JP3221719B2 - Superconducting perforated plate - Google Patents

Superconducting perforated plate

Info

Publication number
JP3221719B2
JP3221719B2 JP09456092A JP9456092A JP3221719B2 JP 3221719 B2 JP3221719 B2 JP 3221719B2 JP 09456092 A JP09456092 A JP 09456092A JP 9456092 A JP9456092 A JP 9456092A JP 3221719 B2 JP3221719 B2 JP 3221719B2
Authority
JP
Japan
Prior art keywords
superconducting
oxide
plate
crystal
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09456092A
Other languages
Japanese (ja)
Other versions
JPH05294617A (en
Inventor
勉 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP09456092A priority Critical patent/JP3221719B2/en
Publication of JPH05294617A publication Critical patent/JPH05294617A/en
Application granted granted Critical
Publication of JP3221719B2 publication Critical patent/JP3221719B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は超電導多孔板に関し、よ
り詳細には、磁界発生や磁界シールドに用いられる新規
な超電導多孔板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting porous plate, and more particularly, to a novel superconducting porous plate used for generating a magnetic field or shielding a magnetic field.

【0002】[0002]

【従来の技術】近年、臨界温度が液体窒素の沸点(7
7.3K)を超える酸化物系化合物超電導体が発見され
ており、冷媒として高価で扱いにくい液体ヘリウムを使
用する必要がなく、安価で取扱容易な液体窒素が使用可
能であるため、超電導技術を飛躍的に発展させるものと
して注目され、期待を集めている。酸化物超電導体の応
用としては多数のものが考えられているが、中でも磁界
発生と磁気シールドは重要視されている。
2. Description of the Related Art In recent years, the critical temperature has become the boiling point of liquid nitrogen (7
Oxide-based compound superconductors exceeding 7.3 K) have been discovered, and there is no need to use expensive and difficult-to-handle liquid helium as a refrigerant. Inexpensive and easy-to-handle liquid nitrogen can be used. It is attracting attention as a dramatic development and has attracted expectations. Numerous applications of oxide superconductors are being considered, with particular emphasis on magnetic field generation and magnetic shielding.

【0003】超電導マグネットなどが発生する強磁場を
利用するシステム−例えば、粒子加速器、リニアモータ
ーカー、MRIなど−は近年増加の一途を辿っており、
人体の磁場被曝防止やCRTディスプレイなど機器の保
護などが課題となっている。これらの課題を解決する有
利な手段の一つが超電導体を利用した磁気シールドであ
る。高透磁率強磁性体を用いる磁気シールドも従来行わ
れているが、内部の磁束密度が飽和するとシールド特性
も飽和してしまうため強磁場シールドには余り適さない
こと、対象磁場が強くなるとシールド体の重量が非現実
的に大きくなる、などの問題点が指摘されている。
[0003] In recent years, systems utilizing a strong magnetic field generated by a superconducting magnet or the like-for example, a particle accelerator, a linear motor car, an MRI-have been steadily increasing.
There are issues such as prevention of exposure of the human body to magnetic fields and protection of devices such as CRT displays. One of the advantageous means for solving these problems is a magnetic shield using a superconductor. Magnetic shields using high-permeability ferromagnetic materials have also been used in the past.However, if the internal magnetic flux density saturates, the shield characteristics will also saturate, making them less suitable for high magnetic field shields. Problems have been pointed out, such as the unrealistically large weight.

【0004】超電導磁気シールドには原理的にはこのよ
うな欠点はなく、強磁場まで使用可能、かつ軽量化が可
能である。例えば、NbTi合金を用いれば、1mm程度
の厚さの円筒によってその内部を1Tの外部磁場から遮
蔽することが可能である。しかし、先に述べたように酸
化物超電導体発見以前は、シールド体を超電導状態に冷
却するのに必要かつ妥当な寒剤が高価な液体ヘリウムで
あるためその用途は比較的限られていた。しかし、酸化
物超電導体発見以後は比較的安価な液体窒素が寒剤とし
て使用可能となり、その応用範囲も拡大することが期待
されている。また、酸化物超電導材料を用い液体窒素冷
却によって強磁場を発生する装置または設備において磁
気シールドを行う必要がある時には、磁気シールド材料
も液体窒素冷却で超電導状態になり磁気シールドとして
作用することが有利であることは当然である。
[0004] The superconducting magnetic shield does not have such a defect in principle, and can be used up to a strong magnetic field and can be reduced in weight. For example, if an NbTi alloy is used, the inside thereof can be shielded from an external magnetic field of 1T by a cylinder having a thickness of about 1 mm. However, as described above, prior to the discovery of the oxide superconductor, its use was relatively limited because expensive liquid helium was a necessary and appropriate cryogen for cooling the shield body to the superconducting state. However, since the discovery of oxide superconductors, relatively inexpensive liquid nitrogen can be used as a cryogen, and its application is expected to expand. In addition, when it is necessary to perform magnetic shielding in an apparatus or facility that generates a strong magnetic field by liquid nitrogen cooling using an oxide superconducting material, it is advantageous that the magnetic shielding material also becomes a superconducting state by liquid nitrogen cooling and acts as a magnetic shield. Of course.

【0005】また、磁界発生装置として超電導体を用い
たバルクマグネットも提案されているが、その実用化に
は、やはり液体窒素を冷媒とする酸化物高温超電導体の
使用が必要不可欠である。このバルクマグネットとは、
超電導体に磁束を捕捉させて磁石として使用するもので
ある。
Although a bulk magnet using a superconductor has been proposed as a magnetic field generator, the use of an oxide high-temperature superconductor using liquid nitrogen as a refrigerant is indispensable for its practical use. This bulk magnet is
The magnetic flux is captured by the superconductor and used as a magnet.

【0006】本発明の超電導多孔板が対象としている中
・強磁場(約0.001〜数十T)では、対象磁場強度
が超電導体の下部臨界磁場Hc1以上であるのが普通なの
でマイスナー効果は発現しない。そこで、対象磁場強度
が上部臨界磁場(Hc2)以下である第2種超電導体を用
い、表面反磁性電流と、超電導体がHc1以上の磁場を遮
蔽しようとする混合状態において示す磁束ピンニング特
性、即ち、臨界電流密度(Jc)を第2種超電導体が有
することを利用するものである。一般的に、臨界電流密
度が高い程、シールド特性も捕捉できる磁束も高く、ま
た、より少ない体積で所望の磁気シールドや磁界発生が
可能となる。
[0006] In-strong magnetic field in the superconducting perforated plate is subject to the invention (about 0.001 to tens T), so is usually subject field strength is lower critical field H c1 or more superconductor Meissner effect Does not appear. Therefore, using a type 2 superconductor whose target magnetic field strength is equal to or lower than the upper critical magnetic field (H c2 ), the surface diamagnetic current and the flux pinning characteristics exhibited in a mixed state where the superconductor attempts to shield a magnetic field higher than H c1 That is, it utilizes the fact that the type 2 superconductor has a critical current density (Jc). In general, the higher the critical current density is, the higher the magnetic flux that can capture the shielding characteristics is, and the desired magnetic shield and magnetic field can be generated with a smaller volume.

【0007】しかしながら、焼結体など通常得られるも
のは多結晶体であり、超電導電流を阻害する弱結合であ
る粒界を含んでいる。粒間の臨界電流密度は、77K,
1Tの磁場下で数十A/cm2 と低いことが知られてい
る。これは、実用に要求される臨界電流密度(104
106 A/cm2 )に比べ著しく小さい。これまでに検討
されてきた結果、焼結体など多結晶体では、数10〜数
100G程度までの外部磁場しかシールドできていない
(例えば、“IEEE Transactions o
n magnetics”,Vol.25,No.2.Ma
rch 1989,p.2506〜2510)。捕捉磁
束についても多結晶体では小さい値となることも報告さ
れている(“Japanese Journal of
Applied Physics”,Vol.30,
No.7A,July 1991,L1157〜L115
9)。
However, what is usually obtained, such as a sintered body, is a polycrystalline body and contains grain boundaries which are weak bonds that impede superconducting current. The critical current density between grains is 77K,
It is known that it is as low as several tens A / cm 2 under a magnetic field of 1T. This critical current required for practical density (10 4 -
10 6 A / cm 2 ). As a result of studies to date, a polycrystalline body such as a sintered body can only shield an external magnetic field of about several tens to several hundreds G (for example, “IEEE Transactions O”).
n magnetics ", Vol. 25, No. 2. Ma
rch 1989, p. 2506-2510). It has also been reported that the trapped magnetic flux has a small value in a polycrystalline material (“Japanese Journal of of Japan”).
Applied Physics ", Vol. 30,
No. 7A, July 1991, L1157-L115
9).

【0008】また、Y系単結晶薄膜で、77Kなどの高
温、磁場中でも高い磁界電流密度を有するものも知られ
ているが、実際に必要な面積、およそ数10cm平方から
数m平方の面積の超電導体を作製することは現状ではで
きない。
Further, a Y-based single crystal thin film having a high magnetic field current density even at a high temperature such as 77 K and a magnetic field is known. However, an area actually required, that is, an area of about several tens of cm square to several m square. It is not possible at present to produce a superconductor.

【0009】これまでに、作製可能な面積の酸化物超電
導薄膜を磁気シールド部材として用い磁気シールド空間
を提供する方法も提案されてはいるが(特開平3−13
1096)、図2のように超電導体1(NbTi)をタ
イル貼りするように隙間なく配置したとしても、接合部
2が超電導的に接合されていなければ、磁場Hを印加す
ると超電導板がないときよりも逆に磁束密度を高めてし
まう部分も生じてしまう。
A method of providing a magnetically shielded space by using an oxide superconducting thin film having an area that can be manufactured as a magnetically shielded member has been proposed (JP-A-3-13).
1096), even if the superconductor 1 (NbTi) is arranged without a gap so as to be tiled as shown in FIG. 2, if the joining portion 2 is not superconductingly joined, when the magnetic field H is applied, there is no superconducting plate. On the contrary, there is a portion where the magnetic flux density is increased.

【0010】したがって、粒界など弱結合を含まず、か
つ臨界電流密度の高い単結晶状の酸化物超電導体、ある
いは超電導電流パスに弱結合をあまり含まないような結
晶方位が配向した酸化物超電導体を用いればよいのであ
るが、必要な大きさの超電導板3を得ようとすると、図
3に示すように、酸化物の機械的特性に起因する熱応力
によるクラック4の発生が、作製時の熱処理過程や使用
時の冷却過程で避けられない。クラックが発生すると期
待される磁気シールド特性や磁界発生機能が発揮されな
いという問題があった。
Accordingly, a single-crystal oxide superconductor having no critical bonds such as grain boundaries and having a high critical current density, or an oxide superconductor having a crystal orientation oriented so that the superconducting current path contains few weak bonds. However, when trying to obtain a superconducting plate 3 of a required size, as shown in FIG. 3, the generation of cracks 4 due to the thermal stress caused by the mechanical properties of the oxide causes Unavoidable during the heat treatment process and the cooling process during use. There has been a problem that the magnetic shield characteristics and the magnetic field generating function, which are expected to cause cracks, cannot be exhibited.

【0011】[0011]

【発明が解決しようとする課題】上述のごとく、酸化物
超電導材料で形成された従来の超電導体板では、粒界な
ど弱結合を含むため臨界電流密度が小さく、また、粒界
を排除したとしても、従来の構造のままでは熱応力に弱
く、これらが原因となって良好な磁気シールド特性・磁
界発生機能を得られないという問題があった。そこで本
発明は、弱結合による特性低下と熱応力の問題を解消で
き、もって酸化物超電導材料の特徴を最大限に発揮させ
得る超電導多孔板を提供することを目的とする。
As described above, the conventional superconductor plate formed of an oxide superconducting material has a low critical current density due to the inclusion of weak coupling such as a grain boundary. However, there is a problem that the conventional structure is susceptible to thermal stress, and as a result, good magnetic shield characteristics and good magnetic field generation function cannot be obtained. Therefore, an object of the present invention is to provide a superconducting perforated plate that can solve the problems of deterioration in characteristics and thermal stress due to weak bonding, and can thereby maximize the characteristics of an oxide superconducting material.

【0012】[0012]

【課題を解決するための手段】本発明は、単結晶状の酸
化物超電導材料で板状に形成されたものであって、複数
の孔を備えたものであることを特徴とする超電導多孔板
を提供する。また本発明は、単結晶状の酸化物超電導材
料で形成された複数のエレメントが、複数の孔を備えた
超電導多孔板となるように、それぞれの結晶方位を揃え
て、結晶方位の揃っていない部分が生じないように接合
された板状のものであることを特徴とする超電導多孔板
を提供する。
According to the present invention, there is provided a superconducting porous plate formed of a single-crystal oxide superconducting material in a plate shape and having a plurality of holes. I will provide a. In addition, the present invention provides a plurality of elements formed of a single-crystal oxide superconducting material, and aligns the respective crystal orientations so that the superconducting perforated plate has a plurality of holes, and the crystal orientations are not uniform. Provided is a superconducting perforated plate characterized in that it is a plate-shaped plate joined so as not to have a portion.

【0013】また本発明は、前記超電導多孔板で、前記
酸化物超電導材料が、RE(Yを含む希土類元素および
それらの組合せ),Ba,Cuの酸化物からなる超電導
体であって、RE2BaCuO5が微細に分散した単結晶
状のREBa2Cu37-yからなることを特徴とする超
電導多孔板を提供する。なお、ここで単結晶状の酸化物
超電導材料とは、臨界電流密度を極端に低下させる粒界
など弱結合を含まない酸化物超電導体、あるいは超電導
電流パスに弱結合をあまり含まないような結晶方位が配
向した酸化物超電導体のことである。
[0013] The present invention, in the superconducting porous plate, said oxide superconducting material, RE (rare earth elements and combinations thereof including Y), Ba, a superconductor composed of an oxide of Cu, RE 2 Provided is a superconducting porous plate, which is made of single crystal REBa 2 Cu 3 O 7-y in which BaCuO 5 is finely dispersed. Note that here, a single-crystal oxide
Superconducting materials are grain boundaries that significantly lower the critical current density.
Oxide superconductor that does not contain weak coupling, or superconductivity
A crystal orientation that does not include much weak coupling in the current path is arranged.
Oxide superconductor.

【0014】[0014]

【作用】複数の孔を備えた超電導多孔板とすると、それ
らの孔は、熱処理で酸化物超電導体を作製するとき、ま
た、液体窒素で冷却して磁気シールドや磁界発生装置と
して使用するとき、各部の温度を均一化するのに寄与す
る。したがって、熱応力で超電導体板にクラックが生じ
ることが防止でき、良好な磁気シールド特性・磁界発生
機能を発揮させることが可能となる。
When a superconducting perforated plate having a plurality of holes is used, these holes are used when producing an oxide superconductor by heat treatment, or when cooled with liquid nitrogen and used as a magnetic shield or a magnetic field generator. It contributes to making the temperature of each part uniform. Therefore, the occurrence of cracks in the superconductor plate due to thermal stress can be prevented, and good magnetic shielding characteristics and magnetic field generation functions can be exhibited.

【0015】前記超電導多孔板を単結晶状の酸化物超電
導材料で形成することによって、超電導多孔板全体とし
て臨界電流密度の高いものとすることができる。したが
って、良好な磁気シールド特性や磁界発生機能が得られ
ることになる。超電導多孔板に備えられた個々の孔を、
単結晶状の酸化物超電導材料で塞ぐことによって、さら
に有効に磁気シールドや磁界発生を行うことも可能であ
る。
By forming the superconducting porous plate from a single-crystal oxide superconducting material, the critical current density of the entire superconducting porous plate can be increased. Therefore, good magnetic shield characteristics and a magnetic field generating function can be obtained. The individual holes provided in the superconducting perforated plate are
By closing with a single-crystal oxide superconducting material, it is possible to more effectively perform magnetic shielding and magnetic field generation.

【0016】ここでいう超電導多孔板を構成する単結晶
状の酸化物超電導材料として、RE(Yを含む希土類元
素およびそれらの組合せ),Ba,Cuの酸化物からな
る超電導体で、RE2 BaCuO5 が微細に分散した単
結晶状のREBa2 Cu3 7-y を請求項3に記載した
が、この超電導材料は、QMG法(Quench an
d Melt Growth)やそれを改良した製法で
得られる。次善の方法だが超電導多孔板を構成する酸化
物超電導材料として、結晶方位の配向した酸化物超電導
材料、例えば、銀シース内にBi系酸化物超電導材料を
充填して加工・熱処理して得られるものを用いてもよ
い。超電導多孔板は熱膨張率が同程度の非超電導構造体
によって支持されていてもよい。
As the single-crystal oxide superconducting material constituting the superconducting perforated plate, a superconductor composed of oxides of RE (rare earth element including Y and a combination thereof), Ba and Cu, and RE 2 BaCuO The single crystal REBa 2 Cu 3 O 7-y in which 5 is finely dispersed is described in claim 3, but this superconducting material is prepared by a QMG method (Quench and
d Melt Growth) or a modified method thereof. The next best method, but as the oxide superconducting material constituting the superconducting porous plate, obtained by processing and heat-treating a Bi-based oxide superconducting material filled in a silver sheath, for example, an oxide superconducting material with a crystal orientation. A thing may be used. The superconducting porous plate may be supported by a non-superconducting structure having a similar coefficient of thermal expansion.

【0017】[0017]

【実施例】以下、図面を用いて実施例を説明する。図1
は本発明に係わる超電導多孔板を示すものである。この
超電導多孔板は単結晶状酸化物超電導材料11と、この
単結晶状酸化物超電導材部分11に複数個規則的に設け
られた孔12とで構成されている。
Embodiments will be described below with reference to the drawings. FIG.
1 shows a superconducting porous plate according to the present invention. This superconducting porous plate is composed of a single-crystal oxide superconducting material 11 and a plurality of holes 12 regularly provided in the single-crystal oxide superconducting material portion 11.

【0018】単結晶状酸化物超電導材部分11は、この
実施例では、体積分率20%のY2BaCuO5 (これ
を211相と呼ぶ)が微細に分散した単結晶状のYBa
2 Cu3 7-y (これを123相と呼ぶ)である。原料
粉を混合、圧縮して緻密な板に成型した後、熱処理を施
し、部分溶融状態から除冷、結晶成長させたものを、酸
素雰囲気中600℃付近で熱処理したものである。孔1
2は成型後開けても、また、成型時の型枠によって形成
してもよい。
In this embodiment, the single-crystal oxide superconducting material portion 11 is made of a single-crystal YBa in which Y 2 BaCuO 5 having a volume fraction of 20% (referred to as 211 phase) is finely dispersed.
2 Cu 3 O 7-y (this is called 123 phase). After mixing and compressing the raw material powder to form a dense plate, it is subjected to a heat treatment, and then cooled and crystal-grown from a partially molten state, and then heat-treated at about 600 ° C. in an oxygen atmosphere. Hole 1
2 may be opened after molding, or may be formed by a mold at the time of molding.

【0019】このような構成とすると孔12が存在する
ため、上記いずれの熱処理時においても各部の温度を均
一化できる。多孔板にして上述の一連の熱処理を施した
場合と、孔のない板で同様の熱処理を行った場合の、ク
ラックの発生しなかった率を比べると、多孔板では90
%であり、孔のない板では40%であった。また、液体
窒素で冷却した場合にも、孔12の存在が各部の温度の
均一化に寄与し、熱応力を減少させ、多数回にわたる室
温と液体窒素温度間の熱サイクルによるクラックの発生
を防止することが可能である。
With such a configuration, since the holes 12 are present, the temperature of each part can be made uniform during any of the above heat treatments. Comparing the rate at which no cracks occurred between the case where the above-described series of heat treatments were performed on the perforated plate and the case where the same heat treatment was performed on the plate without holes, the perforated plate was 90%.
%, And 40% for a plate without holes. Also, even when cooled with liquid nitrogen, the presence of the holes 12 contributes to uniform temperature of each part, reduces thermal stress, and prevents the occurrence of cracks due to multiple thermal cycles between room temperature and liquid nitrogen temperature. It is possible to

【0020】5cm角、1.5cm厚さの板で1cm角の貫通
孔を4個備えた超電導多孔板の評価を行った結果は以下
の通りであった。この超電導多孔板を超電導ソレノイド
マグネットのボア中にマグネットの軸に板面が垂直にな
るように配置し、4Tの磁場下で液体窒素温度(77.
3K)に冷却し磁束を捕捉させた。点アにおいて約1T
の磁束密度が観測された。ゼロ磁場下でこの超電導多孔
板を液体窒素温度に冷却した後、超電導ソレノイドマグ
ネットで磁場を印加したところ、点アにおいては、外部
磁場が約0.9Tまで、外部磁場が高い効率でシールド
されていた。
The results of evaluation of a superconducting porous plate having four 5 cm-square, 1.5 cm-thick plates and four 1 cm-square through holes were as follows. This superconducting porous plate is disposed in the bore of the superconducting solenoid magnet so that the plate surface is perpendicular to the axis of the magnet, and the liquid nitrogen temperature (77.
3K) to capture magnetic flux. About 1T at point a
Was observed. After cooling this superconducting perforated plate to liquid nitrogen temperature under zero magnetic field, when a magnetic field was applied with a superconducting solenoid magnet, at point a, the external magnetic field was shielded with high efficiency up to about 0.9T. Was.

【0021】2cmφのSmCo磁石4個を超電導多孔板
の4個の孔のそれぞれの中心上において、この超電導多
孔板を液体窒素温度に冷却した後、SmCo磁石を取り
除いたところ、磁石のみを同様に配置したときにみられ
た最大磁束密度とほぼ同程度の磁束密度の部分を有する
分布となっていた。Y系酸化物超電導粉を焼結して同じ
形状の超電導多孔板の捕捉磁束を上記と同様に評価した
ところ、せいぜい0.01Tの磁束密度が観測されただ
けであった。
Four SmCo magnets of 2 cmφ were placed on the center of each of the four holes of the superconducting porous plate. After cooling the superconducting porous plate to the temperature of liquid nitrogen, the SmCo magnet was removed. The distribution had a portion with a magnetic flux density almost the same as the maximum magnetic flux density observed when it was arranged. When the Y-based oxide superconducting powder was sintered and the trapped magnetic flux of the superconducting porous plate having the same shape was evaluated in the same manner as above, a magnetic flux density of at most 0.01 T was observed.

【0022】図4のように、単結晶状酸化物超電導材料
で形成させたエレメント13複数個を、結晶方位の揃っ
ていない部分が生じないように、結晶方位を揃えて接合
した、図1と同じ形状を有する超電導多孔板を用いて点
ウで観測しても、上記と同様の結果が得られた。接合
は、123相生成温度がエレメント13よりも低いよう
な組成の酸化物超電導材の、例えば粉末を接合面に塗布
して熱処理を施すか、炉内で接合部分をレーザーで部分
的に加熱し部分溶融後徐冷することで得られる。
As shown in FIG. 4, a plurality of elements 13 formed of a single-crystal oxide superconducting material are joined with their crystal orientations aligned so as to prevent the occurrence of a portion where the crystal orientations are not aligned. Observation at point c using a superconducting porous plate having the same shape gave the same results as above. The joining is performed by applying a heat treatment, for example, by applying a powder of an oxide superconducting material having a composition in which the 123 phase generation temperature is lower than that of the element 13 to the joining surface, or partially heating the joining portion with a laser in a furnace. It is obtained by slow cooling after partial melting.

【0023】なお、本発明は上記実施例に限定されるも
のではない。即ち、上記実施例では超電導多孔板の備え
る複数の孔は正方形の貫通孔であるが、孔の形状はこれ
に限定されない。また、超電導多孔板を形成する超電導
材料も酸化物超電導材料であればよく、Y系酸化物超電
導材料に限定されるものではない。
The present invention is not limited to the above embodiment. That is, in the above embodiment, the plurality of holes provided in the superconducting perforated plate are square through holes, but the shape of the holes is not limited to this. The superconducting material forming the superconducting porous plate may be any oxide superconducting material, and is not limited to the Y-based oxide superconducting material.

【0024】[0024]

【発明の効果】上述したように、本発明によれば、弱結
合による特性低下と熱応力の問題を解消でき、もって酸
化物超電導材料の特徴を最大限に発揮させ得る超電導多
孔板を提供することが可能である。
As described above, according to the present invention, there is provided a superconducting perforated plate which can solve the problems of deterioration in characteristics and thermal stress due to weak bonding, and thus can maximize the characteristics of the oxide superconducting material. It is possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係わる超電導多孔板の斜視
図である。
FIG. 1 is a perspective view of a superconducting porous plate according to one embodiment of the present invention.

【図2】超電導体をタイル貼りにした磁気シールド板の
斜視図である。
FIG. 2 is a perspective view of a magnetic shield plate in which a superconductor is tiled.

【図3】従来の酸化物超電導板の斜視図である。FIG. 3 is a perspective view of a conventional oxide superconducting plate.

【図4】本発明の他の実施例を示す斜視図である。FIG. 4 is a perspective view showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 超電導体 2 接合部 3 酸化物超電導板 4 クラック 11 単結晶状酸化物超電導材部分 12,12′ 孔 13 単結晶状酸化物超電導材料で形成された
エレメント
DESCRIPTION OF SYMBOLS 1 Superconductor 2 Joining part 3 Oxide superconducting plate 4 Crack 11 Single crystal oxide superconducting material part 12, 12 'hole 13 Element formed of single crystal oxide superconducting material

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C30B 1/00 - 35/00 C01G 1/00 JICSTファイル(JOIS) WPI(DIALOG)────────────────────────────────────────────────── ─── Continued on the front page (58) Fields investigated (Int. Cl. 7 , DB name) C30B 1/00-35/00 C01G 1/00 JICST file (JOIS) WPI (DIALOG)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 単結晶状の酸化物超電導材料で板状に形
成されたものであって、複数の孔を備えたものであるこ
とを特徴とする超電導多孔板。
1. A superconducting porous plate formed of a single-crystal oxide superconducting material in a plate shape and having a plurality of holes.
【請求項2】 単結晶状の酸化物超電導材料で形成され
た複数のエレメントが、複数の孔を備えた超電導多孔板
となるように、それぞれの結晶方位を揃えて、結晶方位
の揃っていない部分が生じないように接合された板状の
ものであることを特徴とする超電導多孔板。
2. A plurality of elements formed of a single-crystal oxide superconducting material are aligned in their respective crystal orientations so as to form a superconducting porous plate having a plurality of holes, and the crystal orientations are not uniform. A superconducting perforated plate having a plate shape joined so that no portion is generated.
【請求項3】 酸化物超電導材料が、RE(Yを含む希
土類元素およびそれらの組合せ),Ba,Cuの酸化物
からなる超電導体であって、RE2 BaCuO5 が微細
に分散した単結晶状のREBa2 Cu3 7-y からなる
ことを特徴とする請求項1または2記載の超電導多孔
板。
3. An oxide superconducting material is a superconductor composed of an oxide of RE (a rare earth element including Y and a combination thereof), Ba, and Cu, and is a single crystal in which RE 2 BaCuO 5 is finely dispersed. 3. The superconducting porous plate according to claim 1, comprising REBa 2 Cu 3 O 7-y .
JP09456092A 1992-04-14 1992-04-14 Superconducting perforated plate Expired - Lifetime JP3221719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09456092A JP3221719B2 (en) 1992-04-14 1992-04-14 Superconducting perforated plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09456092A JP3221719B2 (en) 1992-04-14 1992-04-14 Superconducting perforated plate

Publications (2)

Publication Number Publication Date
JPH05294617A JPH05294617A (en) 1993-11-09
JP3221719B2 true JP3221719B2 (en) 2001-10-22

Family

ID=14113710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09456092A Expired - Lifetime JP3221719B2 (en) 1992-04-14 1992-04-14 Superconducting perforated plate

Country Status (1)

Country Link
JP (1) JP3221719B2 (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
澤野清志ほか,「IT超級酸化物超電導バルクマグネットの開発」,NSMF News,1991年,26号,8−13頁

Also Published As

Publication number Publication date
JPH05294617A (en) 1993-11-09

Similar Documents

Publication Publication Date Title
Hari Babu et al. Artificial flux pinning centers in large, single-grain (RE)-Ba-Cu-O superconductors
Jin et al. Critical currents and magnetization in c‐axis textured Bi‐Pb‐Sr‐Ca‐Cu‐O superconductors
Hu et al. Enhancement of transport critical current densities in (Bi, Pb) 2Sr2Ca2Cu3O10/Ag tapes at 77 K following fast neutron irradiation
Hu et al. Anisotropy of the critical current in silver sheathed (Bi, Pb) 2Sr2Ca2Cu3O10 tapes
US20030148891A1 (en) Method of joining oxide superconductors and oxide superconductor joiner
JP3389094B2 (en) Superconducting magnetic field generator
JPH08697B2 (en) Oxide superconductor and method for manufacturing the same
JP3962107B2 (en) Oxide superconducting composite, method for producing the same, oxide superconducting magnet, and superconducting coil device
JP3221719B2 (en) Superconducting perforated plate
Hulm et al. High-field, high-current superconductors
Babu et al. Flux pinning in large NdBa 2 Cu 3 O 7− δ grains fabricated by seeded-melt growth
US5041416A (en) Superconductive metal matrix composites and method for making same
JPH06219736A (en) Superconductor
Mao et al. Consequences of d-wave superconductivity for high frequency applications of cuprate superconductors
CA2024806C (en) Method of producing ceramics-type superconductor wire
JP3283691B2 (en) High damping oxide superconducting material and method of manufacturing the same
US5206214A (en) Method of preparing thin film of superconductor
Murakami et al. Magnetic Studies of YBaCuO Crystal Prepared by Quench and Melt Growth Process
JP2996816B2 (en) Superconducting magnetic shield
Whang et al. Flux pinning effect in Y-123 superconductor containing
Dadiel et al. Field-Trapping Performance of Drilled MgB 2 Bulk Superconductor Embedded With Bi-In-Sn Alloy and Al-Rod Using Pulse-Field Magnetization Processes
Wei et al. Scaling properties of the magnetization curves of the neutron-irradiated YBa2Cu3Oy crystal prepared by melt-textured growth method
Russell et al. Intergranular flux trapping effects in yttrium barium cuprate superconductors
Chen et al. Paramagnetic Meissner effect of high-temperature granular superconductors: Interpretation by anisotropic and isotropic models
Klemm Some Thoughts on the New High TC Superconductors

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010710

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080817

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090817

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090817

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 11