JPS6344686B2 - - Google Patents

Info

Publication number
JPS6344686B2
JPS6344686B2 JP7843382A JP7843382A JPS6344686B2 JP S6344686 B2 JPS6344686 B2 JP S6344686B2 JP 7843382 A JP7843382 A JP 7843382A JP 7843382 A JP7843382 A JP 7843382A JP S6344686 B2 JPS6344686 B2 JP S6344686B2
Authority
JP
Japan
Prior art keywords
reaction
potassium
gas
fluoride
fluorination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7843382A
Other languages
Japanese (ja)
Other versions
JPS58199715A (en
Inventor
Michio Ootsuka
Yoji Ueda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP7843382A priority Critical patent/JPS58199715A/en
Publication of JPS58199715A publication Critical patent/JPS58199715A/en
Publication of JPS6344686B2 publication Critical patent/JPS6344686B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 本発明は、フツ化カリウムの製法に関し、更に
詳しくは炭酸カリウムまたは炭酸水素カリウムの
直接フツ素化によるフツ化カリウムの新規な製造
方法である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing potassium fluoride, and more particularly to a novel method for producing potassium fluoride by direct fluorination of potassium carbonate or potassium bicarbonate.

フツ化カリウムは、高級ガラスフラツクス、各
種金属製練剤、アルミニウムの溶接剤、触媒更に
はフツ化カリウムの解離性を利用して有機化合物
のフツ素化剤、特にハロゲン交換法における試薬
として使用されている、かかる反応系ではフツ化
カリウムが有機塩化物に溶解しにくくその多くが
固液反応であるためフツ化カリウムが有効に利用
され離く、また反応で副生する塩化カリウムがフ
ツ化カリウムの表面に析出、被覆するためフツ化
カリウムの有効利用が阻害されてくる。そのため
反応に使用するフツ化カリウムは置換すべき塩素
原子に対して一般には約2倍量あるいはそれ以上
が使用されているのが実情である。
Potassium fluoride is used in high-grade glass fluxes, various metal smelting agents, aluminum welding agents, catalysts, and also as a fluorinating agent for organic compounds by utilizing the dissociative properties of potassium fluoride, especially as a reagent in the halogen exchange method. In such reaction systems, potassium fluoride is difficult to dissolve in organic chlorides, and most of them are solid-liquid reactions, so potassium fluoride is effectively utilized and separated, and potassium chloride, which is a by-product of the reaction, is fluoridated. Since it precipitates and coats the surface of potassium, the effective use of potassium fluoride is hindered. Therefore, the actual situation is that the amount of potassium fluoride used in the reaction is generally about twice or more than the amount of chlorine atoms to be replaced.

本発明の目的は、これらフツ素化剤として好適
な易反応性に富むフツ化カリウムの提供にあり、
この目的は炭酸カリウムまたは炭酸水素カリウム
とフツ化水素ガスとの気固反応により達成され
る。
The purpose of the present invention is to provide highly reactive potassium fluoride suitable as these fluorinating agents.
This objective is achieved by a gas-solid reaction of potassium carbonate or potassium hydrogen carbonate with hydrogen fluoride gas.

従来フツ化カリウムの製造法としては、水酸化
カリウムまたは炭酸カリウムを当量のフツ化水素
酸で中和した溶液に、エタノールを加えフツ化カ
リウムの二水塩を析出させ、これを加熱して無水
塩とする方法。あるいは炭酸カリウムとフツ化水
素酸とを水溶液で反応させ生成した中和液を濃縮
しKF二水塩の融点以上の温度である50〜55℃に
冷却し、析出した結晶を遠心分離し乾燥、または
熱フツ化カリリウムの濃厚溶液を加熱したロータ
リードラムドライヤーを用いてフレーク状とする
方法。〔Kirk―Othmer.、Encyclopedia of
Chemical techmology Vol.9、649(1966)〕更に
はまた水酸化カリウムとフツ化水素酸からの反応
液をスプレードライヤーで乾燥する方法〔ibid.
Vol.10、789(1980)〕など液一液反応が主体であ
る。
Conventional methods for producing potassium fluoride include adding ethanol to a solution of potassium hydroxide or potassium carbonate neutralized with an equivalent amount of hydrofluoric acid to precipitate potassium fluoride dihydrate, which is then heated to produce anhydrous How to make salt. Alternatively, the neutralized solution produced by reacting potassium carbonate and hydrofluoric acid with an aqueous solution is concentrated and cooled to 50 to 55°C, which is a temperature higher than the melting point of KF dihydrate, and the precipitated crystals are centrifuged and dried. Alternatively, a method of turning a concentrated solution of hot potassium fluoride into flakes using a heated rotary drum dryer. [Kirk-Othmer., Encyclopedia of
Chemical techmology Vol. 9, 649 (1966)] Furthermore, there is also a method of drying a reaction solution of potassium hydroxide and hydrofluoric acid with a spray dryer [ibid.
Vol. 10, 789 (1980)] are mainly liquid-one-liquid reactions.

本発明は、これら従来法とは全く異なるフツ化
カリウムの製造方法を提供するもので、炭酸カリ
ウムまたは炭酸水素カリウムとフツ化水素ガスと
の気固反応により、粒状ないしは粉状のフツ化カ
リウムを容易に製造することを見い出し本発明に
到達したものである。
The present invention provides a method for producing potassium fluoride that is completely different from these conventional methods, and involves producing granular or powdered potassium fluoride through a gas-solid reaction between potassium carbonate or potassium hydrogen carbonate and hydrogen fluoride gas. The present invention was achieved by discovering that it can be easily manufactured.

即ち、本発明は次式に示す如く K2CO3(固体)+2HF(ガス)△→2KF(固体)+CO2(ガ
ス)+H2O(ガス) K2CO3(固体)+2HF(ガス)△→2KF(固体)+CO2(ガ
ス)+H2O(ガス) KHCO3(固体)+HF(ガス)△→KF(固体)+CO2(ガス
)+H2O(ガス) 固体の炭酸カリウムまたは炭酸水素カリウムにフ
ツ化水素ガスを反応させ、副生する炭酸ガスおよ
び水はできるだけ速やかに反応系外に取出すこと
により行なわれる。
That is, the present invention is based on the following formula: K 2 CO 3 (solid) + 2HF (gas) △ → 2KF (solid) + CO 2 (gas) + H 2 O (gas) K 2 CO 3 (solid) + 2HF (gas) △ →2KF (solid) + CO 2 (gas) + H 2 O (gas) KHCO 3 (solid) + HF (gas) △ → KF (solid) + CO 2 (gas) + H 2 O (gas) Solid potassium carbonate or potassium hydrogen carbonate The reaction is carried out by reacting hydrogen fluoride gas with hydrogen fluoride gas and removing by-product carbon dioxide and water from the reaction system as quickly as possible.

本発明における炭酸カリウムまたは炭酸水素カ
リウムとフツ化水素との反応量は化学当量比で
0.1〜5.0の範囲であり、この範囲内においてフツ
素化時間を適宜組合せれば、効率よく気固反応に
よるフツ素化を行うことができる。それ以上過剰
のフツ化水素ガスの存在下反応を行うと更に反応
が進行しKF・HF、KF・2HF、K・3HFなどの
複塩が生成し易くなり、これらは反応系内で溶融
するため粒状ないしは粉状のフツ化カリウムとし
て取得することが困難である。
In the present invention, the amount of reaction between potassium carbonate or potassium hydrogen carbonate and hydrogen fluoride is expressed as a chemical equivalent ratio.
It is in the range of 0.1 to 5.0, and if the fluorination time is appropriately combined within this range, fluorination by gas-solid reaction can be carried out efficiently. If the reaction is carried out in the presence of excess hydrogen fluoride gas, the reaction will proceed further and double salts such as KF・HF, KF・2HF, K・3HF will be easily generated, and these will melt in the reaction system. It is difficult to obtain potassium fluoride in granular or powder form.

なお、使用する炭酸カリウムまたは炭酸水素カ
リウムはできるだけ粒径の小さい粉状乃至は粒状
のものが好ましく通常は10μ〜5mm、好ましくは
20μ〜500μのものが採用される。なお5mm以上の
粒径のものは細かい粒径の場合よりも粒子間のフ
ツ素の拡散は容易であるが生産性が劣る。フツ素
化装置は、簡便なものでよく、例えば撹拌機付反
応器、流動式反応器等いずれの方式、型式のもの
でもよく特に制約はない。
The potassium carbonate or potassium hydrogen carbonate used should preferably be in the form of powder or granules with a particle size as small as possible, usually 10 μm to 5 mm, preferably
Those with a diameter of 20μ to 500μ are adopted. In addition, when the particle size is 5 mm or more, the diffusion of fluorine between the particles is easier than when the particle size is fine, but the productivity is inferior. The fluorination apparatus may be any simple one, and may be of any type or type, such as a reactor equipped with a stirrer or a fluidized reactor, without any particular restrictions.

フツ素化温度は、150〜800℃好ましくは200〜
600℃であり、反応温度が150℃以下でフツ素化反
応自体は進行するものの副生する水の除去が困難
となり、反応系内での生成物の一部が溶融し粒子
状の生成物が得られ難い。また反応温度の上限は
特に制約はないが反応器の材質、熱エネルギー等
を考慮すれば800℃以下好ましくは600℃以下であ
る。
Fluorination temperature is 150~800℃, preferably 200~
600℃, and if the reaction temperature is below 150℃, the fluorination reaction itself will proceed, but it will be difficult to remove the by-product water, and a part of the product in the reaction system will melt, resulting in particulate products. Hard to obtain. Further, the upper limit of the reaction temperature is not particularly limited, but considering the material of the reactor, thermal energy, etc., it is 800°C or less, preferably 600°C or less.

フツ化水素の供給速度は、反応器系外に排出す
る排ガス中のフツ化水素を検知し過剰のフツ化水
素ガス量を制御する方法で行えばよい。副生する
水の除去方法としては、反応器内に空気、炭酸ガ
ス、窒素あるいは酸素等を導入しながらフツ素化
を行えば粒子状のフツ化カリウムが一段と生成し
易くなるためより好適なフツ化カリウムを生成さ
せることができる。このようにして得られる乾式
法フツ化カリウムは、従来の湿式法で得られるフ
ツ化カリウムに比べ極めて活性に富むため、有機
化合物のフツ素化剤として用いればよりすぐれた
効果を発揮させることができる。以下実施例を挙
げて本発明を詳述する。
The supply rate of hydrogen fluoride may be determined by a method of detecting hydrogen fluoride in the exhaust gas discharged outside the reactor system and controlling the amount of excess hydrogen fluoride gas. A more suitable method for removing by-product water is to carry out fluorination while introducing air, carbon dioxide, nitrogen, or oxygen into the reactor, as this makes it easier to produce particulate potassium fluoride. potassium can be produced. The dry method potassium fluoride obtained in this way is much more active than the potassium fluoride obtained by the conventional wet method, so it can be used as a fluorinating agent for organic compounds to achieve better effects. can. The present invention will be described in detail below with reference to Examples.

実施例 1 平均粒径200μの炭酸カリウム2gを白金ボード
に採取し電気炉内に設置した反応管内(sus 304)
にこれを挿入し、400℃でフツ化水素ガス
(0.017g/分)および窒素(0.03g/分)を67分間
流通しフツ素化反応を行つた。(当量比1.96)反
応終了後は窒素ガスを流通しながら、室温まで冷
却した。
Example 1 2g of potassium carbonate with an average particle size of 200μ was collected on a platinum board and placed in a reaction tube (sus 304) installed in an electric furnace.
This was inserted into the reactor, and hydrogen fluoride gas (0.017 g/min) and nitrogen (0.03 g/min) were passed through the reactor at 400°C for 67 minutes to carry out a fluorination reaction. (Equivalent ratio: 1.96) After the reaction was completed, the mixture was cooled to room temperature while flowing nitrogen gas.

その結果を次に示す。 The results are shown below.

反応生成物 1.64g KF収率 96.1 % KF純度 98.0 % 比表面積 0.4 m2/g 実施例 2 実施例1と同一の装置に平均粒径150μの炭酸
カリウム2.0gを採取し、反応温度450℃でフツ化
水素ガス(0.1g/分)および窒素(0.1g/分)を
29分間流通しフツ素化反応を行つた。(当量比
5.0) その結果を次に示す。
Reaction product 1.64g KF yield 96.1% KF purity 98.0% Specific surface area 0.4 m 2 /g Example 2 2.0g of potassium carbonate with an average particle size of 150μ was collected in the same device as Example 1, and the reaction temperature was 450℃. Hydrogen fluoride gas (0.1g/min) and nitrogen (0.1g/min)
The fluid was circulated for 29 minutes to carry out the fluorination reaction. (equivalent ratio
5.0) The results are shown below.

反応生成物 1.67g KF収率 98.8 % KF純度 99.0 % 比表面積 0.3 m2/g 実施例 3 実施例1と同一の装置に平均粒径300μの炭酸
水素カリウム2.0gを採取し、反応温度190℃でフ
ツ化水素ガス(0.01g/分)および窒素(0.01g/
分)を60分間流通しフツ素化反応を行つた。(当
量比1.5) その結果を次に示す。
Reaction product 1.67g KF yield 98.8% KF purity 99.0% Specific surface area 0.3 m 2 /g Example 3 2.0g of potassium hydrogen carbonate with an average particle size of 300μ was collected in the same device as Example 1, and the reaction temperature was 190℃. Hydrogen fluoride gas (0.01g/min) and nitrogen (0.01g/min)
) was passed for 60 minutes to carry out the fluorination reaction. (Equivalence ratio 1.5) The results are shown below.

反応生成物 1.10g KF収率 92.9 % KF純度 98.0 % 比表面積 0.3 m2/g 実施例 4 500mlの丸底撹拌機付反応器(sus 304)に平均
粒径200μの炭酸カリウム150gを採取し撹拌
(300r.p.m.)しながら500℃に保ちつつフツ化水
素ガス(0.26g/分)およ窒素(0.43g/分)を3
時間10分供給しフツ化反応を行つた。(当量比
1.14)その後窒素を反応器内に導入しながら室温
まで冷却した。
Reaction product 1.10g KF yield 92.9% KF purity 98.0% Specific surface area 0.3 m 2 /g Example 4 150g of potassium carbonate with an average particle size of 200μ was collected in a 500ml round-bottom reactor equipped with a stirrer (sus 304) and stirred. (300r.pm) while maintaining the temperature at 500℃ while supplying hydrogen fluoride gas (0.26g/min) and nitrogen (0.43g/min)
The fluorination reaction was carried out by supplying for 10 minutes. (equivalent ratio
1.14) Thereafter, the reactor was cooled to room temperature while introducing nitrogen into the reactor.

その結果を次に示す。 The results are shown below.

反応生成物 116 g KF収率 91.5% KF純度 99.0% 比表面積 0.4m2/g 実施例 5 実施例4と同一の装置に平均粒径200μの炭酸
カリウム150gを採取し、撹拌(300rpm)しなが
ら400℃に保ちフツ化水素ガス(0.15g/分)およ
び窒素(0.3g/分)を5時間供給しフツ素化反応
を行つた。(当量比1.03)その後窒素を反応器内
に導入しながら室温まで冷却した。
Reaction product 116 g KF yield 91.5% KF purity 99.0% Specific surface area 0.4 m 2 /g Example 5 150 g of potassium carbonate with an average particle size of 200 μ was collected in the same device as in Example 4, and stirred (300 rpm). The fluorination reaction was carried out by maintaining the temperature at 400°C and supplying hydrogen fluoride gas (0.15 g/min) and nitrogen (0.3 g/min) for 5 hours. (Equivalent ratio: 1.03) Thereafter, the reactor was cooled to room temperature while introducing nitrogen into the reactor.

この結果を次に示す。 The results are shown below.

反応生成物 120 g KF収率 93.7% KF純度 98.0% 比表面積 0.4m2/g 実施例 6 10の撹拌機付反応器(sus 304)に平均粒径
200μの炭酸カリウム5.0Kgを採取し、撹拌
(30rpm)しながら350℃に保ちつつフツ化水素ガ
ス(8.2g/分)を3時間30分供給し、フツ素化反
応を行つた。(当量比1.19)その後窒素を反応器
内に導入し室温まで冷却した。
Reaction product 120 g KF yield 93.7% KF purity 98.0% Specific surface area 0.4 m 2 /g Example 6 Average particle size in 10 stirred reactors (sus 304)
5.0 kg of 200μ potassium carbonate was collected, and while stirring (30 rpm) and maintaining the temperature at 350°C, hydrogen fluoride gas (8.2 g/min) was supplied for 3 hours and 30 minutes to perform a fluorination reaction. (Equivalent ratio: 1.19) After that, nitrogen was introduced into the reactor and the reactor was cooled to room temperature.

その結果を次に示す。 The results are shown below.

反応生成物 4.0Kg KF 98.0% 比表面積 0.4m2/g 比較例 1 反応温度を140℃とした以外は実施例1と同一
の方法でフツ素化反応を行つた結果反応生成物は
水分による溶融溶融状態を保ち粉状形態は保ち得
なかつた。
Reaction product 4.0Kg KF 98.0% Specific surface area 0.4m 2 /g Comparative example 1 Fluorination reaction was carried out in the same manner as in Example 1 except that the reaction temperature was 140°C. As a result, the reaction product was melted by water. It remained molten and could not maintain its powder form.

その結果を次に示す。 The results are shown below.

反応生成物 1.7g KF収率 91.5% KF純度 90 % 比表面積 0.4m2/g 比較例 2 実施例1と同一の装置に平均粒径200μの炭酸
カリウム2.0gを採取し、反応温度200℃でフツ化
水素ガス(0.1g/分)および窒素(0.1g/分)を
35分間流通しフツ素化反応を行つた。(当量比
6.0)その結果反応生物は2.1g、フツ素分析値よ
りKFに対して0.7HFに相当する過剰のフツ素を
含むKF・0.7HF相当のものが得られた。
Reaction product 1.7g KF yield 91.5% KF purity 90% Specific surface area 0.4m 2 /g Comparative example 2 2.0g of potassium carbonate with an average particle size of 200μ was collected in the same device as in Example 1, and the reaction temperature was 200℃. Hydrogen fluoride gas (0.1g/min) and nitrogen (0.1g/min)
The fluid was circulated for 35 minutes to carry out the fluorination reaction. (equivalent ratio
6.0) As a result, 2.1g of the reaction product was obtained, which was equivalent to KF/0.7HF containing an excess of fluorine equivalent to 0.7HF compared to KF based on the fluorine analysis value.

比較例 3 実施例1と同一の装置に平均粒径300μの塩化
カリウム2.0gを採取し、反応温度400℃でフツ化
水素ガス(0.017g/分)および窒素(0.038g/
分)を90分間流通しフツ素化反応を行つた。(当
量比5.0)その結果反応生成物1.95gは塩化カリウ
ムのままで殆んどフツ素化は行なわれていなかつ
た。
Comparative Example 3 2.0g of potassium chloride with an average particle size of 300μ was collected in the same device as in Example 1, and hydrogen fluoride gas (0.017g/min) and nitrogen (0.038g/min) were added at a reaction temperature of 400°C.
) was passed for 90 minutes to carry out the fluorination reaction. (Equivalence ratio 5.0) As a result, 1.95 g of the reaction product remained potassium chloride and was hardly fluorinated.

参考例 本発明のフツ化カリウムを用いて有機ハロゲン
化物のフツ素化反応を行つた。
Reference Example A fluorination reaction of an organic halide was carried out using the potassium fluoride of the present invention.

2のオートクレーブ(sus 316)に実施例6
で得たフツ化カリウム232g(4モル)、4―クロ
ロニトロベンゼン315g(2モル)、溶媒としてジ
メチルアセトアミド750g、ベンゼン60gを添加し
加熱撹拌した。反応系内の水分を除去するため、
温度150〜170℃で溶媒の一部約160gを蒸留回収
したのち、反応温度215℃で6時間反応を行つた。
2 autoclave (sus 316) Example 6
232 g (4 mol) of the potassium fluoride obtained in step 1, 315 g (2 mol) of 4-chloronitrobenzene, 750 g of dimethylacetamide as a solvent, and 60 g of benzene were added, and the mixture was heated and stirred. To remove water in the reaction system,
After about 160 g of the solvent was recovered by distillation at a temperature of 150 to 170°C, the reaction was carried out at a reaction temperature of 215°C for 6 hours.

反応生成物を濾過し濾液を蒸留して4―フルオ
ロニトロベンゼン183g(1.3モル)を得た。
The reaction product was filtered and the filtrate was distilled to obtain 183 g (1.3 mol) of 4-fluoronitrobenzene.

一方試薬一級のフツ化カリウム(比表面積0.05
m2/g)を用いて同一反応条件で合成した場合、
4―フルオルニトロベンゼン151g(1.07モル)を
得た。以上の結果から本発明のフツ化カリウムの
反応性が良好なことが認められた。
On the other hand, potassium fluoride, a first-class reagent (specific surface area 0.05
m 2 /g) under the same reaction conditions,
151 g (1.07 mol) of 4-fluoronitrobenzene was obtained. From the above results, it was confirmed that the potassium fluoride of the present invention had good reactivity.

Claims (1)

【特許請求の範囲】[Claims] 1 炭酸カリウムまたは炭酸水素カリウムとフツ
化水素ガスを化学当量比1.0〜5.0の範囲で、かつ
150〜800℃の温度でフツ素化反応させることを特
徴とするフツ化カリウムの製造方法。
1 Potassium carbonate or potassium hydrogen carbonate and hydrogen fluoride gas in a chemical equivalence ratio of 1.0 to 5.0, and
A method for producing potassium fluoride, characterized by carrying out a fluorination reaction at a temperature of 150 to 800°C.
JP7843382A 1982-05-12 1982-05-12 Manufacture of potassium fluoride Granted JPS58199715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7843382A JPS58199715A (en) 1982-05-12 1982-05-12 Manufacture of potassium fluoride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7843382A JPS58199715A (en) 1982-05-12 1982-05-12 Manufacture of potassium fluoride

Publications (2)

Publication Number Publication Date
JPS58199715A JPS58199715A (en) 1983-11-21
JPS6344686B2 true JPS6344686B2 (en) 1988-09-06

Family

ID=13661902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7843382A Granted JPS58199715A (en) 1982-05-12 1982-05-12 Manufacture of potassium fluoride

Country Status (1)

Country Link
JP (1) JPS58199715A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2812467B2 (en) * 1988-10-21 1998-10-22 イハラケミカル工業株式会社 Lyophilized potassium fluoride for fluorination
KR100428905B1 (en) * 2001-09-07 2004-04-28 주식회사 소디프신소재 A process for preparing highly pure potassium fluoride from nitrogen trifluoride composite gas
CN1296277C (en) * 2003-09-11 2007-01-24 解卫峰 Preparation method of potassium fluoride
KR20090015076A (en) 2006-04-27 2009-02-11 스미또모 가가꾸 가부시키가이샤 Potassium fluoride dispersion solution, and process for production of fluorinated organic compound using the same
JP5369540B2 (en) 2007-08-29 2013-12-18 住友化学株式会社 Alkali metal fluoride dispersion and method for producing fluorine-containing organic compound using the same
ES2766777T3 (en) * 2012-05-25 2020-06-15 Lanxess Deutschland Gmbh Preparation of high purity lithium fluoride
JP7469108B2 (en) * 2020-03-31 2024-04-16 三井化学株式会社 Method for producing inorganic fluoride compound particles

Also Published As

Publication number Publication date
JPS58199715A (en) 1983-11-21

Similar Documents

Publication Publication Date Title
JP4531153B2 (en) Process for producing 4-fluoro-1,3-dioxolan-2-one
JPH01290639A (en) Production of 1,1,1-trifluoro-2,2-dichloroethane
JPS63295521A (en) Manufacture of 1,1,1-trifluoro-2,2-dichloroethane by fluorinating hydrogenation under presence of catalyst
JPH07106998B2 (en) Method for producing 1,1,1-trifluoro-2,2-dichloroethane
JP3213929B2 (en) Method for producing 1,1,1,2,3,3,3-heptafluoropropane
JPS6344686B2 (en)
JPS6365065B2 (en)
US4003984A (en) Production of sulfuryl fluoride
JP5294553B2 (en) Method for producing carbon-containing alkaline earth metal oxide and method for decomposing organic halide
JP2002306967A (en) Fluorination reaction and activated fluoride catalyst
JP3029278B2 (en) Post-treatment method of solution containing inert antimony halogenide catalyst and organic compound
JP2005008543A (en) Method for producing trifluoroiodomethane and installation therefor
JPH0620560B2 (en) New catalyst for liquid phase fluorination
JP2658070B2 (en) Method for producing fluorine-containing alkane
JP2930351B2 (en) Manufacturing method of NF (3)
JP4265004B2 (en) Method for producing cyanuric acid derivative
HU181498B (en) Process for preparing monochloro-acetyl-chloride and monochloro-acetic acid by means the hydration of trichloro-ethylene
CN103443065B (en) The method of purification of difluoroacetic acid chloride
JP2856636B2 (en) Production method of ammonium cryolite
JPH0688919B2 (en) Method for producing hydrogen-containing fluorochloroalkane
IL47643A (en) Oxidation of magnesium chloride
JP3880301B2 (en) Method for producing hexafluoroaluminum ammonium
JPH0524207B2 (en)
JPH0481970B2 (en)
JP2000143552A (en) Fluorinating agent and production of organofluorine compound