JPH0481427B2 - - Google Patents

Info

Publication number
JPH0481427B2
JPH0481427B2 JP7571287A JP7571287A JPH0481427B2 JP H0481427 B2 JPH0481427 B2 JP H0481427B2 JP 7571287 A JP7571287 A JP 7571287A JP 7571287 A JP7571287 A JP 7571287A JP H0481427 B2 JPH0481427 B2 JP H0481427B2
Authority
JP
Japan
Prior art keywords
axis
fine movement
movement mechanism
slider
manipulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7571287A
Other languages
Japanese (ja)
Other versions
JPS63240772A (en
Inventor
Eiichi Narishige
Shinji Yoneyama
Original Assignee
Narishige Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Narishige Kk filed Critical Narishige Kk
Priority to JP7571287A priority Critical patent/JPS63240772A/en
Publication of JPS63240772A publication Critical patent/JPS63240772A/en
Publication of JPH0481427B2 publication Critical patent/JPH0481427B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、基礎医学などバイオニクスの分野に
おいて、細胞に対して処理を施すべく硝子電極等
を遠隔操作により移動させるための硝子電極等の
マニピユレータに関する。
Detailed Description of the Invention "Field of Industrial Application" The present invention is used in the field of bionics, such as basic medicine, to use glass electrodes, etc. for moving glass electrodes, etc. by remote control in order to perform treatments on cells. Regarding manipulators.

「従来の技術」 従来のこの種のマニピユレータとしては、既に
特開昭61−14559号公報記載の油圧形式のものが
知られるところである。該マニピユレータは、第
7図に示す如く、遠隔操作部1と、硝子電極等2
が操作される移動部3とから成つている。遠隔操
作部1は、それぞれ摘み4,5を回すと、ピスト
ン6,7により押圧されるダイアフラム8,9付
きの油圧シリンダ10,11を備えたX軸直線駆
動機構12及びY軸直線駆動機構13と、レバー
14を傾倒させると、その傾倒方向と傾倒量とに
対応してダイアフラムを備えた油圧シリンダ1
5,16がピストン17a,17bで加圧される
X−Y軸駆動機構17と、上記レバー14に内装
されて、摘み18を回すとピストン19で押圧さ
れるダイアフラム20付きの油圧シリンダ21を
備えたZ軸駆動機構22とから成つている。上記
X−Y軸駆動機構17は、固定基台17cに縦方
向(Y軸方向)に往復摺動するY軸スライダー1
7dを装着し、該Y軸スライダー17dに横方向
(X軸方向)に往復摺動し、かつレバー14と結
合するピン球17fが固定されたX軸スライダー
17eを装着し、基台17cとY軸スライダー1
7dとの間にピストン17b及び油圧シリンダ1
6を、又Y軸スライダー17dとX軸スライダー
17eとの間にピストン17a及び油圧シリンダ
15をそれぞれ介在させたものである。一方、移
動部3は、それぞれ同一構成のX軸移動台23と
Y軸移動台24とZ軸移動台25とを互いに縦設
したものである。各移動台23〜25は、本体2
6〜28にスライダー29〜31を往復摺動自在
に装着すると共に、本体26〜28にピストン3
2〜34を設け、一方該ピストン32〜34にリ
ターンスプリング35〜37で常時当接するダイ
アフラム付きの油圧シリンダ38〜40を、各ス
ライダー29〜31に設けたものである。リター
ンスプリング35〜37は、各本体26〜28と
スライダー29〜31との間に介入させたもの
で、上記油圧シリンダ38〜40のダイアフラム
にピストン32〜34を常時当接させるといつた
機能の他、本体26〜28に対するスライダー2
9〜31の往復のための機能をも有する。上記X
軸直線駆動機構12の油圧シリンダ10は、耐圧
チユーブ41,42を介してX軸移動台23の油
圧シリンダ38に接続し、該油圧シリンダ10,
38間にオイルを充填したものである。Y軸直線
駆動機構13の油圧シリンダ11は、耐圧チユー
ブ43,44を介してY軸移動台24の油圧シリ
ンダ39に接続し、該油圧シリンダ11,39間
にオイルを充填する。又X−Y軸駆動機構17
も、油圧シリンダ15に耐圧チユーブ42を介し
X軸移動台23の油圧シリンダ38を接続し、該
油圧シリンダ15,38間にオイルを充填し、又
油圧シリンダ16に耐圧チユーブ44介してY軸
移動台24の油圧シリンダ39を接続し、該油圧
シリンダ16,39間にオイルを充填する。Z軸
駆動機構22の油圧シリンダ21は、耐圧チユー
ブ45を介してZ軸移動台25の油圧シリンダ4
0に接続し、該油圧シリンダ21,40間にオイ
ルを充填する。Z軸移動台25のスライダー31
にはスタンド等に装着するためのロツド25aを
有し、又X軸移動台23の本体26には硝子電極
等2を取付けるための取付け金具23aを有して
いる。そして、X軸直線駆動機構12、Y軸直線
駆動機構13、及びZ軸駆動機構22の各摘み
4,5,18を回せば、油圧シリンダ10,1
1,21に対するピストン6,7,19の押圧量
の変化に応じて油圧シリンダ10,11,21内
の油圧が変化し、これに伴いそれぞれ耐圧チユー
ブ41〜45を介して移動部3の対応する油圧シ
リンダ38〜40内の油圧も変化をして、油圧シ
リンダ38〜40に対するピストン32〜34の
押圧量が変化し、これにより本体26〜28に対
してスライダー29〜31が摺動して硝子電極等
2が横(X軸)、縦(Y軸)、及び高さ(Z軸)の
方向に移動する。又、X−Y軸駆動機構17のレ
バー14を傾倒させれば、レバー14の傾倒方向
と傾倒量に応じて油圧シリンダ15,16に対す
るピストン17a,17bの押圧量が変化し、こ
れより耐圧チユーブ42,44を介してX軸移動
台23及びY軸移動台24の各油圧シリンダ3
8,39もピストン32,33による押圧量が変
化し、この結果上記同様にX軸移動台23及びY
軸移動台24の本体26,27に対してスライダ
ー29,30が摺動して、硝子電極等2がX軸方
向及びY軸方向に移動するものである。
``Prior Art'' As a conventional manipulator of this type, a hydraulic type manipulator described in Japanese Patent Application Laid-Open No. 14559/1983 is already known. As shown in FIG. 7, the manipulator includes a remote control section 1, a glass electrode, etc.
It consists of a moving part 3 that is operated. The remote control unit 1 includes an X-axis linear drive mechanism 12 and a Y-axis linear drive mechanism 13, which are equipped with hydraulic cylinders 10 and 11 with diaphragms 8 and 9 that are pressed by pistons 6 and 7 when knobs 4 and 5 are turned, respectively. When the lever 14 is tilted, the hydraulic cylinder 1 equipped with a diaphragm corresponds to the direction and amount of the tilt.
5 and 16 are equipped with an X-Y axis drive mechanism 17 which is pressurized by pistons 17a and 17b, and a hydraulic cylinder 21 with a diaphragm 20 which is installed inside the lever 14 and is pressed by a piston 19 when the knob 18 is turned. and a Z-axis drive mechanism 22. The X-Y axis drive mechanism 17 includes a Y-axis slider 1 that reciprocates in the vertical direction (Y-axis direction) on a fixed base 17c.
7d, and an X-axis slider 17e to which a pin ball 17f that reciprocates in the lateral direction (X-axis direction) and is coupled to the lever 14 is attached to the Y-axis slider 17d, and the base 17c and Y axis slider 1
7d, the piston 17b and the hydraulic cylinder 1
6, and a piston 17a and a hydraulic cylinder 15 are interposed between the Y-axis slider 17d and the X-axis slider 17e, respectively. On the other hand, the moving unit 3 includes an X-axis moving table 23, a Y-axis moving table 24, and a Z-axis moving table 25, each of which has the same configuration, and are arranged vertically with respect to each other. Each movable table 23 to 25 has a main body 2
The sliders 29 to 31 are attached to the main bodies 26 to 28 so as to be able to slide back and forth, and the piston 3 is attached to the main bodies 26 to 28.
2 to 34 are provided, and each slider 29 to 31 is provided with a hydraulic cylinder 38 to 40 with a diaphragm that constantly contacts the pistons 32 to 34 with return springs 35 to 37. The return springs 35 to 37 are interposed between the main bodies 26 to 28 and the sliders 29 to 31, and have the function of keeping the pistons 32 to 34 in constant contact with the diaphragms of the hydraulic cylinders 38 to 40. Others, slider 2 for main bodies 26 to 28
It also has a function for round trips from 9 to 31. Above X
The hydraulic cylinder 10 of the axis linear drive mechanism 12 is connected to the hydraulic cylinder 38 of the X-axis moving table 23 via pressure tubes 41 and 42, and the hydraulic cylinder 10,
38 spaces are filled with oil. The hydraulic cylinder 11 of the Y-axis linear drive mechanism 13 is connected to the hydraulic cylinder 39 of the Y-axis moving table 24 via pressure-resistant tubes 43 and 44, and the space between the hydraulic cylinders 11 and 39 is filled with oil. Also, the X-Y axis drive mechanism 17
Also, the hydraulic cylinder 38 of the X-axis moving platform 23 is connected to the hydraulic cylinder 15 via the pressure-resistant tube 42, oil is filled between the hydraulic cylinders 15 and 38, and the hydraulic cylinder 16 is connected to the Y-axis moving via the pressure-resistant tube 44. The hydraulic cylinder 39 of the stand 24 is connected, and oil is filled between the hydraulic cylinders 16 and 39. The hydraulic cylinder 21 of the Z-axis drive mechanism 22 is connected to the hydraulic cylinder 4 of the Z-axis moving table 25 via a pressure tube 45.
0, and oil is filled between the hydraulic cylinders 21 and 40. Slider 31 of Z-axis moving table 25
It has a rod 25a for mounting on a stand or the like, and the main body 26 of the X-axis moving table 23 has a mounting fitting 23a for mounting a glass electrode or the like 2. Then, by turning each knob 4, 5, 18 of the X-axis linear drive mechanism 12, Y-axis linear drive mechanism 13, and Z-axis drive mechanism 22, the hydraulic cylinders 10, 1
The hydraulic pressure in the hydraulic cylinders 10, 11, 21 changes according to the change in the amount of pressure of the pistons 6, 7, 19 relative to the pistons 1, 21. The oil pressure in the hydraulic cylinders 38 to 40 also changes, and the amount of pressure the pistons 32 to 34 press against the hydraulic cylinders 38 to 40 changes, which causes the sliders 29 to 31 to slide against the main bodies 26 to 28, causing the glass to slide. The electrodes 2 move in the horizontal (X-axis), vertical (Y-axis), and height (Z-axis) directions. Furthermore, when the lever 14 of the X-Y axis drive mechanism 17 is tilted, the amount of pressure of the pistons 17a, 17b against the hydraulic cylinders 15, 16 changes depending on the direction and amount of tilting of the lever 14, and from this, the pressure tube Each hydraulic cylinder 3 of the X-axis moving table 23 and the Y-axis moving table 24 via 42 and 44
8 and 39, the amount of pressure by the pistons 32 and 33 changes, and as a result, the X-axis moving table 23 and the Y
The sliders 29 and 30 slide on the bodies 26 and 27 of the shaft moving table 24, and the glass electrodes 2 move in the X-axis direction and the Y-axis direction.

その他、第1図及び第6図に示す如き電動式の
マニピユレータも知られるところである。該マニ
ピユレータは、第1図に示す如く同一構成のX軸
電動機構46、Z軸電動機構48及びY軸電動機
構47を縦設し、X軸電動機構46をスタンドや
顕微鏡に固定されたステー49に取付け、一方Y
軸電動機構47には硝子電極等2を取付けるため
の取付け金具50を設けたものである。各電動機
構46〜48は、第6図に示す如く、本体51の
収納孔52にモータ53を収納し、モータ53の
回転軸にギア54,55を介してネジ軸56を回
転可能に連結し、該ネジ軸56にはスライダー5
7に垂設した雌ネジ筒58を螺合させたものであ
る。ネジ軸56は、その基端側を一方の第1の端
板59の保持筒59a内に挿通させ、他端側を本
体51の収納凹部60内に回転可能に臨ませるよ
うになつている。ネジ軸56の保持筒59aから
突出した基端には、ギア55を螺着し、更にこの
螺着側の反対位置からギア55に対してビス63
aを螺合させて、ダブルネジ形式でネジ軸56の
基端にギア55を固定する。又スライダー57を
本体51の収納凹部60の上方にニリアモーシヨ
ンベアリング61を介在させて摺動自在に装着さ
せてある。一方の第1の端板59及びモータ53
が固設された第2の端板62は、本体51の一端
にビス63で固設する。本体51の他端には、他
方の端板64を同様にビス63で固設する。上記
ギヤ54,55は本体51の一端にビス66で固
設されるギアケース65で囲繞するようになつて
いる。そして、モータ53を駆動させれば、ギア
54,55を介してネジ軸56か回転するので、
該ネジ軸56に雌ネジ筒58が螺合されているこ
とからスライダー57が往復摺動できるようにな
つている。スライダー57の摺動の限点はスライ
ダー57と一体な係合子67がマイクロスイツチ
68,69の各アクチユエータと当接することに
より検出してモータ53を停止させるようになつ
ている。従つて、上記X軸電動機構46、Y軸電
動機構47、Z軸電動機構48は、それぞれ本体
51とスライダー57との間を連結することによ
り相互間を縦設するようになつている。
In addition, electric manipulators as shown in FIGS. 1 and 6 are also known. As shown in FIG. 1, this manipulator has an X-axis electric mechanism 46, a Z-axis electric mechanism 48, and a Y-axis electric mechanism 47 installed vertically with the same configuration, and the X-axis electric mechanism 46 is attached to a stay 49 fixed to a stand or a microscope. Attach it to Y
The shaft electric mechanism 47 is provided with a mounting fitting 50 for mounting the glass electrode etc. 2 thereon. As shown in FIG. 6, each electric mechanism 46 to 48 has a motor 53 housed in a housing hole 52 of a main body 51, and a screw shaft 56 rotatably connected to the rotating shaft of the motor 53 via gears 54, 55. , the slider 5 is attached to the screw shaft 56.
7 is screwed into a female threaded cylinder 58 which is vertically installed. The screw shaft 56 has its base end inserted into the holding cylinder 59a of one first end plate 59, and its other end rotatably exposed into the storage recess 60 of the main body 51. A gear 55 is screwed onto the proximal end of the screw shaft 56 that protrudes from the holding cylinder 59a, and a screw 63 is inserted into the gear 55 from the opposite position to the screwed side.
A is screwed together to fix the gear 55 to the base end of the screw shaft 56 in a double screw manner. Further, the slider 57 is slidably mounted above the storage recess 60 of the main body 51 with a Nilia motion bearing 61 interposed therebetween. One first end plate 59 and motor 53
The second end plate 62 to which is fixed is fixed to one end of the main body 51 with screws 63. The other end plate 64 is similarly fixed to the other end of the main body 51 with screws 63. The gears 54 and 55 are surrounded by a gear case 65 that is fixed to one end of the main body 51 with a screw 66. When the motor 53 is driven, the screw shaft 56 rotates via the gears 54 and 55.
Since the female screw cylinder 58 is screwed onto the screw shaft 56, the slider 57 can slide back and forth. The sliding limit of the slider 57 is detected when an engaging element 67 integrated with the slider 57 comes into contact with each actuator of micro switches 68 and 69, and the motor 53 is stopped. Therefore, the X-axis electric mechanism 46, Y-axis electric mechanism 47, and Z-axis electric mechanism 48 are arranged vertically by connecting the main body 51 and the slider 57, respectively.

「発明が解決しようとする問題点」 しかし、前者の油圧式マニピユレータは、油圧
を利用して硝子電極等2を移動させるものである
から、雰囲気温度が変化すると、オイルが熱膨脹
する状態も変化して、互いに耐圧チユーブ41〜
45で接続された各油圧シリンダ10,11,1
5,16,21,38〜40の相互間の油圧が変
化して、硝子電極等2の位置が不用意に変動する
所謂熱ドリフトが生ずることがあり、その都度硝
子電極等2の位置を調整し直す必要があるなどの
問題があつた。
``Problems to be solved by the invention'' However, since the former hydraulic manipulator uses hydraulic pressure to move the glass electrodes 2, etc., when the ambient temperature changes, the thermal expansion state of the oil also changes. Then, the pressure tubes 41~
Each hydraulic cylinder 10, 11, 1 connected by 45
5, 16, 21, 38 to 40 may change, causing so-called thermal drift in which the position of the glass electrode, etc. 2 changes inadvertently, and the position of the glass electrode, etc. 2 should be adjusted each time. There were some problems that needed to be redone.

又、後者の電動式マニピユレータは、モータ5
3の回転数をギア54,55で減速すると雖も、
限界があつて、ミクロン単位で硝子電極等2を移
動させることは容易でなく、通常は取付け金具5
0に上記油圧式マニピユレータを組合わせる形式
で使用しているのが現状であり、上記油圧式マニ
ピユレータを組合わせるものであるから、上述の
熱ドリフトが発生するといつた問題が依然として
存在するものであつた。
Moreover, the latter electric manipulator has a motor 5.
When the rotation speed of 3 is reduced by gears 54 and 55,
Due to limitations, it is not easy to move the glass electrode 2 in micron units, and usually the mounting bracket 5
Currently, the above-mentioned hydraulic manipulator is used in combination with the above-mentioned hydraulic manipulator, and since the above-mentioned hydraulic manipulator is combined, the above-mentioned problem of thermal drift still exists. Ta.

そこで、本発明は、上記事情に鑑み、雰囲気の
温度変化によつて不用意に硝子電極等が移動する
所謂熱ドリフトの発生がなく、しかも、ミクロン
単位で硝子電極等を移動でき、又遠隔操作で容易
にかつ正確な位置決めができるばかりか、小型軽
量で顕微鏡のステージ上方に臨ませて取付けるこ
とができて使用上頗る便利な硝子電極等のマニピ
ユレータを提供することを目的とする。
In view of the above circumstances, the present invention eliminates the occurrence of so-called thermal drift, in which glass electrodes, etc. move inadvertently due to temperature changes in the atmosphere, allows the glass electrodes, etc. to be moved in micron units, and allows for remote control. To provide a manipulator for glass electrodes, etc., which not only enables easy and accurate positioning but also is small and lightweight and can be mounted facing above the stage of a microscope, and is extremely convenient in use.

「発明が解決しようとする手段」 本発明は、上記目的を達成すべく、横方向用の
X軸電動機構と縦方向用のY軸電動機構と高さ方
向用のZ軸電動機構とを互いに縦設し、かつ各電
動機構のうち最先端のものには取付け金具を有
し、上記各電動機構が本体に対して内装モータ及
びギア機構で往復摺動するスライダーを備えた硝
子電極等のマニピユレータにおいて、上記取付け
金具に、横方向用のX軸電動機構と縦方向用のY
軸微動機構と高さ方向用のZ軸微動機構とを縦設
し、各微動機構のうち最先端のものに硝子電極等
を固定するための第2の取付け金具を設け、かつ
各微動機構の揺動板と、該揺動板の揺動基端に近
接する位置を押圧自在な圧電素子と、揺動板の先
端の移動距離に応じて往復移動が自在な微動板と
から成る硝子電極等のマニピユレータを特徴とす
るものである。
"Means to be Solved by the Invention" In order to achieve the above-mentioned object, the present invention provides for mutually connecting an X-axis electric mechanism for the horizontal direction, a Y-axis electric mechanism for the vertical direction, and a Z-axis electric mechanism for the vertical direction. A manipulator such as a glass electrode that is installed vertically and has a mounting bracket on the most advanced of each electric mechanism, and each electric mechanism has a slider that slides back and forth with respect to the main body by an internal motor and a gear mechanism. , the above mounting bracket is equipped with an X-axis electric mechanism for the horizontal direction and a Y-axis electric mechanism for the vertical direction.
The axial fine movement mechanism and the Z-axis fine movement mechanism for the height direction are installed vertically, and the most advanced one of each fine movement mechanism is provided with a second mounting bracket for fixing a glass electrode, etc. A glass electrode, etc., consisting of a rocking plate, a piezoelectric element that can press a position close to the rocking base end of the rocking plate, and a finely moving plate that can freely move back and forth depending on the distance that the tip of the rocking plate moves. It features a manipulator.

「作用」 本発明は、上記手段において、まず、X軸電動
機構、Y軸電動機構、及びZ軸電動機構によつて
硝子電極等を所望する位置付近に移動させて大ま
かな位置決めをし、次に顕微鏡で観察しながら硝
子電極等で細胞などを処理する時に、X軸微動機
構、Y軸微動機構、及びZ軸微動機構のうち何れ
かの圧電素子に電圧を印加して、該圧電素子の伸
長により揺動板を押圧し、該揺動板を揺動させて
微動板を移動せしめ、これにより硝子電極等を縦
横高さ方向の所望する位置まで自在に微動させる
ものである。
"Operation" In the above means, the present invention first roughly positions the glass electrode etc. by moving it to a desired position using the X-axis electric mechanism, Y-axis electric mechanism, and Z-axis electric mechanism, and then When treating cells with a glass electrode or the like while observing them with a microscope, a voltage is applied to the piezoelectric element of one of the X-axis fine movement mechanism, Y-axis fine movement mechanism, and Z-axis fine movement mechanism, and the piezoelectric element The extension presses the rocking plate and swings the rocking plate to move the fine movement plate, thereby freely finely moving the glass electrode etc. to a desired position in the vertical and horizontal directions.

「実施例」 以下に、本発明に係る硝子電極等のマニピユレ
ータの一実施例を図面に基づき説明する。まず、
第1図において、Aは上述の従来より使用されて
いる電動式マニピユレータである。該電動式マニ
ピユレータAの取付け金具50に継ぎロツド70
の基端を装着し、継ぎロツド70の先端にはZ軸
微動機構71を固設する。該Z軸微動機構71に
は、X軸微動機構72とY軸微動機構73とを縦
設する。Y軸微動機構73には周知構成の第2の
取付け金具74、ボールジヨイント機構75、第
3の取付け金具76、及びホルダー77を介して
硝子電極等2を取付けるようになつている。
"Embodiment" An embodiment of a manipulator such as a glass electrode according to the present invention will be described below with reference to the drawings. first,
In FIG. 1, A is the previously used electric manipulator mentioned above. Connect the rod 70 to the mounting bracket 50 of the electric manipulator A.
A Z-axis fine movement mechanism 71 is fixed to the tip of the connecting rod 70. The Z-axis fine movement mechanism 71 has an X-axis fine movement mechanism 72 and a Y-axis fine movement mechanism 73 installed vertically. A glass electrode or the like 2 is attached to the Y-axis fine movement mechanism 73 via a second attachment fitting 74, a ball joint mechanism 75, a third attachment fitting 76, and a holder 77, which have well-known configurations.

上記Z軸微動機構71、X軸微動機構72、及
びY軸微動機構73は、それぞれ同一構成のもの
で、相互間を縦設する際に、互いに90度だけずら
して取付けるものである。つまり、第2図及び第
3図に示す如く、ブロツク状の本体78の上部に
収納孔79を有し、下端及び前端に凹陥部80,
81を有し、該収納孔79にはセラミツクスより
成る角棒状の圧電素子84を収嵌する。圧電素子
84の基端及び押圧端には、収納穴82,83を
形成し、該収容穴82,83内にボール85,9
1を一部が突出するように収嵌させ、接着剤によ
り脱落不能に固定する。本体78の基端には、端
板88をビス86aで固着する。この時、上記圧
電素子84の基端は、ボール85を介して端板8
8の内面に当接させる。端板88の内面には、ボ
ール85を受ける受穴87が形成させてある。上
記本体78の前端の凹陥部81内には、ピン90
を支点として揺動自在に揺動板89を収嵌させ
る。ピン90は、本体78のピン孔93a及び揺
動板89のピン孔93bに挿通させるようになつ
ている。上記圧電素子84は、ボール91を介し
て常時揺動板89のピン90に近接する位置に、
つまり揺動基端の近接する位置に当接させてお
く。ボール91の一部は揺動板89の内面に形成
した受穴92に嵌入するようになつている。上記
本体78の下部の凹陥部80にはリニアモーシヨ
ンベアリング94を介在させて、本体78に対し
往復摺動自在に上記微動板としてのスライダー9
5を装着する。スライダー95の端面には端板9
6,97をビス86で固設させてある。又スライ
ダー95と端板88との間及びスライダー95と
揺動板89の先端との間にはスプリング98,9
9を介在させる。スプリング98,99は、スラ
イダー95を貫通して両端板96,97間に至る
貫通孔100内に収納し、第3図に示す如くスラ
イダー95の下面から貫通孔100内に達するネ
ジ孔に螺合させたビス101にスプリング98,
99の一端を掛止めする。スプリング98の他端
は、端板88の下部に透孔102を穿設し、かつ
端板88の下端から透孔102内に達するネジ孔
に螺合させたビス103に掛止めする。又スプリ
ング99の他端は、揺動板89の下部に透孔10
4を穿設しておき、該揺動板89の側端から透孔
104内に達するネジ孔に螺合させたビス105
に掛止めする。揺動板89の先部内面に収納穴1
17を形成し、該収納穴117にボール118の
一部を揺動板89の内面から突出させた状態で収
嵌し、ボール118の突出部を端板97に当接さ
せておく。上記スプリング99は、その弾発力で
揺動板89の先端とスライダー95の端板97と
をボール118を介在させて常時当接させるため
のものである。一方、スプリング98は、圧電素
子84の縮小により揺動板89が元に復帰する際
のリターンスプリングとしての機能を持たせてあ
る。上記圧電素子84からは、リード線107を
端板88に穿設した穿孔106を挿通させて外部
に引出す。更に本体78の収納孔79の孔壁に
は、リード線107が嵌入する逃げ凹部108を
形成しておく。
The Z-axis fine movement mechanism 71, the X-axis fine movement mechanism 72, and the Y-axis fine movement mechanism 73 have the same configuration, and when installed vertically, they are installed offset by 90 degrees from each other. That is, as shown in FIGS. 2 and 3, the block-shaped main body 78 has a storage hole 79 in the upper part, and recesses 80 in the lower and front ends.
81, and a rectangular bar-shaped piezoelectric element 84 made of ceramic is housed in the housing hole 79. Accommodating holes 82 and 83 are formed at the base end and pressing end of the piezoelectric element 84, and balls 85 and 9 are formed in the accommodating holes 82 and 83.
1 is fitted so that a portion thereof protrudes, and is fixed with adhesive so that it cannot fall off. An end plate 88 is fixed to the base end of the main body 78 with screws 86a. At this time, the base end of the piezoelectric element 84 is connected to the end plate 8 through the ball 85.
Make it contact the inner surface of 8. A receiving hole 87 for receiving the ball 85 is formed on the inner surface of the end plate 88. A pin 90 is provided in the concave portion 81 at the front end of the main body 78.
The swing plate 89 is fitted so as to be swingable about the fulcrum. The pin 90 is inserted into a pin hole 93a of the main body 78 and a pin hole 93b of the swing plate 89. The piezoelectric element 84 is always located at a position close to the pin 90 of the swing plate 89 via the ball 91.
In other words, it is brought into contact with a position close to the swinging base end. A portion of the ball 91 is adapted to fit into a receiving hole 92 formed on the inner surface of the rocking plate 89. A linear motion bearing 94 is interposed in the concave portion 80 at the bottom of the main body 78, and the slider 9 as the fine movement plate is slidable back and forth with respect to the main body 78.
Attach 5. An end plate 9 is provided on the end surface of the slider 95.
6 and 97 are fixed with screws 86. Also, springs 98, 9 are provided between the slider 95 and the end plate 88 and between the slider 95 and the tip of the swing plate 89.
Interpose 9. The springs 98 and 99 are housed in a through hole 100 that passes through the slider 95 and extends between the end plates 96 and 97, and are screwed into screw holes that extend from the lower surface of the slider 95 into the through hole 100 as shown in FIG. Attach the spring 98 to the screw 101,
Hook one end of 99. The other end of the spring 98 is hooked to a screw 103 that is threaded into a screw hole that is formed in a through hole 102 at the bottom of the end plate 88 and extends from the bottom end of the end plate 88 into the through hole 102 . The other end of the spring 99 has a through hole 10 in the lower part of the swing plate 89.
A screw 105 is screwed into a screw hole extending from the side end of the rocking plate 89 into the through hole 104.
Attach to. Storage hole 1 on the inner surface of the tip of the swing plate 89
17 is formed, and the ball 118 is fitted into the storage hole 117 with a portion of the ball 118 protruding from the inner surface of the rocking plate 89, and the protruding portion of the ball 118 is kept in contact with the end plate 97. The spring 99 uses its elastic force to bring the tip of the swing plate 89 and the end plate 97 of the slider 95 into constant contact with the ball 118 interposed therebetween. On the other hand, the spring 98 has a function as a return spring when the swing plate 89 returns to its original state due to the reduction of the piezoelectric element 84. From the piezoelectric element 84, a lead wire 107 is inserted through a hole 106 formed in the end plate 88 and drawn out to the outside. Furthermore, an escape recess 108 into which the lead wire 107 is inserted is formed in the hole wall of the storage hole 79 of the main body 78.

上記Z軸微動機構71、Z軸微動機構72及び
Y軸微動機構73を組付ける時、各微動機構71
〜73の隣合うスライダー95と本体78若しく
は本体78に対して一体的な端板88との相互間
をそれぞれビス等で固設することにより縦設する
が、この場合Z軸微動機構71のスライダー95
は本体78に対しZ軸方向(高さ方向)に、X軸
微動機構72のスライダー95は本体78に対し
X軸方向(横方向)に、又Y軸微動機構73のス
ライダー95は本体78に対してY軸方向(縦方
向)に摺動可能に位置決めして縦設する。Y軸微
動機構73のスライダー95には第2の取付け金
具74の山形状の収納溝109を備えた基台11
0を固設する。基台110の収納溝109にはボ
ールジヨイント機構75の基部ロツド75aを収
嵌させ、該基部ロツド75aを締付けネジ112
により基台110と押え座111とで挾持する。
第1図において、Z軸微動機構71から引出した
リード線を107Zとし、X軸微動機構72から
引出したリード線を107Xとし、更にY軸微動
機構73から引出したリード線を107Yとし、
各リード線107Z,107X,107Yには制
御装置113から直流電力が供給されるようにな
つている。又上記X軸電動機構46、Y軸電動機
構47及びZ軸電動機構48の各モータ53にも
制御装置114から直流電力が供給されるように
なつている。各制御装置113,114には操作
器115,116を付設する。
When assembling the Z-axis fine movement mechanism 71, Z-axis fine movement mechanism 72, and Y-axis fine movement mechanism 73, each fine movement mechanism 71
-73 adjacent sliders 95 and the main body 78 or the end plate 88 integral with the main body 78 are fixed vertically by fixing each other with screws, etc. In this case, the slider of the Z-axis fine movement mechanism 71 95
is in the Z-axis direction (height direction) with respect to the main body 78, the slider 95 of the X-axis fine movement mechanism 72 is in the X-axis direction (lateral direction) with respect to the main body 78, and the slider 95 of the Y-axis fine movement mechanism 73 is in the main body 78. It is positioned vertically so as to be slidable in the Y-axis direction (vertical direction). The slider 95 of the Y-axis fine movement mechanism 73 has a base 11 equipped with a chevron-shaped storage groove 109 for the second mounting bracket 74.
Fixed 0. The base rod 75a of the ball joint mechanism 75 is fitted into the storage groove 109 of the base 110, and the base rod 75a is tightened with the screw 112.
It is held between the base 110 and the presser seat 111.
In FIG. 1, the lead wire drawn out from the Z-axis fine movement mechanism 71 is 107Z, the lead wire drawn out from the X-axis fine movement mechanism 72 is 107X, and the lead wire drawn out from the Y-axis fine movement mechanism 73 is 107Y.
DC power is supplied from the control device 113 to each lead wire 107Z, 107X, 107Y. Further, each motor 53 of the X-axis electric mechanism 46, Y-axis electric mechanism 47, and Z-axis electric mechanism 48 is also supplied with DC power from the control device 114. Each control device 113, 114 is provided with an operating device 115, 116.

上記構成において、まず操作器116を操作し
て制御装置114から、X軸電動機構46、Y軸
電動機構47、及びZ軸電動機構48のうちの何
れかのモータ53に通電して駆動させ、これによ
り硝子電極等2を処理すべき細胞等の予め定めた
近接位置まで移動させて、大まかな位置決めをす
る。次に細胞等を顕微鏡で観察しながら、操作器
115を操作して制御装置113から、Z軸微動
機構71、X軸微動機構72及びY軸微動機構7
3のうちの何れかの圧電素子84に直流電力を供
与して、斯る圧電素子84が伸長することで揺動
板89の揺動に伴いスライダー95が摺動し、こ
れにより硝子電極等2を縦横高さ方向に何れかに
自由に微動させて、細胞等を処理する。
In the above configuration, first, the controller 114 operates the operating device 116 to energize and drive the motor 53 of any one of the X-axis electric mechanism 46, the Y-axis electric mechanism 47, and the Z-axis electric mechanism 48, Thereby, the glass electrode etc. 2 is moved to a predetermined close position of the cells etc. to be treated, and the rough positioning is performed. Next, while observing cells etc. with a microscope, operate the operating device 115 to control the Z-axis fine movement mechanism 71, the X-axis fine movement mechanism 72, and the Y-axis fine movement mechanism 7 from the control device 113.
DC power is applied to one of the piezoelectric elements 84 of 3, and the piezoelectric element 84 expands, causing the slider 95 to slide as the oscillating plate 89 swings. Cells, etc. are processed by freely moving the holder in any direction vertically or horizontally.

つまり、上記圧電素子84は、多数のエレメン
トを積層した形式で、電界が印加されると、電界
方向に伸びる圧電縦効果を利用するものであり、
上記の如く圧電素子84の基端がボール85を介
して端板88の内面に当接さててあり、従つて電
圧が印加されて、その印加電圧の値に比例した長
さだけ伸長すると、第5図に示す如くボール91
によつて揺動板89を押圧する。ところで、ボー
ル91によつて揺動板89が押圧される点は、第
4図に示す如く、揺動の支点となるピン90から
l1の距離をおいた該ピン90と極めて近接した位
置に設定してある。一方、スライダー95が端板
97及びボール118を介して揺動板89と当接
する位置は、ピン90からl2だけ離れている。こ
のため、第5図に示す如く圧電素子84が揺動板
89を押圧するための伸長する長さをl3とし、又
揺動板89の揺動によりスライダー95が移動す
る距離をl4とすれば、l1:l2=l3:l4なる関係式が
成立する。従つて、圧電素子84が伸長する長さ
l3に対して、スライダー95が移動する距離l4は、
l1/l2倍に拡大される。通常圧電素子84が伸長
する最大の長さl3は15μm程度である。一方スラ
イダー95は、10倍程度拡大されて略150μm移
動できるように設定してある。
In other words, the piezoelectric element 84 is of a type in which a large number of elements are laminated, and utilizes a piezoelectric longitudinal effect that extends in the direction of the electric field when an electric field is applied.
As mentioned above, the base end of the piezoelectric element 84 is in contact with the inner surface of the end plate 88 via the ball 85, and when a voltage is applied and the piezoelectric element 84 expands by a length proportional to the value of the applied voltage, the As shown in Figure 5, the ball 91
The oscillating plate 89 is pressed by the oscillating plate 89. By the way, the point at which the rocking plate 89 is pressed by the ball 91 is from the pin 90, which is the fulcrum of rocking, as shown in FIG.
It is set at a position extremely close to the pin 90 at a distance of l 1 . On the other hand, the position where the slider 95 contacts the swing plate 89 via the end plate 97 and the ball 118 is separated from the pin 90 by l 2 . Therefore, as shown in FIG. 5, the length that the piezoelectric element 84 extends to press the rocking plate 89 is defined as l3 , and the distance that the slider 95 moves due to the rocking of the rocking plate 89 is defined as l4 . Then, the relational expression l 1 :l 2 =l 3 :l 4 holds true. Therefore, the length that the piezoelectric element 84 extends
The distance l 4 that the slider 95 moves with respect to l 3 is
l 1 /l Expanded by 2 times. Normally, the maximum length l 3 that the piezoelectric element 84 extends is about 15 μm. On the other hand, the slider 95 is set to be magnified by about 10 times and moved by about 150 μm.

「発明の効果」 以上の如く、本発明に係る硝子電極等のマニピ
ユレータによれば、雰囲気の温度変化によつて不
用意に硝子電極等が移動する所謂熱ドリフトの発
生がなく、しかもミクロン単位で硝子電極等を移
動させることができ、又遠隔操作で容易にかつ正
確な位置決めができるばかるか、小型軽量で顕微
鏡のステージ上方に臨ませて取付けることができ
て使用上頗る便利である。
"Effects of the Invention" As described above, according to the manipulator for glass electrodes, etc. according to the present invention, so-called thermal drift, in which the glass electrodes, etc. move inadvertently due to temperature changes in the atmosphere, does not occur, and moreover, Not only can the glass electrode etc. be moved and positioning can be done easily and accurately by remote control, but it is also small and lightweight and can be mounted facing above the stage of the microscope, making it very convenient to use.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る硝子電極等のマニピユレ
ータを従来の電動式マニピユレータに組付けた状
態の斜視図、第2図は本発明のマニピユレータに
おいてX軸微動機構、Y軸微動機構、及びZ軸微
動機構をそれぞれ構成する一つの微動機構の分解
斜視図、第3図は第2図における微動機構の組立
縦断面図、第4図及び第5図は第2図における微
動機構の動作を説明するための説明図、第6図は
従来の電動式マニピユレータにおいてX軸電動機
構、Y軸電動機構、及びZ軸電動機構をそれぞれ
構成する一つの電動機構の分解斜視図、第7図は
従来の油圧式マニピユレータの構成図である。 A……電動式マニピユレータ、2……硝子電極
等、50……取付け金具、71……Z軸微動機
構、72……X軸微動機構、73……Y軸微動機
構、74……第2の取付け金具、78……本体、
84……圧電素子、89……揺動板、95……ス
ライダー。
Fig. 1 is a perspective view of a manipulator such as a glass electrode according to the present invention assembled into a conventional electric manipulator, and Fig. 2 shows an X-axis fine movement mechanism, a Y-axis fine movement mechanism, and a Z-axis in the manipulator of the present invention. FIG. 3 is an assembled vertical sectional view of the fine movement mechanism in FIG. 2, and FIGS. 4 and 5 explain the operation of the fine movement mechanism in FIG. 2. FIG. 6 is an exploded perspective view of one electric mechanism that constitutes the X-axis electric mechanism, Y-axis electric mechanism, and Z-axis electric mechanism in a conventional electric manipulator, and FIG. 7 is an explanatory diagram of the conventional hydraulic manipulator. FIG. 2 is a configuration diagram of a type manipulator. A...Electric manipulator, 2...Glass electrode, etc., 50...Mounting metal fittings, 71...Z-axis fine movement mechanism, 72...X-axis fine movement mechanism, 73...Y-axis fine movement mechanism, 74...Second Mounting bracket, 78...Body,
84...piezoelectric element, 89...oscillating plate, 95...slider.

Claims (1)

【特許請求の範囲】[Claims] 1 横方向用のX軸電動機構と縦方向用のY軸電
動機構と高さ方向用のZ軸電動機構とを互いに縦
設し、かつ各電動機構のうち最先端のものには取
付け金具を有し、上記各電動機構が本体に対して
内装モータ及びギア機構で往復摺動するスライダ
ーを備えた硝子電極等のマニピユレータにおい
て、上記取付け金具に、横方向用のX軸微動機構
と縦方向用のY軸微動機構と高さ方向用のZ軸微
動機構とを縦設し、各微動機構のうち最先端のも
のに硝子電極等を固定するための第2の取付け金
具を設け、かつ各微動機構が揺動板と、該揺動板
の揺動基端に近接する位置を押圧自在な圧電素子
と、揺動板の先端の移動距離に応じて往復移動が
自在な微動板とから成ることを特徴とする硝子電
極等のマニピユレータ。
1 The X-axis electric mechanism for the horizontal direction, the Y-axis electric mechanism for the vertical direction, and the Z-axis electric mechanism for the height direction are installed vertically, and the most advanced of each electric mechanism is equipped with mounting brackets. In a manipulator such as a glass electrode, in which each electric mechanism has a slider that slides back and forth with respect to the main body by an internal motor and a gear mechanism, the mounting bracket has an X-axis fine movement mechanism for the horizontal direction and an X-axis fine movement mechanism for the vertical direction. A Y-axis fine movement mechanism and a Z-axis fine movement mechanism for the height direction are installed vertically, and the most advanced of each fine movement mechanism is provided with a second mounting bracket for fixing a glass electrode, etc. The mechanism consists of a rocking plate, a piezoelectric element that can freely press a position close to the rocking base end of the rocking plate, and a fine movement plate that can freely move back and forth depending on the movement distance of the tip of the rocking plate. A manipulator for glass electrodes, etc., characterized by:
JP7571287A 1987-03-27 1987-03-27 Manipulator for glass electrode or the like Granted JPS63240772A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7571287A JPS63240772A (en) 1987-03-27 1987-03-27 Manipulator for glass electrode or the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7571287A JPS63240772A (en) 1987-03-27 1987-03-27 Manipulator for glass electrode or the like

Publications (2)

Publication Number Publication Date
JPS63240772A JPS63240772A (en) 1988-10-06
JPH0481427B2 true JPH0481427B2 (en) 1992-12-24

Family

ID=13584128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7571287A Granted JPS63240772A (en) 1987-03-27 1987-03-27 Manipulator for glass electrode or the like

Country Status (1)

Country Link
JP (1) JPS63240772A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06192853A (en) * 1991-08-01 1994-07-12 Kagawa Pref Gov Method for hardening surface constituted of film formed by electroplating method and film formed by physical vapor growth method
JP2908151B2 (en) * 1992-12-01 1999-06-21 サンユー電子株式会社 Micro manipulator

Also Published As

Publication number Publication date
JPS63240772A (en) 1988-10-06

Similar Documents

Publication Publication Date Title
US5895084A (en) Cam operated microgripper
CN108732709B (en) Manual adjusting mechanism with five degrees of freedom
JPH0481427B2 (en)
JPH11270783A (en) Stand with adjustable moving unit
JPH0629734Y2 (en) Fine movement operation device such as glass electrode
JPH0533542A (en) Motor holder for actuator
JPS63244205A (en) Positioning device
JP6949084B2 (en) Adjustable mechanical holder for precision adjustment of the position of elements such as lenses
JPH074135Y2 (en) Manipulator for glass electrodes
JPH0373433B2 (en)
JP2525389Y2 (en) Coarse motion table integrated manipulator such as glass electrode
JPH0620398Y2 (en) Micro manipulator
JP3341151B2 (en) Hydraulic remote control type micromanipulator device
JPH045322B2 (en)
JP2537270Y2 (en) Rotary shaft coarse / fine movement device of surveying instrument
JP2001146906A (en) Fluid actuator and fine positioning device using the same
SU1476536A1 (en) Apparatus for small displacement
JPH02130514A (en) Micromanipulator
JPS58107246A (en) Regulator for slide of press machine
JPS61121108A (en) Fine movement driver
JPH0214865Y2 (en)
JPH05184165A (en) X-y table device
JPS61116062U (en)
CN114799934A (en) Initial corner adjustable compound pretension type precision rotary table
JPH05131383A (en) Microrobot

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071224

Year of fee payment: 15