JPH0487218A - Superconductive composite material - Google Patents
Superconductive composite materialInfo
- Publication number
- JPH0487218A JPH0487218A JP2200015A JP20001590A JPH0487218A JP H0487218 A JPH0487218 A JP H0487218A JP 2200015 A JP2200015 A JP 2200015A JP 20001590 A JP20001590 A JP 20001590A JP H0487218 A JPH0487218 A JP H0487218A
- Authority
- JP
- Japan
- Prior art keywords
- rubber
- series
- resin
- weight
- composite material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 9
- 239000000843 powder Substances 0.000 claims abstract description 19
- 229920005989 resin Polymers 0.000 claims abstract description 13
- 239000011347 resin Substances 0.000 claims abstract description 13
- 229920001971 elastomer Polymers 0.000 claims abstract description 11
- 239000005060 rubber Substances 0.000 claims abstract description 11
- 230000005291 magnetic effect Effects 0.000 abstract description 26
- 230000000694 effects Effects 0.000 abstract description 15
- 239000004593 Epoxy Substances 0.000 abstract description 2
- 244000043261 Hevea brasiliensis Species 0.000 abstract description 2
- 229920003052 natural elastomer Polymers 0.000 abstract description 2
- 229920001194 natural rubber Polymers 0.000 abstract description 2
- 229920003051 synthetic elastomer Polymers 0.000 abstract description 2
- 239000005061 synthetic rubber Substances 0.000 abstract description 2
- 229910002480 Cu-O Inorganic materials 0.000 abstract 2
- 229910009203 Y-Ba-Cu-O Inorganic materials 0.000 abstract 1
- -1 acryl Chemical group 0.000 abstract 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 239000002887 superconductor Substances 0.000 description 6
- 238000000465 moulding Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 229910014454 Ca-Cu Inorganic materials 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 230000005668 Josephson effect Effects 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000005292 diamagnetic effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 238000005339 levitation Methods 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000007750 plasma spraying Methods 0.000 description 1
- 239000000088 plastic resin Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Superconductors And Manufacturing Methods Therefor (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は例えば地磁気等の弱磁場および超電導磁石等か
ら発生する強磁場を遮蔽する磁気遮蔽体あるいは軸受等
に供するのに好適な超電導複合材料に関する。[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides a superconducting composite material suitable for use in magnetic shields or bearings that shield weak magnetic fields such as geomagnetism and strong magnetic fields generated from superconducting magnets. Regarding.
超電導材料は、臨界温度Tc以下でゼロ抵抗、完全反磁
性、ジョセフソン効果等の特性を示す材料である。この
特性のうち、完全反磁性を利用すると高性能な磁気遮蔽
体あるいは軸受の製造が可能となる。A superconducting material is a material that exhibits characteristics such as zero resistance, perfect diamagnetism, and the Josephson effect below a critical temperature Tc. Among these characteristics, the use of perfect diamagnetic properties makes it possible to manufacture high-performance magnetic shields or bearings.
磁気遮蔽体の用途としては、■生体磁気等の超微弱磁気
を検出する際にノイズとなる地磁気の揺らぎを遮蔽する
、■超電導磁気浮上列車、超電導電磁推進船、核磁気共
鳴診断装置等の超電導磁石を利用したものから発せられ
る強磁場を遮蔽する、等が挙げられる。Applications of magnetic shields include: - Shielding the earth's magnetic fluctuations that cause noise when detecting ultra-weak magnetism such as biomagnetism; - Superconducting magnetic levitation trains, superconducting electromagnetic propulsion vessels, nuclear magnetic resonance diagnostic equipment, etc. Examples include shielding strong magnetic fields emitted from items that use magnets.
1987年に発見されたY−Ba−Cu−0系超電導体
や1988年に発見されたB1−5r−Ca−Cu−0
系超電導体等の酸化物超電導体は臨界温度が液体窒素温
度以上であり、77にという比較的高い温度で超電導状
態が実現されるので、上記用途に適用される材料として
有望である。Y-Ba-Cu-0 superconductor discovered in 1987 and B1-5r-Ca-Cu-0 discovered in 1988.
Oxide superconductors, such as superconductors, have a critical temperature higher than the liquid nitrogen temperature, and a superconducting state is achieved at a relatively high temperature of 77°C, so they are promising materials for the above-mentioned applications.
これまで磁気遮蔽体として、一端を閉じた円筒を一体物
で成形したり、円筒状の基材の上にプラズマ溶射等の手
法で酸化物超電導皮膜を形成する等により磁気遮蔽効果
が報告されているが、これらは粉末調製後に成形、焼成
あるいは溶射する等、大型化に難点がある工程が必要で
ある。So far, magnetic shielding effects have been reported by forming a cylinder with one end closed as a single piece, or by forming an oxide superconducting film on a cylindrical base material using a method such as plasma spraying. However, these require steps such as molding, firing, or thermal spraying after powder preparation, which are difficult to increase in size.
本発明は適用が容易であり、犬景生産が可能でかつ安価
な磁気遮蔽効果のある超電導複合材を提供することを目
的とするものである。It is an object of the present invention to provide a superconducting composite material that is easy to apply, can be easily manufactured, and is inexpensive and has a magnetic shielding effect.
一般に、超電導磁気遮蔽効果は超電導体が充填された一
体物により発現されるものと考えられるが、本発明者ら
の研究によれば、酸化物超電導粉末を樹脂あるいはゴム
マトリックス中に所定量分散させることによりマイスナ
ー効果を示すという驚くべき現象を発見した。すなわち
、酸化物超電導粉末を樹脂あるいはゴムマトリックス中
に分散させたディスク状試料を作製して磁気遮蔽効果を
調べたところ、マトリックス中に5〜99重量%の酸化
物超電導粉末の含有で磁気遮蔽効果があることが明らか
となり本発明を完成するに至った。Generally, it is thought that the superconducting magnetic shielding effect is produced by an integrated object filled with superconductors, but according to the research of the present inventors, it is possible to disperse a predetermined amount of oxide superconducting powder in a resin or rubber matrix. As a result, we discovered a surprising phenomenon that shows the Meissner effect. That is, when we prepared a disk-shaped sample in which oxide superconducting powder was dispersed in a resin or rubber matrix and examined the magnetic shielding effect, we found that the magnetic shielding effect was greater when 5 to 99% by weight of oxide superconducting powder was contained in the matrix. It became clear that there is, and the present invention was completed.
本発明の超電導複合材料は、樹脂あるいはゴム中に5〜
99重量%の酸化物超電導粉末が含有されてなるもので
あり、これにより前記課題を達成したものである。The superconducting composite material of the present invention contains 5 to 50% in resin or rubber.
It contains 99% by weight of oxide superconducting powder, thereby achieving the above object.
このような本発明の超電導複合材料では空孔等の多くの
欠陥を有しているのにもかかわらずマイスナー効果を示
すのは、空孔回りの酸化物超電導粉末が遮蔽電流を流す
ためと推定されるが、その詳細は明らかでない。The reason why the superconducting composite material of the present invention exhibits the Meissner effect despite having many defects such as pores is presumed to be because the oxide superconducting powder around the pores causes a shielding current to flow. However, the details are not clear.
以下に本発明をさらに詳細に説明する。The present invention will be explained in more detail below.
本発明において、樹脂あるいはゴム中に分散される酸化
物超電導粉末の含有量を5〜99重量%とじたのは、5
重量%未満では磁気遮蔽効果が認められず、99重量%
を超えると成形が困難であることによる。In the present invention, the content of the oxide superconducting powder dispersed in the resin or rubber is limited to 5 to 99% by weight.
If it is less than 99% by weight, no magnetic shielding effect is observed.
This is because molding is difficult if the amount exceeds .
用いる樹脂としては、エポキシ系、アクリル系、シリコ
ン系等いずれも適用可能である。特に常温で弾性のある
樹脂ではゴムと同様に成形後、曲面上にも貼付ることか
可能であり、例えば円筒状の磁気遮蔽体を作製するのも
容易である。また、本発明で使用できるゴムとしては、
天然ゴム、合成ゴムを問わず使用できる。As the resin to be used, epoxy, acrylic, silicone, etc. can be used. In particular, a resin that is elastic at room temperature can be molded and then attached to a curved surface in the same way as rubber, and it is easy to make, for example, a cylindrical magnetic shield. In addition, rubber that can be used in the present invention includes:
Both natural rubber and synthetic rubber can be used.
また、酸化物超電導粉末としては、Y−Ba−Cu−〇
系(臨界温度90K)、B1−Pb−5r−Ca−Cu
−〇系(臨界温度110K)、Tl−Ba−Ca−Cu
−〇系(臨界温度125K)等が適用可能である。In addition, as the oxide superconducting powder, Y-Ba-Cu-○ system (critical temperature 90K), B1-Pb-5r-Ca-Cu
-〇 system (critical temperature 110K), Tl-Ba-Ca-Cu
-〇 system (critical temperature 125K) etc. are applicable.
このように本発明の超電導複合材料は、樹脂あるいはゴ
ム中に5〜99重量%の酸化物超電導粉末が分散されて
なり、成形時には可塑性がある樹脂等も適用可能である
ので、遮蔽体等の形状としては1円筒状に限らず、所望
の形状のものが作製可能であり、また射出成形で大量生
産が容易に行える。In this way, the superconducting composite material of the present invention is made by dispersing 5 to 99% by weight of oxide superconducting powder in resin or rubber, and since plastic resin can also be used during molding, it can be used for shielding bodies, etc. The shape is not limited to a cylindrical shape, but any desired shape can be manufactured, and mass production can be easily performed by injection molding.
以上のような本発明によれば、以下のような効果を得る
ことができる。According to the present invention as described above, the following effects can be obtained.
(イ)所望の、特に複雑な曲面を含むような磁気遮蔽体
が容易に作製できる。(a) A magnetic shield including a desired, particularly complex curved surface can be easily produced.
(ロ)成形時、あるいは成形後に酸化物超電導体を焼結
するような高温熱処理を必要としない。(b) There is no need for high-temperature heat treatment to sinter the oxide superconductor during or after molding.
(ハ)所望の、特に複雑な曲面を含むような超電導によ
る磁気軸受等が容易に作製できる。(c) A superconducting magnetic bearing having a desired particularly complex curved surface can be easily produced.
以下に実施例を示す。 Examples are shown below.
実施例1
熱硬化性のアクリル樹脂粉末(リファインチツク(株)
製透明樹脂粉末、型番:22−140)にB1−Pb−
5r−Ca−Cu−0系酸化物超電導粉末(Bi:Pb
:Sr:Ca:Cu=o、8:0.2:0.8:1.O
:1.4)を1.5.90重量%添加、混合後150℃
で加熱硬化させて厚さ10mm、直径10mmの円盤を
作製した。なお、酸化物超電導粉末の添加量が99重量
%を超えると、樹脂の結合が不十分なためか成形が困難
であった。円盤にホール素子を取付けて液体窒素中で、
直流均一磁場(100ガウス)をかけ、磁気遮蔽効果を
調べた。その測定結果を第1表に示す。酸化物超電導粉
末が5重量%以上で明らかに磁気遮蔽効果が認められた
。Example 1 Thermosetting acrylic resin powder (Refintech Co., Ltd.)
transparent resin powder, model number: 22-140) to B1-Pb-
5r-Ca-Cu-0 based oxide superconducting powder (Bi:Pb
:Sr:Ca:Cu=o, 8:0.2:0.8:1. O
: Added 1.5.90% by weight of 1.4) and heated to 150°C after mixing.
A disk having a thickness of 10 mm and a diameter of 10 mm was produced by heating and curing. Note that when the amount of the oxide superconducting powder added exceeds 99% by weight, molding was difficult, probably due to insufficient bonding of the resin. A Hall element is attached to the disk and placed in liquid nitrogen.
A DC uniform magnetic field (100 Gauss) was applied to examine the magnetic shielding effect. The measurement results are shown in Table 1. A clear magnetic shielding effect was observed when the oxide superconducting powder contained 5% by weight or more.
(以下、余白)
第1表
実施例2
内径40mm、深さ100mm、肉厚10mmの一端を
閉した円筒状容器を酸化物超電導粉末を90重量%含有
するシリコン樹脂(信越化学製、KE 12)で作製し
た。容器の下に励起コイルを置き、1ガウスの交流磁場
を発生させた。容器内のピックアップコイルで磁気遮蔽
能を調べたところ、室温で非超電導体の時と比べ液体窒
素温度では10万分の1に交流磁場を低減できることが
確認された。(Hereinafter, blank spaces) Table 1 Example 2 A cylindrical container with one end closed, having an inner diameter of 40 mm, a depth of 100 mm, and a wall thickness of 10 mm was packed with silicone resin containing 90% by weight of oxide superconducting powder (manufactured by Shin-Etsu Chemical, KE 12). It was made with An excitation coil was placed below the container to generate an alternating magnetic field of 1 Gauss. When the magnetic shielding ability of the pickup coil inside the container was examined, it was confirmed that the alternating current magnetic field can be reduced to 1/100,000 times at liquid nitrogen temperature compared to when it is a non-superconductor at room temperature.
Claims (1)
導粉末が含有されてなる超電導複合材料。1. A superconducting composite material containing 5 to 99% by weight of oxide superconducting powder in a resin or rubber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2200015A JPH0487218A (en) | 1990-07-27 | 1990-07-27 | Superconductive composite material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2200015A JPH0487218A (en) | 1990-07-27 | 1990-07-27 | Superconductive composite material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0487218A true JPH0487218A (en) | 1992-03-19 |
Family
ID=16417386
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2200015A Pending JPH0487218A (en) | 1990-07-27 | 1990-07-27 | Superconductive composite material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0487218A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011011379A (en) * | 2009-06-30 | 2011-01-20 | Meiki Co Ltd | Mold clamping device |
-
1990
- 1990-07-27 JP JP2200015A patent/JPH0487218A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011011379A (en) * | 2009-06-30 | 2011-01-20 | Meiki Co Ltd | Mold clamping device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Pena et al. | Magnetic properties of rare-earth-based misfit layered materials of formula (LnS) nNbS2 (Ln identical to lanthanides, Y) | |
Sera et al. | Absence of the T-linear term in low temperature specific heat of high-Tc oxide, Bi-Sr-Ca-Cu-O system | |
Kubiak et al. | Pressure dependence of the superconducting transition temperature of Bi-and Tl-based high-Tc superconductors | |
US5130588A (en) | Cylindrical composite superconductor bearing | |
JPH0487218A (en) | Superconductive composite material | |
ATE385047T1 (en) | SUPERCONDUCTIVE BODY MADE OF ZINC-DOPPED COPPER OXIDE MATERIAL | |
Iye | Anisotropic transport properties of high Tc oxides | |
Uemura | Muon spin relaxation studies on high‐TC superconductors and related antiferromagnets | |
JPH0487399A (en) | Superconducting magnetic shielding material | |
KR940018318A (en) | Superconductor | |
JPH0489305A (en) | Oxide superconductor | |
JPH0484500A (en) | Superconductive magnetic shielding seal material | |
JPH0488130A (en) | Metal or alloy matrix oxide superconductor composite | |
JPH0312310A (en) | Superconducting material and its production | |
Puźniak et al. | Superconducting-state thermodynamic parameters of HgBa2Can-1CunOy (n= 1, 2, and 3) | |
Kramer et al. | Composite Materials for SSC Dipole Magnet Cryostats | |
Steele et al. | Penetration Depth of Superconductors | |
Sheng et al. | Preparation and characterization of unusual levitation Tl-Ba-Ca-Cu-O samples | |
Chen | Materials, Characterization, and Application of Single-Grained Y–Ba–Cu–O Superconductors | |
Grover et al. | Magnetisation hysteresis measurements in various RBa sub (2) Cu sub (3) O sub (7) superconductors. | |
Cao et al. | Magnetization measurements on Bi 2 Sr 2 CaCu 2 O y single-crystal | |
Werfel et al. | Technology, preparation, and characterization | |
Nakamura et al. | The gadolinium ordering in superconducting and non-superconducting GdxY1− xBa2Cu3Oy system | |
Nakagawa et al. | Measurement of paramagnetic Meissner effect in s-wave superconductor | |
Kishio | Present views and future prospects of superconductivity science and technology |