JPH0481970B2 - - Google Patents

Info

Publication number
JPH0481970B2
JPH0481970B2 JP59255669A JP25566984A JPH0481970B2 JP H0481970 B2 JPH0481970 B2 JP H0481970B2 JP 59255669 A JP59255669 A JP 59255669A JP 25566984 A JP25566984 A JP 25566984A JP H0481970 B2 JPH0481970 B2 JP H0481970B2
Authority
JP
Japan
Prior art keywords
reaction
gas
fluorine gas
fluorine
perhalomethane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59255669A
Other languages
Japanese (ja)
Other versions
JPS61134330A (en
Inventor
Koichi Katamura
Seiichi Tomota
Hidetoshi Nakayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP59255669A priority Critical patent/JPS61134330A/en
Publication of JPS61134330A publication Critical patent/JPS61134330A/en
Publication of JPH0481970B2 publication Critical patent/JPH0481970B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、パーハロメタンとフツ素ガスとをフ
ツ化アルミニウム触媒の存在下にて反応させ、パ
ーフルオロメタンを製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing perfluoromethane by reacting perhalomethane and fluorine gas in the presence of an aluminum fluoride catalyst.

従来の技術とその問題点 パーフルオロメタン(CF4)は、半導体用ドラ
イエツチングガス等に用いられ、その有用性が著
しく増大しているガスである。
Prior Art and Its Problems Perfluoromethane (CF 4 ) is a gas that is used as a dry etching gas for semiconductors and the like, and its usefulness is increasing significantly.

従来、パーフルオロメタンの製法として (1) パークロロ或は部分的にフツ素化されたクロ
ロフルオロメタンとフツ化水素を触媒の存在下
反応させる方法 (2) トリフルオロメタンとフツ素ガスの気相反応 (3) 炭素とフツ素ガスとを、フツ化ハロゲンの存
在下に反応させる方法、(特開昭58−162536) 等で知られている。
Conventionally, methods for producing perfluoromethane include (1) a method in which perchloro or partially fluorinated chlorofluoromethane is reacted with hydrogen fluoride in the presence of a catalyst, and (2) a gas phase reaction between trifluoromethane and fluorine gas. (3) A method in which carbon and fluorine gas are reacted in the presence of a halogen fluoride is known (Japanese Unexamined Patent Publication No. 162536/1983).

ところで、上記(1)の方法は塩素とフツ素の置換
において、パーフルオロ体に至る、最後の1つの
塩素の置換段階が極めて困難であり、反応にかな
りの高温を要する。
By the way, in the method (1) above, in the substitution of chlorine and fluorine, the last step of replacing chlorine leading to a perfluoro compound is extremely difficult, and the reaction requires a considerably high temperature.

また、(2)の方法では、目的物以外に等モルのフ
ツ化水素が生成し、高価なフツ素ガスの利用率が
半減し、(3)の方法では、固体の炭素とフツ素ガス
との爆発を防ぎ、又、極めて反応熱を制御するた
めに、高価なフツ化ハロゲンを熱除去剤として循
環使用するために複雑な装置が必要となり、経済
的に優れた方法とはいえない。
In addition, in method (2), equimolar amounts of hydrogen fluoride are produced in addition to the target product, and the utilization rate of expensive fluorine gas is halved; in method (3), solid carbon and fluorine gas are In order to prevent explosions and to control the heat of reaction, a complicated device is required to recycle the expensive fluorinated halogen as a heat removal agent, and this method cannot be said to be economically advantageous.

発明が解決しようとする問題点 本発明は上記の事情に鑑み、副生成物の生成が
ほとんどなく、高純度のCF4を高収率で製造する
方法を提供することを目的とする。
Problems to be Solved by the Invention In view of the above circumstances, an object of the present invention is to provide a method for producing highly pure CF 4 at a high yield with almost no by-products produced.

問題点を解決するための手段 この目的を達成するため、本発明は次のような
手段をとつた。すなわち、その要旨は、塩素、臭
素および沃素から選ばれた少くとも1種の原子を
分子中に有するパーハロメタンとフツ素ガスと
を、フツ化アルミニウム触媒の存在下にて100〜
500℃の温度で反応させることを特徴とするパー
フルオロメタンの製造方法にある。
Means for Solving the Problems In order to achieve this object, the present invention takes the following measures. That is, the gist is that perhalomethane, which has at least one atom selected from chlorine, bromine, and iodine in its molecule, and fluorine gas are heated in the presence of an aluminum fluoride catalyst to
A method for producing perfluoromethane, characterized by carrying out the reaction at a temperature of 500°C.

本発明に用いるパーハロメタンとは、炭素原子
1ケとその他の原子は全てハロゲン原子からなる
ことをいう。例えばCF3Cl、CF2Cl2、CF3Cl、
CCl4、CF3Br、CF2ClBr、CF2Br2、CF3I 等である。
Perhalomethane used in the present invention means that one carbon atom and all other atoms are halogen atoms. For example, CF 3 Cl, CF 2 Cl 2 , CF 3 Cl,
These include CCl 4 , CF 3 Br, CF 2 ClBr, CF 2 Br 2 and CF 3 I.

また本発明で使用するフツ化アルミニウムは、
対応する塩化物、水酸化物、酸化物、或はアルミ
ニウム金属等を、公知の方法でフツ素化すること
により得られる。触媒として使用するフツ化アル
ミニウムは、単独で、ペレツト状或は果粒状で用
いてもよいし、また、アルミナなどの、フツ素ガ
スに対して耐久性のあるポーラスな担体に担持し
て用いてもよい。また、フツ化カルシウム等と混
合成形して用いてもよい。適当な粒度、形状とし
て用いるならば取扱いも容易となり、反応中の圧
損失も少なく、好ましい。
Furthermore, the aluminum fluoride used in the present invention is
It can be obtained by fluorinating a corresponding chloride, hydroxide, oxide, aluminum metal, etc. by a known method. Aluminum fluoride used as a catalyst may be used alone in the form of pellets or granules, or it may be supported on a porous carrier such as alumina that is resistant to fluorine gas. Good too. It may also be used by mixing and molding with calcium fluoride or the like. If used with appropriate particle size and shape, handling becomes easy and pressure loss during the reaction is small, which is preferable.

これらのフツ化アルミニウムは、約300〜400℃
で乾燥窒素中で処理した後、通常用いられる耐食
材質の反応器に充填し反応に供される。反応は、
流通法或は循環法のいづれを用いてもよく、又、
反応器は、固定床或は流動床を用いることがで
き、特殊な構造を必要としない。
These aluminum fluorides have a temperature of about 300-400℃
After being treated in dry nitrogen, it is charged into a commonly used reactor made of corrosion-resistant material and subjected to a reaction. The reaction is
Either the distribution method or the circulation method may be used, and
A fixed bed or a fluidized bed can be used as the reactor, and no special structure is required.

反応圧力は、常圧、加圧、減圧のいずれも可能
であるが常圧系が操作は容易である。
The reaction pressure can be normal pressure, increased pressure, or reduced pressure, but normal pressure systems are easier to operate.

反応は、窒素、ヘリウムなどのF2と反応しな
い不活性ガスで希釈して行なうこともできるが、
本発明では、このような希釈ガスを用いることな
く、反応を定常的に、且つ目的物を高収率で得る
ことができる。
The reaction can also be carried out by diluting it with an inert gas that does not react with F2 , such as nitrogen or helium.
In the present invention, the reaction can be carried out steadily and the target product can be obtained in high yield without using such a diluent gas.

反応温度は、100〜500℃、特に300〜400℃が好
ましい。
The reaction temperature is preferably 100 to 500°C, particularly 300 to 400°C.

反応温度を100℃より低くすると、原料のパー
ハロメタン類とフツ素ガスの反応速度は減少し、
実用的、経済的に不利となる。
When the reaction temperature is lower than 100℃, the reaction rate between perhalomethanes and fluorine gas decreases.
This is disadvantageous from a practical and economic point of view.

500℃より高い温度では、反応器の材質は高価
となり、また、エネルギー的な観点からも、経済
的ではない。
At temperatures higher than 500° C., the reactor material becomes expensive and is also uneconomical from an energy point of view.

反応温度は、パーハロメタンとフツ素ガスとの
モル比、反応ガスを循環方式にする等によつて変
り、フツ素ガスとのモル比を小さくし、ガス循環
方式にすることにより反応温度を低くすることが
できる。
The reaction temperature varies depending on the molar ratio of perhalomethane and fluorine gas, the circulation method of the reaction gas, etc., and the reaction temperature can be lowered by decreasing the molar ratio of perhalomethane and fluorine gas and using a gas circulation method. be able to.

又、パーハロメタン中のハロゲン原子の種類に
よつても変り、一般的には塩素、臭素、沃素原子
の順に反応温度を低く選択してよい。
It also depends on the type of halogen atom in perhalomethane, and generally the reaction temperature may be selected to be lower in the order of chlorine, bromine, and iodine atoms.

このように、100〜500℃の範囲で、適宜反応温
度は選択できるのである。
In this way, the reaction temperature can be appropriately selected within the range of 100 to 500°C.

原料のパーハロメタンは、単独で、或は数種の
混合物を用いることができる。
Perhalomethane as a raw material can be used alone or in a mixture of several types.

反応は次式に従がい進行する。 The reaction proceeds according to the following equation.

CXaFb+(a/2)F2→CF4+(a/2)X2 但し、X=cl、Br、I a=1〜4、b=4
−a原料としフツ素ガスの供給モル比は、特に制
約はないが、理論的当量値の近傍の値が、反応効
率の面から好ましい。
CXaFb+(a/2)F 2 →CF 4 +(a/2)X 2 However, X=cl, Br, I a=1~4, b=4
The molar ratio of the fluorine gas to be supplied as the -a raw material is not particularly limited, but a value close to the theoretical equivalent value is preferred from the viewpoint of reaction efficiency.

反応により生成するフツ素以外のハロゲンガス
及び、条件により生成する微量の未反応フツ素ガ
スは、還元剤を含んだアルカリ水溶液により、洗
浄、除去できるが、吸着等、他の方法も用いても
よい。
Halogen gas other than fluorine produced by the reaction and trace amounts of unreacted fluorine gas produced depending on the conditions can be washed and removed with an alkaline aqueous solution containing a reducing agent, but other methods such as adsorption can also be used. good.

洗浄に水溶液を用いた場合は、乾燥剤を用い
て、ガスを乾燥する。
When an aqueous solution is used for cleaning, a desiccant is used to dry the gas.

実施例 次に、実施例を示し、本発明について具体的に
説明する。
Examples Next, examples will be shown to specifically explain the present invention.

実施例 1 水酸化アルミニウムとフツ化水素酸水溶液と混
合し、選られた沈澱をさらに、窒素ガスで希釈し
たフツ化水素ガス気流中、350℃で処理した。得
られた粉末は、元素分析によりAlF3であつた。
この100gを通常の方法によりペレツト上(5mm
φ×5mm)に成形し、これを、外部から溶融塩浴
で加温できるニツケル製反応器(内径25mmφ×
1000mm)に充填し、乾燥窒素中で380℃、2時間
処理した。原料として、純度99.5%のクロロトリ
フルオロメタン(CF3Cl)を、64.4g/hrの流量
にて、フツ素ガスを12.2g/hrの流量にて導入
し、反応温度320℃にて流通法により反応を行な
つた。
Example 1 Aluminum hydroxide and a hydrofluoric acid aqueous solution were mixed and the selected precipitate was further treated at 350°C in a stream of hydrogen fluoride gas diluted with nitrogen gas. The obtained powder was found to be AlF 3 by elemental analysis.
This 100g was poured onto pellets (5mm
This is molded into a nickel reactor (inner diameter 25 mm φ) that can be heated from the outside in a molten salt bath.
1000 mm) and treated in dry nitrogen at 380°C for 2 hours. As raw materials, chlorotrifluoromethane (CF 3 Cl) with a purity of 99.5% was introduced at a flow rate of 64.4 g/hr, and fluorine gas was introduced at a flow rate of 12.2 g/hr, and the reaction temperature was 320°C using the flow method. The reaction was carried out.

生成ガスは、ハロゲンガスを洗浄、除去後乾燥
して補集し、秤量、分析を行なつた。
The generated gas was collected by washing and removing the halogen gas, and was then weighed and analyzed.

除去後の生成ガスの組成はCF499.99%、CF3Cl
痕跡であつた。
The composition of the generated gas after removal is CF 4 99.99%, CF 3 Cl
It was a trace.

得られたCF4の収率は、99.99%であつた。 The yield of CF 4 obtained was 99.99%.

実施例 2 市販のフツ化アルミニウム(純度98%)を、通
常の方法によりペレツト状に成形し、実施例1と
同様の反応器に、120gを充填し、乾燥窒素中で
350℃で2時間処理した。
Example 2 Commercially available aluminum fluoride (purity 98%) was formed into pellets by a conventional method, and 120 g was charged into the same reactor as in Example 1, and the pellets were heated in dry nitrogen.
It was treated at 350°C for 2 hours.

これに、実施例1のクロロトリフルオロメタン
(CF3Cl)を、47.0g/hrの流量にて、フツ素ガス
を9.2g/hrの流量にて導入し、反応温度340℃に
て流通法により反応を行なつた。
To this, chlorotrifluoromethane (CF 3 Cl) from Example 1 was introduced at a flow rate of 47.0 g/hr, and fluorine gas was introduced at a flow rate of 9.2 g/hr, and the reaction temperature was 340°C by the flow method. The reaction was carried out.

実施例1と同様に、反応ガスを洗浄後生成ガス
を補集し、秤量及び分析を行なつた。
As in Example 1, the generated gas was collected after cleaning the reaction gas, and was weighed and analyzed.

生成ガスの組成は、CF499.99%、CF3Cl痕跡で
あつた。得られたCF4の収率は、99.7%であつた。
The composition of the produced gas was 99.99% CF 4 with traces of CF 3 Cl. The yield of CF 4 obtained was 99.7%.

実施例 3 実施例1と同様に触媒、同様に反応器を用い、
原料をクロロジフルオロメタン(CF2Cl2;純度
99.9%)として、流通法にて反応を行なつた。
Example 3 Using the same catalyst and reactor as in Example 1,
The raw material is chlorodifluoromethane (CF 2 Cl 2 ; purity
99.9%), and the reaction was carried out according to the distribution method.

CF2Cl2を46.7g/hrの流量にて、フツ素ガスを
15.9g/hrの流量にて導入し、反応温度330℃で
反応を行なつた。
CF 2 Cl 2 at a flow rate of 46.7 g/hr, fluorine gas
It was introduced at a flow rate of 15.9 g/hr and the reaction was carried out at a reaction temperature of 330°C.

ハロゲンガスを除去後の生成ガスの組成は、
CF499.99%、CF3Cl痕跡、CF2Cl2検出せずであつ
た。
The composition of the generated gas after removing halogen gas is:
CF 4 was 99.99%, no trace of CF 3 Cl was detected, and no CF 2 Cl 2 was detected.

得られたCF4の収率は、99.6%であつた。 The yield of CF 4 obtained was 99.6%.

実施例 4 実施例1と同様に触媒、同様に反応器を用い、
原料をブロモトリフルオロメタン(CF3Br;純度
99.9%)として、流通法にて反応を行なつた。
Example 4 Using the same catalyst and reactor as in Example 1,
The raw material is bromotrifluoromethane (CF 3 Br; purity
99.9%) and the reaction was carried out according to the distribution method.

CF3Brを100.5g/hrの流量にて、フツ素ガス
を13.3g/hrの流量にて導入し、反応温度250℃
にて反応を行なつた。
CF 3 Br was introduced at a flow rate of 100.5 g/hr, fluorine gas was introduced at a flow rate of 13.3 g/hr, and the reaction temperature was 250°C.
The reaction was carried out at

ハロゲンガスを除去後の生成ガスの組成は、
CF499.99%、CF3Br痕跡であつた。
The composition of the generated gas after removing halogen gas is:
It was 99.99% CF 4 with traces of CF 3 Br.

得られたCF4の収率は、99.6%であつた。 The yield of CF 4 obtained was 99.6%.

発明の効果 以上述べたように本発明に係るパーフルオロメ
タンの製造方法は、CF4以外の副生物は極めて少
なく高収率であつて、又CF4純度は99.99%に達
し、目的に応じ、蒸溜等により更に高純度化する
にも容易である。
Effects of the Invention As described above, the method for producing perfluoromethane according to the present invention has a high yield with very few by-products other than CF 4 , and has a CF 4 purity of 99.99%. It is easy to further purify it by distillation or the like.

Claims (1)

【特許請求の範囲】[Claims] 1 塩素、臭素および沃素から選ばれた少くとも
1種の原子を分子中に有するパーハロメタンとフ
ツ素ガスとを、フツ化アルミニウム触媒の存在下
にて、100〜500℃の温度で反応させることを特徴
とするパーフルオロメタンの製造方法。
1. Reacting perhalomethane having at least one atom selected from chlorine, bromine, and iodine in its molecule with fluorine gas at a temperature of 100 to 500°C in the presence of an aluminum fluoride catalyst. Characteristic method for producing perfluoromethane.
JP59255669A 1984-12-05 1984-12-05 Production of perfluoromethane Granted JPS61134330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59255669A JPS61134330A (en) 1984-12-05 1984-12-05 Production of perfluoromethane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59255669A JPS61134330A (en) 1984-12-05 1984-12-05 Production of perfluoromethane

Publications (2)

Publication Number Publication Date
JPS61134330A JPS61134330A (en) 1986-06-21
JPH0481970B2 true JPH0481970B2 (en) 1992-12-25

Family

ID=17281967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59255669A Granted JPS61134330A (en) 1984-12-05 1984-12-05 Production of perfluoromethane

Country Status (1)

Country Link
JP (1) JPS61134330A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113620841A (en) * 2021-08-03 2021-11-09 南京硕达生物科技有限公司 Method for preparing 2, 6-difluorobenzonitrile

Also Published As

Publication number Publication date
JPS61134330A (en) 1986-06-21

Similar Documents

Publication Publication Date Title
KR960001696B1 (en) Process for preparing 1,1,1-trifluoro-2,2-dichloroethane by
JP2999229B2 (en) Method for producing 1,1,1,2-tetrafluoroethane
JPH01290639A (en) Production of 1,1,1-trifluoro-2,2-dichloroethane
JPH07106998B2 (en) Method for producing 1,1,1-trifluoro-2,2-dichloroethane
JP5013692B2 (en) Fluoromethane production method and product
KR20210129107A (en) Method for producing butene halide compound
US3003003A (en) Manufacture of 1 chloro-2,2,2, trifluoro-ethane
JPH03115234A (en) Dehydrofluorination of fluorinated alkane and dehydrogenation method
EP0128510A2 (en) Process for producing difluoromethane
JPH0481970B2 (en)
US4003984A (en) Production of sulfuryl fluoride
US2946828A (en) Process for preparing aliphatic fluorine compounds
JP3233310B2 (en) Method for producing 1,1,1,2-tetrafluoroethane
JPS6344686B2 (en)
JP3300120B2 (en) Method for producing 1,1,1-trifluoro-2-chloroethane
JPH09255596A (en) Production of lower perfluoroalkane
US4382897A (en) Process for the preparation of trifluoracetic acid derivatives
JPS6261572B2 (en)
JPH03294237A (en) Production of 1,1,1-trifluorochloroethane and 1,1,1,2-tetrafluoroethane
JP3880301B2 (en) Method for producing hexafluoroaluminum ammonium
JP2000169141A (en) Production of ammonium hexafluoroaluminate
JP2930351B2 (en) Manufacturing method of NF (3)
JP3512205B2 (en) Method for producing chlorine
JP2739763B2 (en) Method for producing perfluoro compound
JPH0620560B2 (en) New catalyst for liquid phase fluorination

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term