after powder preparation, which are difficult to increase in size.

本発明は適用が容易であり、犬景生産が可能でかつ安価
な磁気遮蔽効果のある超電導複合材を提供することを目
的とするものである。
It is an object of the present invention to provide a superconducting composite material that is easy to apply, can be easily manufactured, and is inexpensive and has a magnetic shielding effect.

〔問題点を解決するための手段〕[Means for solving problems]

一般に、超電導磁気遮蔽効果は超電導体が充填された一
体物により発現されるものと考えられるが、本発明者ら
の研究によれば、酸化物超電導粉末を樹脂あるいはゴム
マトリックス中に所定量分散させることによりマイスナ
ー効果を示すという驚くべき現象を発見した。すなわち
、酸化物超電導粉末を樹脂あるいはゴムマトリックス中
に分散させたディスク状試料を作製して磁気遮蔽効果を
調べたところ、マトリックス中に5〜99重量%の酸化
物超電導粉末の含有で磁気遮蔽効果があることが明らか
となり本発明を完成するに至った。
Generally, it is thought that the superconducting magnetic shielding effect is produced by an integrated object filled with superconductors, but according to the research of the present inventors, it is possible to disperse a predetermined amount of oxide superconducting powder in a resin or rubber matrix. As a result, we discovered a surprising phenomenon that shows the Meissner effect. That is, when we prepared a disk-shaped sample in which oxide superconducting powder was dispersed in a resin or rubber matrix and examined the magnetic shielding effect, we found that the magnetic shielding effect was greater when 5 to 99% by weight of oxide superconducting powder was contained in the matrix. It became clear that there is, and the present invention was completed.

本発明の超電導複合材料は、樹脂あるいはゴム中に5〜
99重量%の酸化物超電導粉末が含有されてなるもので
あり、これにより前記課題を達成したものである。
The superconducting composite material of the present invention contains 5 to 50% in resin or rubber.
It contains 99% by weight of oxide superconducting powder, thereby achieving the above object.

〔作  用〕[For production]

このような本発明の超電導複合材料では空孔等の多くの
欠陥を有しているのにもかかわらずマイスナー効果を示
すのは、空孔回りの酸化物超電導粉末が遮蔽電流を流す
ためと推定されるが、その詳細は明らかでない。
The reason why the superconducting composite material of the present invention exhibits the Meissner effect despite having many defects such as pores is presumed to be because the oxide superconducting powder around the pores causes a shielding current to flow. However, the details are not clear.

以下に本発明をさらに詳細に説明する。The present invention will be explained in more detail below.

本発明において、樹脂あるいはゴム中に分散される酸化
物超電導粉末の含有量を5〜99重量%とじたのは、5
重量%未満では磁気遮蔽効果が認められず、99重量%
を超えると成形が困難であることによる。
In the present invention, the content of the oxide superconducting powder dispersed in the resin or rubber is limited to 5 to 99% by weight.
If it is less than 99% by weight, no magnetic shielding effect is observed.
This is because molding is difficult if the amount exceeds .

用いる樹脂としては、エポキシ系、アクリル系、シリコ
ン系等いずれも適用可能である。特に常温で弾性のある
樹脂ではゴムと同様に成形後、曲面上にも貼付ることか
可能であり、例えば円筒状の磁気遮蔽体を作製するのも
容易である。また、本発明で使用できるゴムとしては、
天然ゴム、合成ゴムを問わず使用できる。
As the resin to be used, epoxy, acrylic, silicone, etc. can be used. In particular, a resin that is elastic at room temperature can be molded and then attached to a curved surface in the same way as rubber, and it is easy to make, for example, a cylindrical magnetic shield. In addition, rubber that can be used in the present invention includes:
Both natural rubber and synthetic rubber can be used.

また、酸化物超電導粉末としては、Y−Ba−Cu−〇
系(臨界温度90K)、B1−Pb−5r−Ca−Cu
−〇系(臨界温度110K)、Tl−Ba−Ca−Cu
−〇系(臨界温度125K)等が適用可能である。
In addition, as the oxide superconducting powder, Y-Ba-Cu-○ system (critical temperature 90K), B1-Pb-5r-Ca-Cu
-〇 system (critical temperature 110K), Tl-Ba-Ca-Cu
-〇 system (critical temperature 125K) etc. are applicable.

このように本発明の超電導複合材料は、樹脂あるいはゴ
ム中に5〜99重量%の酸化物超電導粉末が分散されて
なり、成形時には可塑性がある樹脂等も適用可能である
ので、遮蔽体等の形状としては1円筒状に限らず、所望
の形状のものが作製可能であり、また射出成形で大量生
産が容易に行える。
In this way, the superconducting composite material of the present invention is made by dispersing 5 to 99% by weight of oxide superconducting powder in resin or rubber, and since plastic resin can also be used during molding, it can be used for shielding bodies, etc. The shape is not limited to a cylindrical shape, but any desired shape can be manufactured, and mass production can be easily performed by injection molding.

〔発明の効果〕〔Effect of the invention〕

以上のような本発明によれば、以下のような効果を得る
ことができる。
According to the present invention as described above, the following effects can be obtained.

(イ)所望の、特に複雑な曲面を含むような磁気遮蔽体
が容易に作製できる。
(a) A magnetic shield including a desired, particularly complex curved surface can be easily produced.

(ロ)成形時、あるいは成形後に酸化物超電導体を焼結
するような高温熱処理を必要としない。
(b) There is no need for high-temperature heat treatment to sinter the oxide superconductor during or after molding.

(ハ)所望の、特に複雑な曲面を含むような超電導によ
る磁気軸受等が容易に作製できる。
(c) A superconducting magnetic bearing having a desired particularly complex curved surface can be easily produced.

〔実施例〕〔Example〕

以下に実施例を示す。 Examples are shown below.

実施例1 熱硬化性のアクリル樹脂粉末(リファインチツク(株)
製透明樹脂粉末、型番:22−140)にB1−Pb−
5r−Ca−Cu−0系酸化物超電導粉末(Bi:Pb
:Sr:Ca:Cu=o、8:0.2:0.8:1.O
:1.4)を1.5.90重量%添加、混合後150℃
で加熱硬化させて厚さ10mm、直径10mmの円盤を
作製した。なお、酸化物超電導粉末の添加量が99重量
%を超えると、樹脂の結合が不十分なためか成形が困難
であった。円盤にホール素子を取付けて液体窒素中で、
直流均一磁場(100ガウス)をかけ、磁気遮蔽効果を
調べた。その測定結果を第1表に示す。酸化物超電導粉
末が5重量%以上で明らかに磁気遮蔽効果が認められた
Example 1 Thermosetting acrylic resin powder (Refintech Co., Ltd.)
transparent resin powder, model number: 22-140) to B1-Pb-
5r-Ca-Cu-0 based oxide superconducting powder (Bi:Pb
:Sr:Ca:Cu=o, 8:0.2:0.8:1. O
: Added 1.5.90% by weight of 1.4) and heated to 150°C after mixing.
A disk having a thickness of 10 mm and a diameter of 10 mm was produced by heating and curing. Note that when the amount of the oxide superconducting powder added exceeds 99% by weight, molding was difficult, probably due to insufficient bonding of the resin. A Hall element is attached to the disk and placed in liquid nitrogen.
A DC uniform magnetic field (100 Gauss) was applied to examine the magnetic shielding effect. The measurement results are shown in Table 1. A clear magnetic shielding effect was observed when the oxide superconducting powder contained 5% by weight or more.

(以下、余白) 第1表 実施例2 内径40mm、深さ100mm、肉厚10mmの一端を
閉した円筒状容器を酸化物超電導粉末を90重量%含有
するシリコン樹脂(信越化学製、KE 12)で作製し
た。容器の下に励起コイルを置き、1ガウスの交流磁場
を発生させた。容器内のピックアップコイルで磁気遮蔽
能を調べたところ、室温で非超電導体の時と比べ液体窒
素温度では10万分の1に交流磁場を低減できることが
確認された。
(Hereinafter, blank spaces) Table 1 Example 2 A cylindrical container with one end closed, having an inner diameter of 40 mm, a depth of 100 mm, and a wall thickness of 10 mm was packed with silicone resin containing 90% by weight of oxide superconducting powder (manufactured by Shin-Etsu Chemical, KE 12). It was made with An excitation coil was placed below the container to generate an alternating magnetic field of 1 Gauss. When the magnetic shielding ability of the pickup coil inside the container was examined, it was confirmed that the alternating current magnetic field can be reduced to 1/100,000 times at liquid nitrogen temperature compared to when it is a non-superconductor at room temperature.

Claims (1)

【特許請求の範囲】[Claims] 1、樹脂あるいはゴム中に5〜99重量%の酸化物超電
導粉末が含有されてなる超電導複合材料。
1. A superconducting composite material containing 5 to 99% by weight of oxide superconducting powder in a resin or rubber.
JP2200015A 1990-07-27 1990-07-27 Superconductive composite material Pending JPH0487218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2200015A JPH0487218A (en) 1990-07-27 1990-07-27 Superconductive composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2200015A JPH0487218A (en) 1990-07-27 1990-07-27 Superconductive composite material

Publications (1)

Publication Number Publication Date
JPH0487218A true JPH0487218A (en) 1992-03-19

Family

ID=16417386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2200015A Pending JPH0487218A (en) 1990-07-27 1990-07-27 Superconductive composite material

Country Status (1)

Country Link
JP (1) JPH0487218A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011011379A (en) * 2009-06-30 2011-01-20 Meiki Co Ltd Mold clamping device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011011379A (en) * 2009-06-30 2011-01-20 Meiki Co Ltd Mold clamping device

Similar Documents

Publication Publication Date Title
Pena et al. Magnetic properties of rare-earth-based misfit layered materials of formula (LnS) nNbS2 (Ln identical to lanthanides, Y)
Sera et al. Absence of the T-linear term in low temperature specific heat of high-Tc oxide, Bi-Sr-Ca-Cu-O system
Kubiak et al. Pressure dependence of the superconducting transition temperature of Bi-and Tl-based high-Tc superconductors
US5130588A (en) Cylindrical composite superconductor bearing
JPH0487218A (en) Superconductive composite material
ATE385047T1 (en) SUPERCONDUCTIVE BODY MADE OF ZINC-DOPPED COPPER OXIDE MATERIAL
Iye Anisotropic transport properties of high Tc oxides
Uemura Muon spin relaxation studies on high‐TC superconductors and related antiferromagnets
JPH0487399A (en) Superconducting magnetic shielding material
KR940018318A (en) Superconductor
JPH0489305A (en) Oxide superconductor
JPH0484500A (en) Superconductive magnetic shielding seal material
JPH0488130A (en) Metal or alloy matrix oxide superconductor composite
JPH0312310A (en) Superconducting material and its production
Puźniak et al. Superconducting-state thermodynamic parameters of HgBa2Can-1CunOy (n= 1, 2, and 3)
Kramer et al. Composite Materials for SSC Dipole Magnet Cryostats
Steele et al. Penetration Depth of Superconductors
Sheng et al. Preparation and characterization of unusual levitation Tl-Ba-Ca-Cu-O samples
Chen Materials, Characterization, and Application of Single-Grained Y–Ba–Cu–O Superconductors
Grover et al. Magnetisation hysteresis measurements in various RBa sub (2) Cu sub (3) O sub (7) superconductors.
Cao et al. Magnetization measurements on Bi 2 Sr 2 CaCu 2 O y single-crystal
Werfel et al. Technology, preparation, and characterization
Nakamura et al. The gadolinium ordering in superconducting and non-superconducting GdxY1− xBa2Cu3Oy system
Nakagawa et al. Measurement of paramagnetic Meissner effect in s-wave superconductor
Kishio Present views and future prospects of superconductivity science and technology