JP2023131518A - Halogenated alkene production method - Google Patents

Halogenated alkene production method Download PDF

Info

Publication number
JP2023131518A
JP2023131518A JP2022036334A JP2022036334A JP2023131518A JP 2023131518 A JP2023131518 A JP 2023131518A JP 2022036334 A JP2022036334 A JP 2022036334A JP 2022036334 A JP2022036334 A JP 2022036334A JP 2023131518 A JP2023131518 A JP 2023131518A
Authority
JP
Japan
Prior art keywords
halogenated
alkane
halogenated alkane
producing
fluorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022036334A
Other languages
Japanese (ja)
Inventor
真理 佐藤
Mari Sato
賢輔 鈴木
Kensuke Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP2022036334A priority Critical patent/JP2023131518A/en
Priority to PCT/JP2023/005235 priority patent/WO2023171274A1/en
Publication of JP2023131518A publication Critical patent/JP2023131518A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/25Preparation of halogenated hydrocarbons by splitting-off hydrogen halides from halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C21/00Acyclic unsaturated compounds containing halogen atoms
    • C07C21/02Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
    • C07C21/18Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds containing fluorine

Abstract

To provide a method of obtaining halogenated alkenes with a high degree of selectivity from immediately after reaction initiation using an inexpensive catalyst.SOLUTION: A halogenated alkene production method according to the present invention includes a step in which a halogenated alkane that has four or fewer carbon atoms and contains a fluorine atom is brought into contact with coal ash to induce the dehydrohalogenation of the halogenated alkane.SELECTED DRAWING: None

Description

本発明は、ハロゲン化アルケンの製造方法に関する。 The present invention relates to a method for producing halogenated alkenes.

ハロゲン化アルケンの製造方法として、複数のハロゲン原子で置換されたハロゲン化アルカンから、ハロゲン化水素を脱離させる製造方法が知られている。例えば、特許文献1には、フルオロアルカンを金属触媒と接触させて、脱フッ化水素反応によってフルオロオレフィンを製造する方法が記載されている。また、特許文献2および特許文献3には、ハロゲン化ブタン化合物を活性炭と接触させて、脱ハロゲン化水素によってハロゲン化ブテン化合物を製造する方法が記載されている。 As a method for producing halogenated alkenes, there is known a production method in which hydrogen halide is eliminated from a halogenated alkane substituted with a plurality of halogen atoms. For example, Patent Document 1 describes a method for producing fluoroolefins through a dehydrofluorination reaction by bringing a fluoroalkane into contact with a metal catalyst. Further, Patent Document 2 and Patent Document 3 describe a method for producing a halogenated butene compound by bringing the halogenated butane compound into contact with activated carbon and dehydrohalogenating the compound.

特開2019-196347号公報Japanese Patent Application Publication No. 2019-196347 特開2021-6515号公報JP 2021-6515 Publication 特開2021-138705号公報JP 2021-138705 Publication

しかしながら、特許文献1に記載されたフルオロオレフィンを製造する方法、並びに、特許文献2および3に記載されたハロゲン化ブテン化合物を製造する方法は、脱ハロゲン化水素反応の触媒として酸化クロムおよび酸化アルミニウム等の金属触媒、または活性炭が使用されており、触媒に係るコストが嵩むという問題がある。また金属触媒および活性炭はフッ素化することによってより強い活性を示すようになるが、フッ素化するために要するフッ素化剤の使用により、よりコストが嵩むという問題がある。 However, in the method for producing fluoroolefins described in Patent Document 1 and the method for producing halogenated butene compounds described in Patent Documents 2 and 3, chromium oxide and aluminum oxide are used as catalysts for the dehydrohalogenation reaction. etc. or activated carbon are used, and there is a problem in that the cost of the catalyst increases. Furthermore, when metal catalysts and activated carbon are fluorinated, they exhibit stronger activity, but there is a problem in that the cost increases due to the use of fluorinating agents required for fluorination.

さらに発明者らが検討を行った結果、触媒として酸化クロムおよび酸化アルミニウム等を用いると、脱ハロゲン化水素反応の開始直後における選択率が低くなることを見出した。脱ハロゲン化水素反応において、未反応のハロゲン化アルカンを回収し再び原料として反応系に戻すことができるが、選択率が低いと副生成物が製造されてしまうため、再利用するハロゲン化アルカンを得にくいといった問題も生じてくる。そのため、コスト低減の観点から、脱ハロゲン化水素反応の開始直後から選択率の高いハロゲン化アルケンの製造方法が求められている。 Furthermore, as a result of studies conducted by the inventors, it was found that when chromium oxide, aluminum oxide, or the like is used as a catalyst, the selectivity immediately after the start of the dehydrohalogenation reaction becomes low. In the dehydrohalogenation reaction, unreacted halogenated alkanes can be recovered and returned to the reaction system as raw materials, but if the selectivity is low, by-products will be produced, so the halogenated alkanes to be reused are There are also problems that it is difficult to obtain. Therefore, from the viewpoint of cost reduction, there is a need for a method for producing halogenated alkenes that has a high selectivity immediately after the start of the dehydrohalogenation reaction.

本発明は、上述の問題に鑑みてなされたものであり、安価な触媒を使用して、反応開始直後から高選択率でハロゲン化アルケンを得ることを目的とする。 The present invention has been made in view of the above-mentioned problems, and aims to obtain halogenated alkenes with high selectivity immediately after the start of the reaction using an inexpensive catalyst.

本発明者らは上記課題を達成するために、鋭意研究を重ねた結果、触媒として安価な石炭灰を使用することによって、反応開始直後から高選択率でハロゲン化アルケンを製造できることを見出し、本発明を完成させた。 In order to achieve the above object, the present inventors conducted extensive research and discovered that by using inexpensive coal ash as a catalyst, halogenated alkenes could be produced with high selectivity immediately after the start of the reaction. Completed the invention.

本発明の一態様に係るハロゲン化アルケンの製造方法は、フッ素原子を含み炭素数が4以下であるハロゲン化アルカンと、石炭灰と、を接触させて、前記ハロゲン化アルカンを脱ハロゲン化水素させる工程を含むことを特徴とする、ハロゲン化アルケンの製造方法である。 A method for producing a halogenated alkene according to one aspect of the present invention includes contacting a halogenated alkane containing a fluorine atom and having 4 or less carbon atoms with coal ash to dehydrohalogenate the halogenated alkane. A method for producing a halogenated alkene, the method comprising the steps of:

本発明の一態様によれば、安価な触媒を使用して、反応開始直後から高選択率でハロゲン化アルケンを得ることができる。 According to one aspect of the present invention, a halogenated alkene can be obtained with high selectivity immediately after the start of the reaction using an inexpensive catalyst.

本発明の実施例に係る反応時間に対する選択率の変化を示した図である。FIG. 3 is a diagram showing the change in selectivity with respect to reaction time according to an example of the present invention.

以下、本発明の一実施形態について、詳細に説明する。 Hereinafter, one embodiment of the present invention will be described in detail.

本実施形態に係るハロゲン化アルケンの製造方法(以下、「本実施形態の製造方法」と示す場合がある)は、触媒と、フッ素原子を含むハロゲン化アルカンと、を接触させて、ハロゲン化アルカンを脱ハロゲン化水素する工程を含む。以下、当該工程を、「脱ハロゲン化水素工程」と示す場合がある。また、「フッ素原子を含むハロゲン化アルカン」を「含フッ素ハロゲン化アルカン」と示す場合がある。本実施形態の製造方法によって製造されるフッ素原子を含むハロゲン化アルケンについては後述する。 The method for producing a halogenated alkene according to the present embodiment (hereinafter sometimes referred to as "the production method of the present embodiment") includes contacting a catalyst and a halogenated alkane containing a fluorine atom to produce a halogenated alkene. The process includes a step of dehydrohalogenating. Hereinafter, this step may be referred to as a "dehydrohalogenation step." Further, "halogenated alkane containing a fluorine atom" may be referred to as "fluorine-containing halogenated alkane". The halogenated alkene containing a fluorine atom produced by the production method of this embodiment will be described later.

触媒と含フッ素ハロゲン化アルカンとを接触させることによって、フッ素原子を含むハロゲン化アルカンを脱ハロゲン化水素反応させて、ハロゲン化アルケンが得られる。脱ハロゲン化水素反応の例として、脱フッ化水素反応等が挙げられる。 By bringing the catalyst and the fluorine-containing halogenated alkane into contact with each other, the halogenated alkane containing a fluorine atom undergoes a dehydrohalogenation reaction to obtain a halogenated alkene. Examples of dehydrohalogenation reactions include dehydrofluorination reactions and the like.

(触媒)
本実施形態の製造方法において用いられる触媒は、石炭灰である。石炭灰の例として、ボトムアッシュおよびフライアッシュが挙げられる。触媒は、ボトムアッシュおよびフライアッシュの何れかの石炭灰であってもよく、ボトムアッシュおよびフライアッシュの混合物であってもよい。より高い転化率を達成できる点で、触媒はフライアッシュであることが好ましい。
(catalyst)
The catalyst used in the manufacturing method of this embodiment is coal ash. Examples of coal ash include bottom ash and fly ash. The catalyst may be either bottom ash or fly ash, or a mixture of bottom ash and fly ash. Preferably, the catalyst is fly ash, since a higher conversion rate can be achieved.

(石炭灰)
石炭灰は、反応に用いる前に乾燥させてもよく、乾燥させなくてもよい。乾燥させる場合には、250℃程度で1時間乾燥させる。水分除去の観点から、減圧下もしくは不活性ガス気流下で乾燥させることが好ましい。
(coal ash)
The coal ash may or may not be dried before being used in the reaction. When drying, dry at about 250° C. for 1 hour. From the viewpoint of moisture removal, it is preferable to dry under reduced pressure or under an inert gas stream.

石炭灰は、反応に用いる前に強熱により揮発性物質を除去してもよく、除去しなくてもよい。強熱する場合には、800℃程度で30分以上強熱させる。未燃炭素の除去の観点から、900℃以上で強熱させることが好ましい。 The coal ash may or may not have volatile substances removed by ignition before being used in the reaction. When igniting, ignite at about 800°C for 30 minutes or more. From the viewpoint of removing unburned carbon, it is preferable to ignite at 900° C. or higher.

フライアッシュは主に、ガラス相(非結晶質(Al―Si))、結晶質シリカ(SiO)、結晶質アルミノケイ酸塩(3Al・2SiO)、未燃炭素から構成される。また、フライアッシュは上記以外の化合物が含まれていてもよい。これらの化合物の含有比は特に限定されないが、反応効率および反応器の汚染抑制の観点から、未燃炭素の比率の指標を示す強熱減量は30%以下であることが好ましく、20%以下であることがより好ましく、10%以下であることがさらに好ましい。 Fly ash is mainly composed of a glass phase (amorphous (Al-Si)), crystalline silica (SiO 2 ), crystalline aluminosilicate (3Al 2 O 3 .2SiO 2 ), and unburned carbon. Moreover, the fly ash may contain compounds other than those mentioned above. The content ratio of these compounds is not particularly limited, but from the viewpoint of reaction efficiency and suppression of contamination of the reactor, the loss on ignition, which is an indicator of the proportion of unburned carbon, is preferably 30% or less, and 20% or less. It is more preferable that it be present, and even more preferably that it be 10% or less.

フライアッシュは、直径または長径が0.2mm以下の球状または不定形の灰粒子である。これらの灰粒子の粒径は特に限定されないが、メディアン径(個数基準)が0.05mm以下の微粒子であることが好ましい。 Fly ash is spherical or amorphous ash particles with a diameter or major axis of 0.2 mm or less. Although the particle size of these ash particles is not particularly limited, it is preferable that the particles have a median diameter (number based) of 0.05 mm or less.

ボトムアッシュは、塊状石炭灰であり、反応効率の観点から破砕機などで破砕し、粒度調整したものを用いることが好ましい。 The bottom ash is lumpy coal ash, and from the viewpoint of reaction efficiency, it is preferable to use one that has been crushed with a crusher or the like and whose particle size has been adjusted.

本明細書において、「転化率」は、脱ハロゲン化水素工程において、反応器に供給される含フッ素ハロゲン化アルカンのモル量に対する、反応器出口からの流出ガスに含まれる含フッ素ハロゲン化アルカン以外の化合物の合計モル量の割合(モル%)を示す。また「選択率」は、脱ハロゲン化水素工程において、反応器出口からの流出ガスにおける含フッ素ハロゲン化アルカン以外の化合物の合計モル量に対する、当該流出ガスに含まれるハロゲン化アルケンのモル量の割合(モル%)を指す。 In this specification, "conversion rate" refers to the molar amount of fluorine-containing halogenated alkanes other than fluorine-containing halogenated alkanes contained in the outflow gas from the reactor outlet in the dehydrohalogenation process. The ratio (mol %) of the total molar amount of the compound is shown. In addition, "selectivity" is the ratio of the molar amount of halogenated alkenes contained in the outflow gas to the total molar amount of compounds other than fluorine-containing halogenated alkanes in the outflow gas from the reactor outlet in the dehydrohalogenation process. (mol%).

(含フッ素ハロゲン化アルカン)
含フッ素ハロゲン化アルカンは、炭素数が4以下であるハロゲン化アルカンである。含フッ素ハロゲン化アルカンは炭素数が2であってもよく、炭素数が3であってもよい。含フッ素ハロゲン化アルカンに含まれるハロゲン原子の数は2以上であり、フッ素原子の数が1以上含まれることが好ましい。
(Fluorine-containing halogenated alkane)
The fluorine-containing halogenated alkane is a halogenated alkane having 4 or less carbon atoms. The fluorine-containing halogenated alkane may have two or three carbon atoms. The number of halogen atoms contained in the fluorine-containing halogenated alkane is 2 or more, and it is preferable that the number of fluorine atoms is 1 or more.

含フッ素ハロゲン化アルカンは、下記一般式(1)で示される化合物である。
一般式(1)中、RおよびRは水素原子を示し、Rはフッ素原子を示し、Rは水素原子、フッ素原子または塩素原子を示し、RおよびRは、フッ素原子、塩素原子、水素原子、または、ハロゲン原子で置換されてもよい炭素数1以上2以下のアルカン基を示す。また、R~Rの少なくとも1つはフッ素原子または塩素原子である。
The fluorine-containing halogenated alkane is a compound represented by the following general formula (1).
In general formula (1), R 1 and R 3 represent a hydrogen atom, R 2 represents a fluorine atom, R 4 represents a hydrogen atom, a fluorine atom, or a chlorine atom, R 5 and R 6 represent a fluorine atom, Indicates an alkane group having 1 or more and 2 or less carbon atoms that may be substituted with a chlorine atom, a hydrogen atom, or a halogen atom. Further, at least one of R 4 to R 6 is a fluorine atom or a chlorine atom.

含フッ素ハロゲン化アルカンとして、例えば、1,1-ジフルオロエタン、1,2-ジフルオロエタン、1,1,1-トリフルオロエタン、1,1,2-トリフルオロエタン、1,1,1,2-テトラフルオロエタン、1,1-ジフルオロプロパン、1,1,1-トリフルオロプロパン、1,1,3-トリフルオロプロパン、1,1,2-トリフルオロプロパン、1,1,1,3-テトラフルオロプロパン、1,1,1,3,3-ペンタフルオロプロパン、1,1,1,3,3,3-ヘキサフルオロプロパン、1,1,1,2,2,3,3-ヘプタフルオロプロパン、1,1,2,2,3,3,3-ヘプタフルオロプロパン、1,1,2-トリフルオロブタン、1-クロロ-1,1-ジフルオロエタン、1-クロロ-2,2-ジフルオロエタン、1,2-ジクロロ―1,1-ジフルオロエタン等が挙げられる。 Examples of the fluorine-containing halogenated alkane include 1,1-difluoroethane, 1,2-difluoroethane, 1,1,1-trifluoroethane, 1,1,2-trifluoroethane, 1,1,1,2-tetra Fluoroethane, 1,1-difluoropropane, 1,1,1-trifluoropropane, 1,1,3-trifluoropropane, 1,1,2-trifluoropropane, 1,1,1,3-tetrafluoro Propane, 1,1,1,3,3-pentafluoropropane, 1,1,1,3,3,3-hexafluoropropane, 1,1,1,2,2,3,3-heptafluoropropane, 1,1,2,2,3,3,3-heptafluoropropane, 1,1,2-trifluorobutane, 1-chloro-1,1-difluoroethane, 1-chloro-2,2-difluoroethane, 1, Examples include 2-dichloro-1,1-difluoroethane.

(脱ハロゲン化水素工程の詳細および各条件)
脱ハロゲン化水素工程においては、触媒と含フッ素ハロゲン化アルカンとを接触させて、前記含フッ素ハロゲン化アルカンを脱ハロゲン化させる。例えば、反応系に触媒を供給後、含フッ素ハロゲン化アルカンを当該反応系に供給することによって、当該触媒と含フッ素ハロゲン化アルカンとを接触させてもよい。一例として、本実施形態の脱ハロゲン化水素工程では、石炭灰を供給した反応器に、含フッ素ハロゲン化アルカンを通気させることにより石炭灰と含フッ素ハロゲン化アルカンとを接触させる。
(Details and conditions of dehydrohalogenation process)
In the dehydrohalogenation step, the catalyst and the fluorine-containing halogenated alkane are brought into contact to dehalogenate the fluorine-containing halogenated alkane. For example, after supplying the catalyst to the reaction system, the catalyst and the fluorine-containing halogenated alkane may be brought into contact by supplying the fluorine-containing halogenated alkane to the reaction system. As an example, in the dehydrohalogenation step of the present embodiment, the coal ash and the fluorine-containing halogenated alkane are brought into contact by passing the fluorine-containing halogenated alkane into a reactor supplied with the coal ash.

上記反応系内の温度の下限は、より高い転化率を達成できる点で、400℃以上が好ましく、450℃以上がより好ましい。また、当該反応系内の温度の上限は、副生成物の生成を抑制する点で、600℃以下が好ましく、550℃以下がより好ましい。 The lower limit of the temperature in the reaction system is preferably 400°C or higher, more preferably 450°C or higher, from the standpoint of achieving a higher conversion rate. Further, the upper limit of the temperature within the reaction system is preferably 600°C or less, more preferably 550°C or less, from the viewpoint of suppressing the production of by-products.

脱ハロゲン化水素工程において、不活性ガス雰囲気下、触媒と含フッ素ハロゲン化アルカンとを接触させてもよい。不活性ガスとして、例えば、窒素ガス、ヘリウムおよびアルゴン等が挙げられる。 In the dehydrohalogenation step, the catalyst and the fluorine-containing halogenated alkane may be brought into contact under an inert gas atmosphere. Examples of the inert gas include nitrogen gas, helium, and argon.

上記反応系内における、含フッ素ハロゲン化アルカンと触媒の接触時間(W/F)[W:触媒の重量(g)、F:ハロゲン化アルカンの流量(mL/s)]は、1g・s/mL以上であることが好ましく、10g・s/mL以上であることが好ましい。また、200g・s/mL以下であることが好ましく、150g・s/mL以下であることがより好ましい。接触時間が上記範囲内であると、より高い選択率を達成することができる。 The contact time (W/F 0 ) between the fluorine-containing halogenated alkane and the catalyst in the above reaction system [W: weight of catalyst (g), F 0 : flow rate of halogenated alkane (mL/s)] is 1 g. It is preferable that it is s/mL or more, and it is preferable that it is 10 g·s/mL or more. Moreover, it is preferably 200 g·s/mL or less, and more preferably 150 g·s/mL or less. Higher selectivity can be achieved when the contact time is within the above range.

上記反応系で使用する反応器の材質としては、鉄、ニッケル、クロム、モリブテン、これらを主成分とする合金等が挙げられる。 Materials for the reactor used in the above reaction system include iron, nickel, chromium, molybdenum, alloys containing these as main components, and the like.

上記反応器内の圧力は、より効率的に脱ハロゲン化水素反応を進行させて高い選択率でハロゲン化アルケンを得ることができる点から、常圧以上2MPa・G以下であることが好ましく、常圧以上1MPa・G以下であることがより好ましく、常圧以上0.5MPa・G以下であることがさらに好ましい。 The pressure in the reactor is preferably at least normal pressure and at most 2 MPa.G, from the viewpoint of allowing the dehydrohalogenation reaction to proceed more efficiently and obtaining a halogenated alkene with high selectivity. The pressure is more preferably at least 1 MPa.G, and even more preferably the pressure is at least normal pressure and at most 0.5 MPa.G.

上述の通り、触媒と含フッ素ハロゲン化アルカンとを接触させることによって、含フッ素ハロゲン化アルカンが脱ハロゲン化水素反応して、ハロゲン化アルケンが得られる。 As described above, by bringing the catalyst and the fluorine-containing halogenated alkane into contact, the fluorine-containing halogenated alkane undergoes a dehydrohalogenation reaction to obtain a halogenated alkene.

(ハロゲン化アルケン)
本実施形態の製造方法によって製造されるハロゲン化アルケンは、フッ素原子を含むハロゲン化アルケンである。ハロゲン化アルケンの例として、フッ化ビニル(VF)、フッ化ビニリデン(VDF、1,1-ジフルオロエチレン)、1,1,2-トリフルオロエチレン等が挙げられる。
(halogenated alkene)
The halogenated alkene produced by the production method of this embodiment is a halogenated alkene containing a fluorine atom. Examples of halogenated alkenes include vinyl fluoride (VF), vinylidene fluoride (VDF, 1,1-difluoroethylene), 1,1,2-trifluoroethylene, and the like.

本実施形態の製造方法のもっとも好ましい態様の1つは、触媒と1,1,1-トリフルオロエタンとを接触させて、1,1,1-トリフルオロエタンを脱ハロゲン化水素させる工程を含む、VDFの製造方法である。 One of the most preferred aspects of the production method of the present embodiment includes a step of contacting a catalyst with 1,1,1-trifluoroethane to dehydrohalogenate 1,1,1-trifluoroethane. , a method for manufacturing VDF.

〔まとめ〕
本実施形態に係るハロゲン化アルケンの製造方法は、フッ素原子を含み炭素数が4以下であるハロゲン化アルカンと、石炭灰と、を接触させて、前記ハロゲン化アルカンを脱ハロゲン化水素させる工程を含む。
〔summary〕
The method for producing a halogenated alkene according to the present embodiment includes a step of bringing a halogenated alkane containing a fluorine atom and having a carbon number of 4 or less into contact with coal ash to dehydrohalogenate the halogenated alkane. include.

本実施形態に係るハロゲン化アルケンの製造方法において、前記石炭灰がフライアッシュであってもよい。 In the method for producing a halogenated alkene according to the present embodiment, the coal ash may be fly ash.

本実施形態に係るハロゲン化アルケンの製造方法において、前記石炭灰を供給した反応器に、前記ハロゲン化アルカンを通気させることにより前記石炭灰と前記ハロゲン化アルカンとを接触させるものであって、前記ハロゲン化アルカンと前記石炭灰の接触時間は10g・s/mL以上150g・s/mL以下であってもよい。 In the method for producing a halogenated alkene according to the present embodiment, the coal ash and the halogenated alkane are brought into contact by aerating the halogenated alkane into a reactor supplied with the coal ash, the method comprising: The contact time between the halogenated alkane and the coal ash may be 10 g·s/mL or more and 150 g·s/mL or less.

本実施形態に係るハロゲン化アルケンの製造方法において、前記ハロゲン化アルカンは、下記一般式(1)で示される化合物であってもよい。
(一般式(1)中、RおよびRは水素原子を示し、Rはフッ素原子を示し、Rは、水素原子、フッ素原子、または塩素原子を示し、RおよびRは、フッ素原子、塩素原子、水素原子、または、ハロゲン原子で置換されてもよい炭素数1以上2以下のアルカン基を示し、かつR~Rの少なくとも1つはフッ素原子または塩素原子である。)
In the method for producing a halogenated alkane according to the present embodiment, the halogenated alkane may be a compound represented by the following general formula (1).
(In general formula (1), R 1 and R 3 represent a hydrogen atom, R 2 represents a fluorine atom, R 4 represents a hydrogen atom, a fluorine atom, or a chlorine atom, and R 5 and R 6 represent It represents an alkane group having 1 to 2 carbon atoms which may be substituted with a fluorine atom, a chlorine atom, a hydrogen atom, or a halogen atom, and at least one of R 4 to R 6 is a fluorine atom or a chlorine atom. )

本実施形態に係るハロゲン化アルケンの製造方法において、前記脱ハロゲン化水素させる工程は脱フッ化水素工程であってもよい。 In the method for producing a halogenated alkene according to the present embodiment, the dehydrohalogenation step may be a dehydrofluorination step.

本実施形態に係るハロゲン化アルケンの製造方法において、前記ハロゲン化アルカンが1,1,1-トリフルオロエタンであってもよい。 In the method for producing a halogenated alkene according to the present embodiment, the halogenated alkane may be 1,1,1-trifluoroethane.

以下に実施例を示し、本発明の実施の形態についてさらに詳しく説明する。もちろん、本発明の以下の実施例に限定されるものではなく、細部については様々な態様が可能であることはいうまでもない。さらに、本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、それぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、本明細書中に記載された文献の全てが参考として援用される。 EXAMPLES Below, embodiments of the present invention will be described in more detail with reference to Examples. Of course, the present invention is not limited to the following embodiments, and it goes without saying that various modifications can be made to the details. Furthermore, the present invention is not limited to the embodiments described above, and various changes can be made within the scope of the claims, and the present invention also includes embodiments obtained by appropriately combining the disclosed technical means. falls within the technical scope of the invention. Additionally, all documents mentioned herein are incorporated by reference.

(実施例1)
触媒としてフライアッシュを1g使用した。触媒を反応管(SUS製、外径:1/2インチ)に供給した。反応管を500℃に昇温させ、窒素雰囲気下、窒素と1,1,1-トリフルオロエタン(R143a)との混合ガス(窒素:R143a=95:5)を20mL/分で20分通気して反応させてVDFを製造した(触媒とR143aとの接触時間は23g・s/mL)。得られたVDFはガス捕集袋によって回収した。
(Example 1)
1 g of fly ash was used as a catalyst. The catalyst was supplied to a reaction tube (made of SUS, outer diameter: 1/2 inch). The reaction tube was heated to 500°C, and a mixed gas of nitrogen and 1,1,1-trifluoroethane (R143a) (nitrogen: R143a = 95:5) was bubbled through it at 20 mL/min for 20 minutes under a nitrogen atmosphere. The reaction was carried out to produce VDF (the contact time between the catalyst and R143a was 23 g·s/mL). The obtained VDF was collected using a gas collection bag.

(実施例2)
触媒の量を5gに変更し、触媒とR143aとの接触時間を114g・s/mLに変更した以外は、実施例1と同様にして、VDFを製造した。
(Example 2)
VDF was produced in the same manner as in Example 1, except that the amount of catalyst was changed to 5 g and the contact time between the catalyst and R143a was changed to 114 g·s/mL.

(実施例3)
反応管の昇温温度を600℃に変更し、触媒とR143aとの接触時間を101g・s/mLに変更した以外は、実施例2と同様にして、VDFを製造した。
(Example 3)
VDF was produced in the same manner as in Example 2, except that the heating temperature of the reaction tube was changed to 600° C. and the contact time between the catalyst and R143a was changed to 101 g·s/mL.

(実施例4)
触媒としてボトムアッシュを3g使用し触媒とR143aとの接触時間を60g・s/mLに変更した以外は、実施例1と同様にして、VDFを製造した。
(Example 4)
VDF was produced in the same manner as in Example 1, except that 3 g of bottom ash was used as a catalyst and the contact time between the catalyst and R143a was changed to 60 g·s/mL.

(実施例5)
触媒としてボトムアッシュを3g使用した以外は、実施例3と同様にして、VDFを製造した。
(Example 5)
VDF was produced in the same manner as in Example 3, except that 3 g of bottom ash was used as a catalyst.

(比較例1)
触媒をSiO/Al(シリカアルミナ)に変更した以外は、実施例1と同様にして、VDFを製造した。
(Comparative example 1)
VDF was produced in the same manner as in Example 1 except that the catalyst was changed to SiO 2 /Al 2 O 3 (silica alumina).

(比較例2)
触媒をゼオライトに変更した以外は、実施例1と同様にして、VDFを製造した。
(Comparative example 2)
VDF was produced in the same manner as in Example 1, except that the catalyst was changed to zeolite.

(比較例3)
触媒をCrF xHOに変更し、触媒とR143aとの接触時間を14g・s/mLに変更した以外は、実施例1と同様にして、VDFを製造した。
(Comparative example 3)
VDF was produced in the same manner as in Example 1, except that the catalyst was changed to CrF 3 xH 2 O and the contact time between the catalyst and R143a was changed to 14 g·s/mL.

(比較例4)
触媒をAlFに変更した以外は、比較例3と同様にして、VDFを製造した。
(Comparative example 4)
VDF was produced in the same manner as Comparative Example 3 except that the catalyst was changed to AlF3 .

(評価例)
各実施例および比較例について、窒素とR143aとの混合ガスを通気し、ガス捕集袋に回収された気体成分を、ガスクロマトグラフィで分析した。ガスクロマトグラフィのカラムはアジレント・テクノロジー社製、CP-Pora PLOT Q(登録商標)を使用した。
(Evaluation example)
For each Example and Comparative Example, a mixed gas of nitrogen and R143a was passed through, and the gas components collected in the gas collection bag were analyzed by gas chromatography. The gas chromatography column used was CP-Pora PLOT Q (registered trademark) manufactured by Agilent Technologies.

実施例および比較例で使用した触媒、反応条件(接触条件)、および製造したVDFの評価結果を表1~3および図1に示す。 The catalysts, reaction conditions (contact conditions), and evaluation results of the produced VDF used in Examples and Comparative Examples are shown in Tables 1 to 3 and FIG. 1.

表1~3中、R143a転化率(X)は、下記式(A)から求めた。
X=100×(Xa-Xb)/Xa・・・(A)
式(A)中、Xaは、反応器に供給される含フッ素ハロゲン化アルカンのモル量を示す。また、Xbは、反応器出口からの流出ガスに含まれる含フッ素ハロゲン化アルカンのモル量を示す。
In Tables 1 to 3, the R143a conversion rate (X) was determined from the following formula (A).
X=100×(Xa-Xb)/Xa...(A)
In formula (A), Xa represents the molar amount of the fluorine-containing halogenated alkane supplied to the reactor. Moreover, Xb indicates the molar amount of the fluorine-containing halogenated alkane contained in the gas flowing out from the reactor outlet.

また、選択率Y(%)は、下式(B)から求めた。
Y=100×Ya/(Xa-Xb)・・・(B)
式(B)中、XaおよびXbは上述の定義の通りである。Yaは、反応器出口からの流出ガスに含まれるハロゲン化アルケンのモル量である。
Moreover, the selectivity Y (%) was determined from the following formula (B).
Y=100×Ya/(Xa-Xb)...(B)
In formula (B), Xa and Xb are as defined above. Ya is the molar amount of halogenated alkene contained in the effluent gas from the reactor outlet.

反応器出口からの流出ガスに含まれる含フッ素ハロゲン化アルカンのモル量(Xb)およびハロゲン化アルケンのモル量(Ya)は、反応器出口からの流出ガスをガスクロマトグラフィで分析した結果から算出した。 The molar amount of fluorine-containing halogenated alkane (Xb) and the molar amount of halogenated alkene (Ya) contained in the gas flowing out from the reactor outlet were calculated from the results of gas chromatography analysis of the gas flowing out from the reactor outlet. .

表1、2に示すように、触媒として、安価な石炭灰を使用することによって、高選択率かつ低コストでハロゲン化アルケンを得ることができた。 As shown in Tables 1 and 2, by using inexpensive coal ash as a catalyst, halogenated alkenes could be obtained with high selectivity and at low cost.

また、図1に示すように、触媒として、石炭灰を使用することによって、反応時間10分後の時点で約100%の選択率を示し、さらに60分後もその高い選択率を維持することができた。これにより、副生成物がほとんど生じないため、未反応のハロゲン化アルカンを回収し、再び原料として使用することができる。 Furthermore, as shown in Figure 1, by using coal ash as a catalyst, the selectivity was approximately 100% after 10 minutes of reaction time, and the high selectivity was maintained even after 60 minutes. was completed. As a result, almost no by-products are produced, so that the unreacted halogenated alkane can be recovered and used again as a raw material.

本発明の製造方法によって得られるハロゲン化アルケンを重合して得られるポリマーは、電気・電子分野、石油ガス分野および自動車分野等、幅広い分野において利用できる。 The polymer obtained by polymerizing the halogenated alkene obtained by the production method of the present invention can be used in a wide range of fields such as electrical and electronic fields, oil and gas fields, and automobile fields.

Claims (6)

フッ素原子を含み炭素数が4以下であるハロゲン化アルカンと、
石炭灰と、を接触させて、前記ハロゲン化アルカンを脱ハロゲン化水素させる工程を含むことを
特徴とする、ハロゲン化アルケンの製造方法。
A halogenated alkane containing a fluorine atom and having a carbon number of 4 or less,
A method for producing a halogenated alkene, comprising the step of dehydrohalogenating the halogenated alkane by bringing it into contact with coal ash.
前記石炭灰がフライアッシュである、請求項1に記載のハロゲン化アルケンの製造方法。 The method for producing a halogenated alkene according to claim 1, wherein the coal ash is fly ash. 前記石炭灰を供給した反応器に、前記ハロゲン化アルカンを通気させることにより前記石炭灰と前記ハロゲン化アルカンとを接触させるものであって、
前記ハロゲン化アルカンと前記石炭灰の接触時間は10g・s/mL以上150g・s/mL以下である、請求項1または2に記載のハロゲン化アルケンの製造方法。
The coal ash and the halogenated alkane are brought into contact by aerating the halogenated alkane into the reactor supplied with the coal ash,
The method for producing a halogenated alkene according to claim 1 or 2, wherein the contact time between the halogenated alkane and the coal ash is 10 g·s/mL or more and 150 g·s/mL or less.
前記ハロゲン化アルカンは、下記一般式(1)で示される化合物である、請求項1~3のいずれか1項に記載のハロゲン化アルケンの製造方法。
(一般式(1)中、
およびRは水素原子を示し、
はフッ素原子を示し、
は、水素原子、フッ素原子、または塩素原子を示し、
およびRは、フッ素原子、塩素原子、水素原子、または、ハロゲン原子で置換されてもよい炭素数1以上2以下のアルカン基を示し、
かつR~Rの少なくとも1つはフッ素原子または塩素原子である。)
The method for producing a halogenated alkene according to any one of claims 1 to 3, wherein the halogenated alkane is a compound represented by the following general formula (1).
(In general formula (1),
R 1 and R 3 represent hydrogen atoms,
R 2 represents a fluorine atom,
R 4 represents a hydrogen atom, a fluorine atom, or a chlorine atom,
R 5 and R 6 represent a fluorine atom, a chlorine atom, a hydrogen atom, or an alkane group having 1 or more and 2 or less carbon atoms that may be substituted with a halogen atom,
And at least one of R 4 to R 6 is a fluorine atom or a chlorine atom. )
脱ハロゲン化水素させる工程が脱フッ化水素工程である、請求項1~4のいずれか1項に記載のハロゲン化アルケンの製造方法。 The method for producing a halogenated alkene according to any one of claims 1 to 4, wherein the step of dehydrohalogenation is a dehydrofluorination step. 前記ハロゲン化アルカンが1,1,1-トリフルオロエタンである、請求項1~5のいずれか1項に記載のハロゲン化アルケンの製造方法。 The method for producing a halogenated alkene according to any one of claims 1 to 5, wherein the halogenated alkane is 1,1,1-trifluoroethane.
JP2022036334A 2022-03-09 2022-03-09 Halogenated alkene production method Pending JP2023131518A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022036334A JP2023131518A (en) 2022-03-09 2022-03-09 Halogenated alkene production method
PCT/JP2023/005235 WO2023171274A1 (en) 2022-03-09 2023-02-15 Halogenated alkene production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022036334A JP2023131518A (en) 2022-03-09 2022-03-09 Halogenated alkene production method

Publications (1)

Publication Number Publication Date
JP2023131518A true JP2023131518A (en) 2023-09-22

Family

ID=87936730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022036334A Pending JP2023131518A (en) 2022-03-09 2022-03-09 Halogenated alkene production method

Country Status (2)

Country Link
JP (1) JP2023131518A (en)
WO (1) WO2023171274A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2480560A (en) * 1945-12-06 1949-08-30 Kinetic Chemicals Inc Method for pyrolyzing polyfluoroalkanes
JPS607975B2 (en) * 1978-03-30 1985-02-28 ダイキン工業株式会社 Production method of vinylidene fluoride
JP6673413B2 (en) * 2018-05-08 2020-03-25 ダイキン工業株式会社 Method for producing fluoroolefin
JP6933239B2 (en) * 2019-02-21 2021-09-08 ダイキン工業株式会社 Method for producing halogenated alkene compound and fluorinated alkyne compound

Also Published As

Publication number Publication date
WO2023171274A1 (en) 2023-09-14

Similar Documents

Publication Publication Date Title
JP5926488B2 (en) Process for producing fluorinated olefins
US5945573A (en) Process for the manufacture of 1,1,1,3,3-pentafluoropropane
US7880040B2 (en) Method for producing fluorinated organic compounds
JP5947337B2 (en) Process for producing 2,2,3,3-tetrafluoro-1-propene
KR20080066856A (en) Method for producing fluorinated organic compounds
AU2604599A (en) Hydrofluorination of chlorinated hydrocarbons
EP0541559A1 (en) Catalytic equilibration of selected halocarbons
JP2005536539A (en) Process for producing 1,1,1,2,2-pentafluoroethane
JP2000508320A (en) Preparation of halogenated propane containing fluorine bonded to terminal carbon atom
JP4378779B2 (en) Method for producing fluorine-containing ethane
JP2018524376A (en) Process for the preparation of 2,3,3,3-tetrafluoropropene (1234yf)
JP5715177B2 (en) Method for producing fluorinated organic compound
JP2013543839A (en) Process for producing 2-chloro-3,3,3-trifluoropropene by gas phase fluorination of pentachloropropane
EP0576581A1 (en) Process for the manufacture of 2,2-dichloro-1,1,1-trifluoroethane, 2-chloro-1,1,1,2-tetrafluoroethane and pentafluoroethane.
JP7070419B2 (en) Method for producing 1-chloro-2,3,3-trifluoropropene
EP0576600A1 (en) Process for the manufacture of 2-chloro-1,1,1,2-tetrafluoroethane and pentafluoroethane.
WO2018079726A1 (en) Production method for tetrafluoropropenes
JPH09504791A (en) Method for producing high-purity 1,1-dichlorotetrafluoroethane
WO2023171274A1 (en) Halogenated alkene production method
JP2024515192A (en) Compositions containing 3,3,3-trifluoropropene (1243ZF) and methods of making and using said compositions
JP2930697B2 (en) Method for producing 1,1-dichlorotetrafluoroethane
US5030372A (en) Catalytic equilibration to improve the relative yield of selected halocarbons
JP2023131520A (en) Halogenated alkene production method
US5831136A (en) Process for manufacture of high purity 1,1-dichlorotetrafluoroethane
WO2023171273A1 (en) Halogenated alkene production method