JPS607975B2 - Production method of vinylidene fluoride - Google Patents

Production method of vinylidene fluoride

Info

Publication number
JPS607975B2
JPS607975B2 JP3767878A JP3767878A JPS607975B2 JP S607975 B2 JPS607975 B2 JP S607975B2 JP 3767878 A JP3767878 A JP 3767878A JP 3767878 A JP3767878 A JP 3767878A JP S607975 B2 JPS607975 B2 JP S607975B2
Authority
JP
Japan
Prior art keywords
vinylidene fluoride
temperature
compound
fluoride
production method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3767878A
Other languages
Japanese (ja)
Other versions
JPS54130507A (en
Inventor
洋之助 逢坂
平橘 園山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Kogyo Co Ltd filed Critical Daikin Kogyo Co Ltd
Priority to JP3767878A priority Critical patent/JPS607975B2/en
Publication of JPS54130507A publication Critical patent/JPS54130507A/en
Publication of JPS607975B2 publication Critical patent/JPS607975B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はフッ化ピニリデンの製造法、特に1・1・1ー
トリフルオ。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing pinylidene fluoride, particularly 1,1,1-trifluoride.

ェタンを脱フツ化水素してフッ化ビニリデンを製造する
際の改良法に関する。フッ化ビーニリデンは、耐熱材料
、耐蝕材料、絶縁材料などとして有用な含フッ素ポリマ
ーやフッ素ゴムの製造原料として用いられている。
This invention relates to an improved method for producing vinylidene fluoride by dehydrofluorinating ethane. Vinylidene fluoride is used as a raw material for producing fluoropolymers and fluororubbers that are useful as heat-resistant materials, corrosion-resistant materials, insulating materials, and the like.

か)るフツ化ビニリデンの製造法として従来知られてい
るものの一つに、1・1・1−トリフルオロエタンを出
発物質とし、これを熱分解するか、または酸化ニッケル
、酸化亜鉛または酸化アルミニウムで処理して脱フツ化
水素を行う方法がある。しかしながら、熱分解の場合に
は1000q○付近の高温を要し、かつそのための高価
な設備を必要とする欠点を有する。金属酸化物で処理す
る場合には、前記のような高温を要しないが、1・1・
1ートリフルオロェタンに対し少くとも等モル量の金属
フッ化物として固定されるので金属酸化物の再利用やフ
ッ化水素の活用が極めて困難であり、このため製造費の
上昇を免れない。本発明者らは「1・1・1−トリフル
オロェタンからフッ化ビニリデンを製造する方法につき
種々研究を重ねるうち「1・1・1ートリフルオロェタ
ンを無機クロム(m)化合物を接触させると、比較的低
温で脱フッ化水素が進行してフッ化ビニリデンが生成し
、しかも前記無機クロム(血)化合物はフッ化水素によ
りほとんど変化を受けない事実を見出した。
One of the conventionally known methods for producing vinylidene fluoride (1) is to use 1,1,1-trifluoroethane as a starting material and thermally decompose it, or to use nickel oxide, zinc oxide or aluminum oxide. There is a method of dehydrofluorination by treatment with However, thermal decomposition requires a high temperature of around 1000 q○ and has the disadvantage of requiring expensive equipment. When processing with metal oxides, high temperatures as mentioned above are not required, but 1.1.
Since it is fixed as a metal fluoride in at least an equimolar amount to 1-trifluoroethane, it is extremely difficult to recycle the metal oxide or utilize hydrogen fluoride, which inevitably increases production costs. The present inventors have conducted various research on methods for producing vinylidene fluoride from 1,1,1-trifluoroethane. They found that dehydrofluorination proceeds at relatively low temperatures to produce vinylidene fluoride, and that the inorganic chromium (blood) compound is hardly changed by hydrogen fluoride.

本発明は、この知見に基いて完成されたものである。本
発明の要旨は、1・1・1ートリフルオロヱタンを無機
クロム(m)化合物と接触させて脱フッ化水素すること
によりフッ化ビニリデンを得る方法にある。
The present invention was completed based on this knowledge. The gist of the present invention is a method for obtaining vinylidene fluoride by contacting 1,1,1-trifluoroethane with an inorganic chromium (m) compound and dehydrofluorinating it.

本発明によれば、従来法に比し比較的低温でフッ化ビニ
リデンを製造できる利点がある。
According to the present invention, there is an advantage that vinylidene fluoride can be produced at a relatively low temperature compared to conventional methods.

また、無機クロム(m)化合物は反応中にほとんど変化
を受けないので、これを繰り返して使用することができ
、金属化合物の消費が少くて済むと云った利点もある。
In addition, since the inorganic chromium (m) compound undergoes almost no change during the reaction, it can be used repeatedly, which has the advantage that less metal compound is consumed.

なおまた、副生するフッ化水素は無機クロム(m)化合
物とほとんど反応しないので、蒸留などによりフッ化ビ
ニリデンとともに容易に単離して有効に利用できる利点
もある。無機クロム(m)化合物としては、クロム(m
)の酸化物、水酸化物、ハロゲン化物(例えば塩化物、
臭化物、ョゥ化物、フッ化物)、無機酸塩(例えば硫酸
塩、硝酸塩、炭酸塩、リン酸塩)およびこれらの水和物
が例示される。
Furthermore, hydrogen fluoride produced as a by-product hardly reacts with the inorganic chromium (m) compound, so it has the advantage that it can be easily isolated together with vinylidene fluoride by distillation or the like and used effectively. As an inorganic chromium (m) compound, chromium (m
) oxides, hydroxides, halides (e.g. chlorides,
Examples include bromides, chlorides, fluorides), inorganic acid salts (eg sulfates, nitrates, carbonates, phosphates), and hydrates thereof.

その他、酸フッ化クロム(特公昭43−10601号明
細書および米国特許第2745886号明細書参照)な
どが使用されてもよい。なお、これら無機クロム(m)
化合物は、触媒として使用される反応条件付近の温度お
よび圧力下、フツ化水素雰囲気中に相当時間(通常1〜
5時間)置き、触媒活性の安定化をはかるのが好ましい
。本発明方法実施の際の温度は約350〜500qo、
特に約400〜450qoの範囲が好ましい。
In addition, chromium oxyfluoride (see Japanese Patent Publication No. 43-10601 and US Pat. No. 2,745,886) may be used. In addition, these inorganic chromium (m)
The compound is placed in a hydrogen fluoride atmosphere at a temperature and pressure near the reaction conditions used as a catalyst for a considerable period of time (usually 1 to
It is preferable to leave the mixture for 5 hours) to stabilize the catalyst activity. The temperature during carrying out the method of the present invention is about 350 to 500 qo;
Particularly preferred is a range of about 400 to 450 qo.

反応温度が35000よりも低いと転化率が低くなりす
ぎ、500午○よりも高いと触媒活性の劣化が起り、か
つ炭酸ガスの生成など副反応が激しくなり、工業的でな
い。圧力について特に限定はないが、反応の性質上低圧
の方が転化率が向上して望ましく、実用上1/100〜
1気圧(原料ガスの絶対圧)が使用される。接触時間は
無機クロム(m)化合物の種類、反応温度および反応圧
力に依存する関数で、これらの因子を考慮して適宜設定
することができる。通常、1〜6の砂、好ましくは5〜
3現砂であり、接触時間が1秒より短かし、と転化率が
低下し、一方、6の妙より良いと経済性がよくない。な
お、本発明方法は窒素、ヘリウム、アルゴンなどの不活
性気体を稀釈剤として使用することもできる。以下、本
発明を参考例および実施例に基づいて説明する。参考例
1 市販のCrF3・祖20を6肌J×6柳のべレットに調
製し、その50叫を1ンチめのハステロィCパイプに充
填する。
If the reaction temperature is lower than 35,000 ℃, the conversion rate will be too low, and if it is higher than 500 ℃, the catalyst activity will deteriorate and side reactions such as the production of carbon dioxide gas will become intense, which is not suitable for industrial use. There is no particular limitation on the pressure, but due to the nature of the reaction, lower pressure is preferable because it improves the conversion rate, and in practice it is 1/100 to 1/100.
One atmosphere (absolute pressure of the source gas) is used. The contact time is a function that depends on the type of inorganic chromium (m) compound, reaction temperature, and reaction pressure, and can be appropriately set in consideration of these factors. Usually 1-6 sand, preferably 5-6
If the contact time is shorter than 1 second, the conversion rate will decrease, while if it is better than 6, it is not economical. Note that in the method of the present invention, an inert gas such as nitrogen, helium, or argon can also be used as a diluent. The present invention will be described below based on reference examples and examples. Reference Example 1 Commercially available CrF3 So 20 is prepared into 6 skin J x 6 willow pellets, and 50 yen is filled into a 1-inch Hastelloy C pipe.

これに空気を0.5〜1〆/minの流量で導入しなが
ら、30分間で500qoまで昇温し、更に空気の導入
を続けながらその温度で2時間保持した。次いで、これ
を45000まで降下させ、この温度においてフッ化水
素を200の【/minの速度で2時間通じた。かくし
て得られた触媒をAとする。参考例 2 水酸化クロムを6柵で×6凧のべレットに調製し、その
50の‘を1インチJのハステロイCパイプに充填する
While introducing air at a flow rate of 0.5 to 1/min, the temperature was raised to 500 qo in 30 minutes, and the temperature was maintained for 2 hours while continuing to introduce air. It was then lowered to 45,000 and at this temperature hydrogen fluoride was passed at a rate of 200/min for 2 hours. The catalyst thus obtained is designated as A. Reference Example 2 Chromium hydroxide is prepared into a 6 rail x 6 kite pellet, and 50' of it is filled into a 1 inch J Hastelloy C pipe.

これにフッ化水素を200の‘/minで通じながら、
最初40分間で400q0に昇温し、次いで450qo
に昇温し、2時間その温度に保持した。かくして得られ
た触媒をBとする。参考例 3 4側中の粒状活性アルミナ50机を容器中で真空に引い
た後、クロム酸アンモニウム8夕および塩化クロム(m
)10夕を水42夕に溶解して得た水溶液を加え、30
分間放置する。
While passing hydrogen fluoride through this at a rate of 200 min/min,
The temperature was raised to 400qo in the first 40 minutes, then 450qo.
and held at that temperature for 2 hours. The catalyst thus obtained is designated as B. Reference Example 3 After evacuating 50 pieces of granular activated alumina in a container, ammonium chromate and chromium chloride were added.
) Add an aqueous solution obtained by dissolving 10 parts in 42 parts of water, and add 30 parts.
Leave for a minute.

粒状体を集め、90ooで1虫時間乾燥した後、1イン
チ◇のハステロィCパイプに充填した。窒素気流中で最
初22000まで加熱し、その温度で1.虫時間保持し
、次いで270℃に昇温してその温度で1時間保持し、
最後に180℃まで放冷した。その後、この温度で窒素
気流中にフッ化水素を200の‘/minの速度で加え
て4び分間処理し、次いで35000に昇溢して2時間
引き続きフッ化水素で処理し、最後に450午 Cに昇
温して2時間フッ化水素で処理した。かくして得られた
触媒をCとする。実施例 1 触媒A50叫を1インチJのハステロィCパイプ(長さ
lm)に充填し、電気炉で昇温し、1・1・1−トリフ
ルオロェタン流量50の‘/min(0℃、1気圧)を
窒素ガス流量350M/min(000、1気圧)で稀
釈し、全圧力1気圧の下に上記パイプご流通させた。
The granules were collected, dried at 90°C for 1 hour, and then filled into a 1-inch Hastelloy C pipe. Initially heated to 22,000 ℃ in a nitrogen stream, and at that temperature 1. Hold for an hour, then raise the temperature to 270°C and hold at that temperature for 1 hour,
Finally, it was allowed to cool to 180°C. Then, at this temperature, hydrogen fluoride was added at a rate of 200 min/min in a nitrogen stream for 4 minutes, then the temperature was raised to 35,000 ℃, and continued treatment with hydrogen fluoride for 2 hours, and finally at 450 min. The temperature was raised to 40°C and treated with hydrogen fluoride for 2 hours. The catalyst thus obtained is designated as C. Example 1 A 1-inch J Hastelloy C pipe (length lm) was filled with catalyst A50, heated in an electric furnace, and heated at a flow rate of 1.1.1-trifluoroethane of 50/min (0°C, 1 m). Atmospheric pressure) was diluted with a nitrogen gas flow rate of 350 M/min (000, 1 atm), and the mixture was passed through the pipe under a total pressure of 1 atm.

反応温度375ooおよび4170で次の結果を得た。
反応温度(℃) 転化率(%) 375 25.8 417 52.7 反応管から排出されるガスは、わずかの量のC02を除
いて、CH3CF3(1・1・1−トリフルオロェタン
)、CH2=CF2(フッ化ビニリデン)、N2および
HFからなるものであった。
The following results were obtained at reaction temperatures of 375 oo and 4170 oo.
Reaction temperature (°C) Conversion rate (%) 375 25.8 417 52.7 The gas discharged from the reaction tube contains CH3CF3 (1.1.1-trifluoroethane), CH2, except for a small amount of C02. = CF2 (vinylidene fluoride), N2 and HF.

実施例 2 触媒BおよびC50の‘をそれぞれ実施例1と同一のハ
ステロィCパイプに充填し、電気炉で昇塩して、CQC
F3のN2稀釈率を下記の通り変更して流通させ、反応
温度3790、全圧力1気圧で次の結果を得た。
Example 2 Catalysts B and C50 were each charged into the same Hastelloy C pipe as in Example 1, salted in an electric furnace, and CQC
The N2 dilution rate of F3 was changed as shown below and the mixture was allowed to flow, and the following results were obtained at a reaction temperature of 3790° C. and a total pressure of 1 atm.

排出されたガスは、いずれもわずかの量のC02を除い
て、CH3CF3、N2(ただし、No.3の場合には
N2は存在しない。
The discharged gases were all CH3CF3 and N2, except for a small amount of CO2 (however, in the case of No. 3, there was no N2).

Claims (1)

【特許請求の範囲】 1 1・1・1−トリフルオロエタンを無機クロム(I
II)化合物と接触させてフツ化ビニリデンを生成せしめ
ることを特徴とするフツ化ビニリデンの製造法。 2 フツ化水素処理を施した無機クロム(III)化合物
を使用する前記第1項記載の方法。 3 接触を約350〜500℃で行う前記第1項または
第2項に記載の方法。
[Claims] 1 1,1,1-trifluoroethane is dissolved in inorganic chromium (I
II) A method for producing vinylidene fluoride, which comprises bringing it into contact with a compound to produce vinylidene fluoride. 2. The method according to item 1 above, which uses an inorganic chromium (III) compound treated with hydrogen fluoride. 3. The method according to item 1 or 2 above, wherein the contacting is carried out at about 350-500°C.
JP3767878A 1978-03-30 1978-03-30 Production method of vinylidene fluoride Expired JPS607975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3767878A JPS607975B2 (en) 1978-03-30 1978-03-30 Production method of vinylidene fluoride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3767878A JPS607975B2 (en) 1978-03-30 1978-03-30 Production method of vinylidene fluoride

Publications (2)

Publication Number Publication Date
JPS54130507A JPS54130507A (en) 1979-10-09
JPS607975B2 true JPS607975B2 (en) 1985-02-28

Family

ID=12504266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3767878A Expired JPS607975B2 (en) 1978-03-30 1978-03-30 Production method of vinylidene fluoride

Country Status (1)

Country Link
JP (1) JPS607975B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5177271A (en) * 1992-04-30 1993-01-05 Elf Atochem North America, Inc. Production of vinylidene fluoride
AU664753B2 (en) * 1992-06-05 1995-11-30 Daikin Industries, Ltd. Processes for producing 1,1,1,2,3-pentafluoropropene and producing -pentafluoropropane
US6124510A (en) * 1998-07-21 2000-09-26 Elf Atochem North America, Inc. 1234ze preparation
JP2023131518A (en) * 2022-03-09 2023-09-22 株式会社クレハ Halogenated alkene production method
JP2023131520A (en) * 2022-03-09 2023-09-22 株式会社クレハ Halogenated alkene production method

Also Published As

Publication number Publication date
JPS54130507A (en) 1979-10-09

Similar Documents

Publication Publication Date Title
CN102405203B (en) Process for preparation of 2,3,3,3-tetrafluoropropene
US10166538B2 (en) Activation and regeneration of fluorination catalysts, and fluorination process
RU2013138746A (en) CATALYTIC GAS-PHASE FLUORATION
JPH07206728A (en) Vapor-phase fluorination by crystalline catalyst
JP2019196347A (en) Manufacturing method of fluoroolefin
JPH01268651A (en) Gaseous phase fluorination
EP0234002B1 (en) Process for converting a 1,1,1-trifluoroalkane into a 1,1-difluoroalkene
JPS607975B2 (en) Production method of vinylidene fluoride
US7592484B2 (en) Method for producing carbonyl difluoride
EP0333926B1 (en) Process for preparing vinylidene fluoride by the direct fluorination of vinylidene chloride
CN110694654B (en) Nano-scale barium fluochloride catalyst and preparation method and application thereof
JP2023505582A (en) Method for Improving Catalyst Stability in HFC-23 Recycling
WO1993014051A1 (en) Process for producing halogenated butene and butane
JPS5842849B2 (en) Method for producing lower perfluoroalkane
CN111217669B (en) Method for preparing vinylidene fluoride through resource conversion of trifluoromethane
JPH09255596A (en) Production of lower perfluoroalkane
US3086064A (en) Fluorination process and catalyst
JPS58159440A (en) Preparation of trifluoroacetic acid and trifluoroacetyl chloride
JPH0776534A (en) Preparation of pentafluoroethane
WO2020145088A1 (en) Method for producing cyclobutane
JPH03294237A (en) Production of 1,1,1-trifluorochloroethane and 1,1,1,2-tetrafluoroethane
JP2009518369A (en) Method for producing pentafluoroethane
JP3668585B2 (en) Method for producing nitrous oxide
JPH06184016A (en) Production of 1,1,1-trifluoro-2-chloroethane
JP2003146620A (en) Method for manufacturing carbonyl difluoride