JPH09255596A - Production of lower perfluoroalkane - Google Patents

Production of lower perfluoroalkane

Info

Publication number
JPH09255596A
JPH09255596A JP8065985A JP6598596A JPH09255596A JP H09255596 A JPH09255596 A JP H09255596A JP 8065985 A JP8065985 A JP 8065985A JP 6598596 A JP6598596 A JP 6598596A JP H09255596 A JPH09255596 A JP H09255596A
Authority
JP
Japan
Prior art keywords
catalyst
reaction
oxygen
molar ratio
trifluoromethane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8065985A
Other languages
Japanese (ja)
Inventor
Hiroshi Kobayashi
浩 小林
Takehiro Miura
剛宏 三浦
Itsuaki Matsuda
五明 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP8065985A priority Critical patent/JPH09255596A/en
Publication of JPH09255596A publication Critical patent/JPH09255596A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/10Preparation of halogenated hydrocarbons by replacement by halogens of hydrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/26Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton
    • C07C17/263Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by condensation reactions
    • C07C17/269Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by condensation reactions of only halogenated hydrocarbons

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To continuously and inexpensively obtain lower perfluoroalkane in high yield without deterioration of the catalyst activity by simultaneously feeding trifluoromethane and oxygen within a specific range of their molar ratio and bringing them contact with a catalyst to effect their reaction. SOLUTION: Trifluoromethane and oxygen are mixed at a molar ratio of 0.1-1.0 (oxygen/trifluoromethane) and the mixture is brought into contact with a catalyst in a temperature range from 500-900 deg.C to effect their reaction. At least one of salt or oxide of a metal selected from groups 8, 11, 12 and 13 according to the 18 group type periodic table (long-form periodic table) is treated with anhydrous hydrofluoric acid or a fluorine gas and the treated product is used as a catalyst. When zinc, nickel or indium is used as an above-cited metal, hexafluoroethane is selectively produced. When the molar ratio of trifluoromethane to oxygen is varied in a range of 0.2-0.5, the production ratio of hexafluoroethane can be changed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、低級パーフルオロ
アルカンの製造方法に関するものであり、更に詳しく
は、近年半導体用ドライエッチングガス及びチャンバー
内クリーニングガス等に用いられるようになり、その有
用性が著しく増大しているので安定供給が求められてい
るガスであるテトラフルオロメタン(CF4 )(以下、
FC−14と称す)およびヘキサフルオロエタン(CF
3 CF3 )(以下、FC−116と称す)などの低級パ
ーフルオロアルカンの製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a lower perfluoroalkane, and more specifically, it has been recently used as a dry etching gas for semiconductors, a cleaning gas in a chamber, etc. Since it has increased remarkably, tetrafluoromethane (CF 4 ) (hereinafter, referred to as a gas that requires stable supply)
FC-14) and hexafluoroethane (CF
3 CF 3 ) (hereinafter referred to as FC-116) and the like.

【0002】[0002]

【従来の技術】従来からのFC−14及びFC−116
の製造方法としては下記の(1)〜(5)の方法などが
知られている。 (1)テトラフルオロエチレンと二酸化炭素とを熱分解
反応させる方法(特開昭57−126430号公報)。 (2)トリフルオロメタン(CHF3 )(以下、HFC
−23と称す)を活性炭触媒、18族型元素周期表の1
族または2族の金属フッ化物触媒、フッ化アルミニウム
触媒の存在下で熱分解反応させる方法(特公昭39−2
1225号公報)。 (3)トリフルオロモノブロモメタン(CF3 Br)を
白金触媒の存在下で熱分解する方法(特開平5−286
874号公報)。 (4)炭化水素又はハイドロフルオロカーボン(以下、
HFCと称す)又はパーハロカーボン(例えば、CF3
Cl、C25 Cl等)とフッ素ガス(以下、F2 と称
す)とを反応させる方法(J.Amer.Chem.S
oc.,77,3007(1955)、英国特許第11
16920号、ヨーロッパ特許第32210号、米国特
許第5406008号、特開昭61−134330号公
報、特開昭61−148131号公報)。 (5)パークロロカーボンあるいは部分的にフッ素化さ
れたクロロフルオロカーボンとフッ化水素(HF)を触
媒の存在下反応させる方法。
2. Description of the Related Art Conventional FC-14 and FC-116
The following methods (1) to (5) are known as methods for producing (1) A method of thermally decomposing tetrafluoroethylene and carbon dioxide (JP-A-57-126430). (2) Trifluoromethane (CHF 3 ) (hereinafter HFC
-23) is an activated carbon catalyst, 1 of the periodic table of 18 group elements.
Method of thermal decomposition reaction in the presence of Group 3 or Group 2 metal fluoride catalyst and aluminum fluoride catalyst (Japanese Patent Publication No. 39-2
1225). (3) thermally decomposing in the presence of trifluoroacetic monobromo methane (CF 3 Br) a platinum catalyst (JP-A-5-286
874). (4) Hydrocarbon or hydrofluorocarbon (hereinafter,
HFC) or perhalocarbons (eg CF 3
Cl, C 2 F 5 Cl, etc.) and a fluorine gas (hereinafter referred to as F 2 ) are reacted (J. Amer. Chem. S.
oc. , 77, 3007 (1955), British Patent No. 11
16920, European Patent 32210, US Pat. No. 5,406,008, JP-A-61-134330, JP-A-61-148131). (5) A method of reacting perchlorocarbon or partially fluorinated chlorofluorocarbon with hydrogen fluoride (HF) in the presence of a catalyst.

【0003】しかし、上記の(1)〜(5)の従来の方
法は下記のような問題点があり、商業生産の観点から有
効な製造方法とはいえない。上記(1)の方法は、10
00℃を越える温度が必要であり、また、滞留時間も約
1分間と長いため反応器が大きくなる。上記(2)の方
法は、反応の進行に伴い発生する炭素が触媒上に蓄積す
るため触媒の活性を維持することが困難である。上記
(3)の方法は、高価な白金系の触媒を使用し、経済性
に問題が有る。上記(4)の方法は、高価なF2 を用い
るため経済的に不利となる。上記(5)の方法は、塩素
とフッ素の置換によりパーフルオロ体に至るが、最後の
1つの塩素の置換段階が極めて困難である上、反応にか
なりの高温を要し触媒の寿命が短い。
However, the conventional methods (1) to (5) described above have the following problems and cannot be said to be effective production methods from the viewpoint of commercial production. The method of (1) above is 10
A temperature of more than 00 ° C is required, and the residence time is as long as about 1 minute, so that the reactor becomes large. In the above method (2), it is difficult to maintain the activity of the catalyst because the carbon generated as the reaction proceeds accumulates on the catalyst. The method (3) uses an expensive platinum-based catalyst and has a problem in economic efficiency. The above method (4) is economically disadvantageous because expensive F 2 is used. In the above method (5), a perfluoro compound is obtained by substituting chlorine with fluorine, but the last step of substituting one chlorine is extremely difficult, the reaction requires a considerably high temperature, and the life of the catalyst is short.

【0004】[0004]

【発明が解決しようとする課題】HFC−23を触媒の
存在下、加熱して、低級パーフルオロアルカンを製造す
る従来の方法は、反応の進行に伴い発生する炭素が触媒
上に炭素が析出して、触媒の活性が低下し、連続して低
級パーフルオロアルカンを製造できない問題が有る。本
発明の目的は、触媒の活性低下を起こすことなく、連続
して、FC−14、FC−116などの低級パーフルオ
ロアルカンを高収率、低価格で製造方法を提供すること
である。
In the conventional method for producing a lower perfluoroalkane by heating HFC-23 in the presence of a catalyst, carbon generated as the reaction progresses and carbon is deposited on the catalyst. Therefore, there is a problem that the activity of the catalyst is lowered and the lower perfluoroalkane cannot be continuously produced. An object of the present invention is to provide a method for continuously producing a lower perfluoroalkane such as FC-14 and FC-116 in a high yield and at a low price without causing a decrease in the activity of the catalyst.

【0005】[0005]

【課題を解決するための手段】本発明者等は、上記の課
題を解決すべく鋭意研究を重ねた結果、HFC−23を
触媒存在下で500〜900℃に加熱してFC−14、
FC−116などの低級パーフルオロアルカンを製造す
る際に、酸素をモル比(O2 /HFC−23)0.1〜
1.0の範囲でHFC−23と同時に供給し、その触媒
に接触させて反応させることで、連続して高収率で低級
パーフルオロアルカンを製造できることを明らかにし、
本発明を完成するに至った。
Means for Solving the Problems As a result of intensive studies to solve the above problems, the present inventors have heated HFC-23 to 500 to 900 ° C. in the presence of a catalyst to produce FC-14,
When producing a lower perfluoroalkane such as FC-116, oxygen is added in a molar ratio (O 2 / HFC-23) of 0.1 to 0.1.
It was clarified that a lower perfluoroalkane can be continuously produced at a high yield by supplying HFC-23 at the same time in the range of 1.0 and contacting the catalyst to cause a reaction,
The present invention has been completed.

【0006】すなわち、本発明の請求項1の発明は、H
FC−23と酸素の混合比(モル比:酸素/HFC−2
3)が0.1〜1.0の混合ガスを500〜900℃の
温度範囲で触媒存在下、この触媒に接触させて反応させ
ることを特徴とする低級パーフルオロアルカンの製造方
法である。
That is, the invention of claim 1 of the present invention is H
Mixing ratio of FC-23 and oxygen (molar ratio: oxygen / HFC-2
3) is a process for producing a lower perfluoroalkane, which comprises reacting a mixed gas of 0.1 to 1.0 in the temperature range of 500 to 900 ° C. in the presence of the catalyst to bring it into contact with the catalyst.

【0007】本発明の請求項2の発明は、請求項1に記
載の製造方法において、触媒が、18族型元素周期表の
8族、10族、11族、12族および13族から選ばれ
る少なくとも1つの金属の塩又は酸化物を無水フッ酸又
はフッ素ガスで処理をしたものを使用することを特徴と
する。
According to a second aspect of the present invention, in the production method according to the first aspect, the catalyst is selected from Group 8, Group 10, Group 11, Group 12 and Group 13 of the Group 18 type periodic table. It is characterized in that at least one metal salt or oxide treated with hydrofluoric acid anhydride or fluorine gas is used.

【0008】本発明の請求項3の発明は、請求項1ある
いは請求項2に記載の製造方法において、低級パーフル
オロアルカンがFC−116であることを特徴とする。
The invention according to claim 3 of the present invention is characterized in that, in the manufacturing method according to claim 1 or 2, the lower perfluoroalkane is FC-116.

【0009】本発明の請求項4の発明は、請求項2ある
いは請求項3に記載の製造方法において、前記金属が亜
鉛および/またはニッケルであることを特徴とする。
The invention according to claim 4 of the present invention is characterized in that, in the manufacturing method according to claim 2 or 3, the metal is zinc and / or nickel.

【0010】本発明の請求項5の発明は、請求項1ない
し請求項4に記載の製造方法において、HFC−23と
酸素の混合比を0.2〜0.5の範囲で変えることによ
り、生成物中のFC−116の比率を変えることを特徴
とする請求項1ないし請求項4に記載の製造方法。
According to a fifth aspect of the present invention, in the manufacturing method according to the first to fourth aspects, the mixing ratio of HFC-23 and oxygen is changed within the range of 0.2 to 0.5. The method according to claim 1, wherein the ratio of FC-116 in the product is changed.

【0011】[0011]

【発明の実施の形態】本発明における反応生成ガスは、
以下に示した反応式[3]〜反応式[7]により発生し
ているものと推察される。従来のHFC−23の熱分解
反応では、以下に示した反応式[1]及び反応式[2]
に示されるように、反応の進行に伴い発生する炭素が触
媒上に蓄積し活性の維持継続が困難であったのに対し
て、本発明の第1の利点は酸素を反応ガスと共に供給す
ることで触媒活性の低下を防ぐ効果がある点である。
BEST MODE FOR CARRYING OUT THE INVENTION The reaction product gas in the present invention is
It is presumed that this occurs due to the reaction formulas [3] to [7] shown below. In the conventional thermal decomposition reaction of HFC-23, the following reaction formula [1] and reaction formula [2]
As shown in Fig. 3, carbon generated with the progress of the reaction accumulated on the catalyst and it was difficult to maintain the activity, whereas the first advantage of the present invention is that oxygen is supplied together with the reaction gas. That is, it has an effect of preventing a decrease in catalytic activity.

【0012】[0012]

【化1】 2CHF3 → CF4 +C +2HF [1] 3CHF3 → C26 +C +3HF [2] 2CHF3 +O2 → CF4 +CO2 +2HF [3] 3CHF3 +O2 → C26 +CO2 +3HF [4] 2CHF3 +CO2 → CF4 +2CO+2HF [5] 3CHF3 +CO2 → C26 +3CO+3HF [6] 2CHF3 +O2 →2COF2 +2HF [7]Embedded image 2CHF 3 → CF 4 + C + 2HF [1] 3CHF 3 → C 2 F 6 + C + 3HF [2] 2CHF 3 + O 2 → CF 4 + CO 2 + 2HF [3] 3CHF 3 + O 2 → C 2 F 6 + CO 2 + 3HF [4] 2CHF 3 + CO 2 → CF 4 + 2CO + 2HF [5] 3CHF 3 + CO 2 → C 2 F 6 + 3CO + 3HF [6] 2CHF 3 + O 2 → 2COF 2 + 2HF [7]

【0013】本発明の第2の利点は、酸素を供給しない
場合に比べ、酸素を供給しながら熱分解反応を行うと触
媒表面が一部酸化されてオキシフッ化物となると考えら
れ、それにより低級パーフルオロアルカンの空間時間収
率が増加するため、使用する触媒量が少なくてすみ、反
応器のコンパクト化が可能となり、経済的である点であ
る。更に本発明の第3の利点は、触媒に使用する金属種
を選択することで、FC−14とFC−116の生成す
る比率を変化させることができる点である。
The second advantage of the present invention is considered to be that when the thermal decomposition reaction is carried out while oxygen is supplied, the catalyst surface is partially oxidized to form an oxyfluoride, as compared with the case where oxygen is not supplied. Since the space-time yield of fluoroalkane increases, the amount of catalyst used can be small and the reactor can be made compact, which is economical. A third advantage of the present invention is that the ratio of FC-14 and FC-116 produced can be changed by selecting the metal species used for the catalyst.

【0014】上記のように、副生成物として、CO2
CO、COF2 が発生するが、COF2 は水と容易に反
応してCO2 とHFになるため反応ガスを洗浄すること
で容易に除去することができる。また、反応式[5]及
び反応式[6]に示されるように、CO2 も触媒上に炭
素が析出することの防止に寄与している。熱分解反応中
に酸素を供給するのと同様に、CO2 を供給しても良い
が、酸素ほどの効果は得られない。
As described above, as a by-product, CO 2 ,
CO and COF 2 are generated, but since COF 2 easily reacts with water to form CO 2 and HF, it can be easily removed by washing the reaction gas. Further, as shown in the reaction formulas [5] and [6], CO 2 also contributes to the prevention of carbon deposition on the catalyst. Although CO 2 may be supplied in the same manner as oxygen is supplied during the thermal decomposition reaction, it is not as effective as oxygen.

【0015】酸素/HFC−23のモル比は0.1〜
1.0の範囲が好ましく、より好ましくは0.2〜0.
5の範囲である。モル比が0.1未満であると酸素によ
る触媒上の炭素析出防止効果が小さく触媒上に炭素が蓄
積して行くため活性の維持ができなくなる。モル比が
1.0を超えると上記反応式[7]の副反応が顕著とな
り低級パーフルオロアルカンの生成量が減少する。更に
注目すべき点は、酸素/HFC−23のモル比を変える
ことで、FC−116の生成比率を変えられることであ
る。酸素/HFC−23のモル比を0.2〜0.5の範
囲内で低くすることで、FC−116の生成比率を高く
することができる。
The molar ratio of oxygen / HFC-23 is 0.1.
The range of 1.0 is preferable, and more preferably 0.2-0.
The range is 5. If the molar ratio is less than 0.1, the effect of preventing carbon deposition on the catalyst by oxygen is small, and the carbon cannot be maintained because the carbon is accumulated on the catalyst. When the molar ratio exceeds 1.0, the side reaction of the above reaction formula [7] becomes remarkable and the amount of lower perfluoroalkane produced decreases. More noteworthy is that the production ratio of FC-116 can be changed by changing the molar ratio of oxygen / HFC-23. By lowering the oxygen / HFC-23 molar ratio within the range of 0.2 to 0.5, the production ratio of FC-116 can be increased.

【0016】反応温度は500〜900℃の範囲が望ま
しく、より望ましくは650〜800℃の範囲であり、
触媒に使用する金属のフッ化物の融点を越えない温度を
選択する。500℃未満の温度ではHFC−23の反応
率が低くなり、900℃を超える温度では反応器の材質
の腐食量が著しく増加し、また、触媒の構造変化が発生
し活性低下を生ずるため好ましくない。
The reaction temperature is preferably in the range of 500 to 900 ° C, more preferably in the range of 650 to 800 ° C.
Select a temperature that does not exceed the melting point of the fluoride of the metal used in the catalyst. If the temperature is lower than 500 ° C, the reaction rate of HFC-23 is low, and if the temperature is higher than 900 ° C, the amount of corrosion of the material of the reactor is remarkably increased, and the structural change of the catalyst occurs, which is not preferable because the activity is lowered. .

【0017】本発明の反応形式は、流動床でも固定床で
も可能であり、触媒の製造方法及び形状については特に
制限されない。固定床での触媒は、金属フッ化物を成形
したものを使用しても良いし、金属酸化物の焼結体をフ
ッ化水素またはフッ素でフッ素化したものを使用しても
良いし、各触媒金属の塩化物もしくは硝酸塩もしくは硫
酸塩等の水溶液を例えばアルミナのような、そのフッ化
物が担体となり得るようなポーラスな金属酸化物に含浸
させ、乾燥、焼成したものをフッ化水素またはフッ素で
フッ素化したものを使用しても良い。金属フッ化物を触
媒として充填した場合、反応中にオキシフッ化物となる
と考えられる。
The reaction system of the present invention may be either a fluidized bed or a fixed bed, and the method and shape of the catalyst are not particularly limited. As the catalyst in the fixed bed, a molded product of metal fluoride may be used, or a sintered product of metal oxide may be fluorinated with hydrogen fluoride or fluorine. An aqueous solution of a metal chloride, nitrate, or sulfate is impregnated with a porous metal oxide such as alumina whose fluoride can serve as a carrier, dried, and calcined to give hydrogen fluoride or fluorine. You may use what was converted. When a metal fluoride is filled as a catalyst, it is considered to become an oxyfluoride during the reaction.

【0018】各金属の内で特に、亜鉛、ニッケル、イン
ジウムはFC−116を選択的に生成し、銅及び鉄はH
FC−23の酸化反応(上記反応式[7])を抑制する
作用に優れ、マンガン、鉛、アルミは副生物のオクタフ
ルオロプロパン、オクタフルオロシクロブタン、ペンタ
フルオロエタン等の生成を抑制する作用がある。本発明
の触媒に用いる金属は、単独で用いても良いし、1種類
以上を混合して用いても良い。
Among the metals, zinc, nickel and indium selectively produce FC-116, and copper and iron produce H.
It has an excellent effect of suppressing the oxidation reaction of FC-23 (the above reaction formula [7]), and manganese, lead and aluminum have an effect of suppressing the formation of by-products such as octafluoropropane, octafluorocyclobutane and pentafluoroethane. . The metals used in the catalyst of the present invention may be used alone or in combination of one or more.

【0019】本発明に用いる反応器の構造及び材質に
は、特に制限を受けない。本発明による反応温度が確保
できる反応器で、反応ガス雰囲気での腐食に耐える材質
であれば良い。また、反応圧力については厳密な制限は
なく、常圧で反応は進行し、減圧、加圧でもなんら支障
はない。
The structure and material of the reactor used in the present invention are not particularly limited. Any material can be used as long as it is a reactor capable of ensuring the reaction temperature according to the present invention and can withstand corrosion in a reaction gas atmosphere. Further, the reaction pressure is not strictly limited, the reaction proceeds at normal pressure, and there is no problem even if the pressure is reduced or increased.

【0020】[0020]

【実施例】以下本発明を実施例、比較例により、具体的
に説明するが、本発明はこれら実施例によって限定され
るものではない。 (実施例1)比表面積が150m2 /g、嵩密度が0.
37g/cc、吸水率が1.3のアルミナ(日揮ユニバ
ーサル社製NST−3)に塩化ニッケル水溶液をNi/
Alモル比が0.3になるように含浸させ、常圧下、1
20℃で24時間乾燥し、450℃で窒素気流中5時間
焼成し、フッ化水素を用いて400℃で触媒の85%を
フッ素化し、更に750℃でフッ素ガスにてフッ素化処
理を行い触媒を調製した。調製した触媒を反応器に10
0cc充填し、反応温度750℃、接触時間2.4秒、
モル比(O2 /HFC−23)0.35で反応を行っ
た。1時間後の反応結果を表1に示した。
EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited to these examples. Example 1 A specific surface area of 150 m 2 / g and a bulk density of 0.
Alumina (NST-3 manufactured by JGC Universal Co., Ltd.) having a water absorption rate of 37 g / cc and a water absorption rate of 1.3 was mixed with nickel chloride aqueous solution Ni /
It is impregnated so that the Al molar ratio becomes 0.3, and under normal pressure, 1
The catalyst is dried at 20 ° C for 24 hours, calcined at 450 ° C in a nitrogen stream for 5 hours, 85% of the catalyst is fluorinated with hydrogen fluoride at 400 ° C, and further fluorinated at 750 ° C with fluorine gas. Was prepared. The prepared catalyst was placed in the reactor.
0 cc filled, reaction temperature 750 ° C., contact time 2.4 seconds,
The reaction was carried out in a molar ratio (O 2 /HFC-23)0.35. The reaction results after 1 hour are shown in Table 1.

【0021】(実施例2)塩化亜鉛水溶液を用いZn/
Alモル比を0.3としたこと以外は実施例1と同様に
して触媒を調製し、実施例1と同じ反応条件で反応を行
った。1時間後の反応結果を表1に示した。
(Example 2) Using a zinc chloride aqueous solution, Zn /
A catalyst was prepared in the same manner as in Example 1 except that the Al molar ratio was 0.3, and the reaction was performed under the same reaction conditions as in Example 1. The reaction results after 1 hour are shown in Table 1.

【0022】(実施例3)塩化鉄水溶液を用いFe/A
lモル比を0.3としたこと以外は実施例1と同様にし
て触媒を調製し、実施例1と同じ反応条件で反応を行っ
た。1時間後の反応結果を表1に示した。
(Example 3) Fe / A using an aqueous solution of iron chloride
A catalyst was prepared in the same manner as in Example 1 except that the 1 mol ratio was 0.3, and the reaction was carried out under the same reaction conditions as in Example 1. The reaction results after 1 hour are shown in Table 1.

【0023】(実施例4)硝酸銅水溶液を用いCu/A
lモル比を0.1としたこと以外は実施例1と同様にし
て触媒を調製し、実施例1と同じ反応条件で反応を行っ
た。1時間後の反応結果を表1に示した。
(Example 4) Cu / A using an aqueous solution of copper nitrate
A catalyst was prepared in the same manner as in Example 1 except that the molar ratio was 0.1, and the reaction was carried out under the same reaction conditions as in Example 1. The reaction results after 1 hour are shown in Table 1.

【0024】(実施例5)実施例1に用いたアルミナを
フッ化水素を用いて400℃で触媒の85%をフッ素化
し、更に750℃でフッ素ガスにてフッ素化処理を行い
触媒を調製した。調製した触媒を反応器100cc充填
し、反応温度750℃、接触時間2.4秒、モル比0.
35で反応を行った。1時間後の反応結果を表1に示し
た。
(Example 5) The alumina used in Example 1 was fluorinated with hydrogen fluoride at 400 ° C to 85% of the catalyst, and further fluorinated at 750 ° C with fluorine gas to prepare a catalyst. . The prepared catalyst was charged in a reactor of 100 cc, the reaction temperature was 750 ° C., the contact time was 2.4 seconds, and the molar ratio was 0.1.
The reaction was carried out at 35. The reaction results after 1 hour are shown in Table 1.

【0025】実施例1〜5より、アルミのみの触媒の場
合(実施例5)より、ニッケル及び亜鉛を担持した触媒
を用いると(実施例1、実施例2)、FC−14より、
選択的にFC−116の生成量が増加し、鉄及び銅を担
持した触媒を用いると(実施例3、実施例4)、FC−
14及びFC−116共に生成量が増加した。
From Examples 1 to 5, from the case of a catalyst containing only aluminum (Example 5), using a catalyst supporting nickel and zinc (Examples 1 and 2), from FC-14,
When the amount of FC-116 produced increased selectively and a catalyst supporting iron and copper was used (Examples 3 and 4), FC-
Both 14 and FC-116 increased the production amount.

【0026】(実施例6)モル比(O2 /HFC−2
3)を0.5とした以外は実施例1と同じ条件で反応を
行った。1時間後の反応結果を表1に示した。
Example 6 Molar ratio (O 2 / HFC-2
The reaction was carried out under the same conditions as in Example 1 except that 3) was changed to 0.5. The reaction results after 1 hour are shown in Table 1.

【0027】(実施例7)反応温度を650℃とした以
外は実施例1と同じ条件で反応を行った。1時間後の反
応結果を表1に示した。
Example 7 The reaction was carried out under the same conditions as in Example 1 except that the reaction temperature was 650 ° C. The reaction results after 1 hour are shown in Table 1.

【0028】実施例1と実施例6との比較より、モル比
(O2 /HFC−23)を変えることにより、FC−1
4とFC−116の生成比率を変えることができること
がわかる。モル比(O2 /HFC−23)を0.5(実
施例6)から0.35(実施例1)と低くすることで、
FC−116の生成比率を高くすることができることが
わかる。また、実施例1と実施例7との比較より、反応
温度を750℃から650℃に下げることにより、パー
フルオロアルカンの生成速度が低下することがわかる。
From the comparison between Example 1 and Example 6, FC-1 was changed by changing the molar ratio (O 2 / HFC-23).
It can be seen that the production ratio of 4 and FC-116 can be changed. Molar ratio (O 2 / HFC-23) by lowering 0.5 (Example 6) 0.35 (Example 1),
It can be seen that the production ratio of FC-116 can be increased. In addition, comparison between Example 1 and Example 7 reveals that the production rate of perfluoroalkane is reduced by lowering the reaction temperature from 750 ° C to 650 ° C.

【0029】(実施例8)実施例2の触媒を反応器に1
00cc充填し、反応温度750℃、触媒時間2.4
秒、モル比0.35で連続して反応を行った。500時
間経過しても触媒活性の低下はなかった。
Example 8 The catalyst of Example 2 was added to the reactor 1 times.
00cc filled, reaction temperature 750 ° C, catalyst time 2.4
The reaction was continuously performed at a molar ratio of 0.35 sec. The catalyst activity did not decrease even after 500 hours.

【0030】(比較例1)実施例2の触媒を反応器に1
00cc充填し、反応温度750℃、触媒時間2.4秒
で酸素を供給せずに反応を行った。反応を開始してから
1時間後のFC−14の空間時間収率は1g/hr/c
at−lであり、FC−116の空間時間収率は94g
/hr/cat−lであった。反応を継続するとFC−
14とFC−116の空間時間収率は、徐々に低下し、
50時間後のFC−14及びFC−116の空間時間収
率は0g/hr/cat−lであった。
(Comparative Example 1) The catalyst of Example 2 was placed in a reactor.
The reaction was performed at a reaction temperature of 750 ° C. and a catalyst time of 2.4 seconds without supplying oxygen. The space-time yield of FC-14 one hour after the reaction was started was 1 g / hr / c.
and the space-time yield of FC-116 is 94 g.
It was / hr / cat-1. If the reaction is continued, FC-
14 and FC-116 space-time yields gradually decreased
The space-time yield of FC-14 and FC-116 after 50 hours was 0 g / hr / cat-1.

【0031】比較例1と実施例8との比較より、HFC
−23のみの反応では、炭素の析出により触媒活性が低
下し、HFC−23と共に酸素を供給すると触媒活性の
低下がなく、触媒の活性の維持ができることが明らかで
ある。
From the comparison between Comparative Example 1 and Example 8, the HFC
It is clear that in the reaction of only -23, the catalytic activity decreases due to the deposition of carbon, and when oxygen is supplied together with HFC-23, the catalytic activity does not decrease and the activity of the catalyst can be maintained.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【発明の効果】本発明の低級パーフルオロアルカンの製
造方法により、FC−14もしくはFC−116などの
低級パーフルオロアルカンの収率が増加し、触媒の活性
低下を起こすことなく、連続して、FC−14、FC−
116などの低級パーフルオロアルカンを高収率、低価
格で製造することができる。本発明の低級パーフルオロ
アルカンの製造方法により、低級パーフルオロアルカン
の空間時間収率が増加するため、使用する触媒量が少な
くてすみ、反応器のコンパクト化が可能となり、経済的
である。更に、触媒に使用する金属種を選択すること
で、FC−14とFC−116の生成する比率を変化さ
せることができる。更に、酸素/HFC−23のモル比
を変えることで、FC−116の生成比率を変えること
ができ、酸素/HFC−23のモル比を0.2〜0.5
の範囲内で低くすることで、FC−116の生成比率を
高くすることができる。
INDUSTRIAL APPLICABILITY By the method for producing lower perfluoroalkane according to the present invention, the yield of lower perfluoroalkane such as FC-14 or FC-116 is increased, and the activity of the catalyst is not lowered, and continuously, FC-14, FC-
Lower perfluoroalkanes such as 116 can be produced with high yield and low cost. By the method for producing lower perfluoroalkane according to the present invention, the space-time yield of lower perfluoroalkane is increased, so that the amount of catalyst used can be small and the reactor can be made compact, which is economical. Furthermore, by selecting the metal species used for the catalyst, the ratio of FC-14 and FC-116 produced can be changed. Furthermore, by changing the molar ratio of oxygen / HFC-23, the production ratio of FC-116 can be changed, and the molar ratio of oxygen / HFC-23 is 0.2 to 0.5.
The production ratio of FC-116 can be increased by lowering the ratio within the range.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // C07B 61/00 300 C07B 61/00 300 ──────────────────────────────────────────────────続 き Continuation of the front page (51) Int.Cl. 6 Identification number Agency reference number FI Technical display location // C07B 61/00 300 C07B 61/00 300

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 トリフルオロメタン(CHF3 )と酸素
の混合比(モル比:酸素/トリフルオロメタン)が0.
1〜1.0の混合ガスを500〜900℃の温度範囲で
触媒存在下、この触媒に接触させて反応させることを特
徴とする低級パーフルオロアルカンの製造方法。
1. A mixing ratio (molar ratio: oxygen / trifluoromethane) of trifluoromethane (CHF 3 ) and oxygen is 0.
A method for producing a lower perfluoroalkane, which comprises contacting a mixed gas of 1 to 1.0 in the temperature range of 500 to 900 ° C. in the presence of a catalyst to the catalyst to cause reaction.
【請求項2】 触媒が、18族型元素周期表の8族、1
0族、11族、12族および13族から選ばれる少なく
とも1つの金属の塩又は酸化物を無水フッ酸又はフッ素
ガスで処理をしたものを使用することを特徴とする請求
項1に記載の製造方法。
2. The catalyst is a group 18 element of the periodic table, group 1 of 8
The process according to claim 1, wherein a salt or oxide of at least one metal selected from Group 0, Group 11, Group 12 and Group 13 is treated with hydrofluoric acid anhydride or fluorine gas. Method.
【請求項3】 低級パーフルオロアルカンがヘキサフル
オロエタン(CF3CF3 )であることを特徴とする請
求項1あるいは請求項2に記載の製造方法。
3. The production method according to claim 1, wherein the lower perfluoroalkane is hexafluoroethane (CF 3 CF 3 ).
【請求項4】 前記金属が亜鉛および/またはニッケル
であることを特徴とする請求項2あるいは請求項3に記
載の製造方法。
4. The method according to claim 2 or 3, wherein the metal is zinc and / or nickel.
【請求項5】 トリフルオロメタン(CHF3 )と酸素
の混合比を0.2〜0.5の範囲で変えることにより、
生成物中のヘキサフルオロエタン(CF3 CF3 )の比
率を変えることを特徴とする請求項1ないし請求項4に
記載の製造方法。
5. By changing the mixing ratio of trifluoromethane (CHF 3 ) and oxygen in the range of 0.2 to 0.5,
The production method according to claim 1, wherein the ratio of hexafluoroethane (CF 3 CF 3 ) in the product is changed.
JP8065985A 1996-03-22 1996-03-22 Production of lower perfluoroalkane Pending JPH09255596A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8065985A JPH09255596A (en) 1996-03-22 1996-03-22 Production of lower perfluoroalkane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8065985A JPH09255596A (en) 1996-03-22 1996-03-22 Production of lower perfluoroalkane

Publications (1)

Publication Number Publication Date
JPH09255596A true JPH09255596A (en) 1997-09-30

Family

ID=13302824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8065985A Pending JPH09255596A (en) 1996-03-22 1996-03-22 Production of lower perfluoroalkane

Country Status (1)

Country Link
JP (1) JPH09255596A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100353491B1 (en) * 2000-02-22 2002-09-19 울산화학주식회사 Manufacturing method for perfluoroethane
WO2003014047A1 (en) * 2001-08-06 2003-02-20 Showa Denko K. K. Production and use of hexafluoroethane
JP2003055278A (en) * 2001-08-06 2003-02-26 Showa Denko Kk Method for producing hexafluoroethane and use thereof
JP2003055277A (en) * 2001-08-16 2003-02-26 Showa Denko Kk Method for producing hexafluoroethane and use thereof
WO2005105668A1 (en) * 2004-04-28 2005-11-10 Daikin Industries, Ltd. Method for producing carbonyl difluoride
JP2014534899A (en) * 2011-10-12 2014-12-25 バイエル・インテレクチユアル・プロパテイー・ゲー・エム・ベー・ハー Catalytic gas phase fluorination of 1,1,2-trichloroethane and / or 1,2-dichloroethene to produce 1-chloro-2,2-difluoroethane
CN113620841A (en) * 2021-08-03 2021-11-09 南京硕达生物科技有限公司 Method for preparing 2, 6-difluorobenzonitrile

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100353491B1 (en) * 2000-02-22 2002-09-19 울산화학주식회사 Manufacturing method for perfluoroethane
WO2003014047A1 (en) * 2001-08-06 2003-02-20 Showa Denko K. K. Production and use of hexafluoroethane
JP2003055278A (en) * 2001-08-06 2003-02-26 Showa Denko Kk Method for producing hexafluoroethane and use thereof
US7045668B2 (en) 2001-08-06 2006-05-16 Showa Denko K.K. Production and use of hexafluoroethane
US7208644B2 (en) 2001-08-06 2007-04-24 Showa Denko K.K. Production and use of hexafluoroethane
JP2003055277A (en) * 2001-08-16 2003-02-26 Showa Denko Kk Method for producing hexafluoroethane and use thereof
WO2005105668A1 (en) * 2004-04-28 2005-11-10 Daikin Industries, Ltd. Method for producing carbonyl difluoride
JPWO2005105668A1 (en) * 2004-04-28 2008-03-13 ダイキン工業株式会社 Method for producing carbonyl difluoride
US7592484B2 (en) 2004-04-28 2009-09-22 Daikin Industries, Ltd. Method for producing carbonyl difluoride
JP5315610B2 (en) * 2004-04-28 2013-10-16 ダイキン工業株式会社 Method for producing carbonyl difluoride
JP2014534899A (en) * 2011-10-12 2014-12-25 バイエル・インテレクチユアル・プロパテイー・ゲー・エム・ベー・ハー Catalytic gas phase fluorination of 1,1,2-trichloroethane and / or 1,2-dichloroethene to produce 1-chloro-2,2-difluoroethane
CN113620841A (en) * 2021-08-03 2021-11-09 南京硕达生物科技有限公司 Method for preparing 2, 6-difluorobenzonitrile

Similar Documents

Publication Publication Date Title
US10166538B2 (en) Activation and regeneration of fluorination catalysts, and fluorination process
JP3412165B2 (en) Fluorination catalyst and method for fluorination of halogenated hydrocarbon
JPH0780796B2 (en) Method for producing 1,1,1,2-tetrafluoroethane
JP2695042B2 (en) Production of 1,1,1,2-tetrafluoroethane
JP2008523092A (en) Direct one-step synthesis of CF3-I
JP2009179626A (en) Method for pretreating and regenerating catalyst used in process for making fluoroiodoalkane
JP2019196347A (en) Manufacturing method of fluoroolefin
KR100346127B1 (en) Process for the manyfacture of difluoromethane
JPH09255596A (en) Production of lower perfluoroalkane
JP4539793B2 (en) Octafluoropropane production method and use thereof
TW200536812A (en) Process for production of 1,1,1,2-tetrafluoroethane and/or pentafluoroethane and applications of the same
EP0872468B1 (en) Method for producing 3,3-dichloro-1,1,1-trifluoroacetone
JPH02188538A (en) Preparation of 1,1-dichloro-1-fluoroethane
RU2039033C1 (en) Process for fluorination of lower aliphatic fluorohydrocarbone
JP2690878B2 (en) 1,1,1-Trifluoro-2,2-dichloroethane fluorination catalyst and process for producing the same
KR100360046B1 (en) Manufacturing Method of Pentafluoroethane
JP4738035B2 (en) Process for producing 1,1,1,2-tetrafluoroethane and / or pentafluoroethane and use thereof
JP3233310B2 (en) Method for producing 1,1,1,2-tetrafluoroethane
JP3300120B2 (en) Method for producing 1,1,1-trifluoro-2-chloroethane
US7247289B2 (en) Porous aluminum fluoride
JPS6261572B2 (en)
JPS607975B2 (en) Production method of vinylidene fluoride
JPH02131438A (en) Production of hexafluoroethane
JP2000143552A (en) Fluorinating agent and production of organofluorine compound
CA2031887A1 (en) Method for the production of bromodifluoromethane