JPH02130514A - Micromanipulator - Google Patents

Micromanipulator

Info

Publication number
JPH02130514A
JPH02130514A JP28415588A JP28415588A JPH02130514A JP H02130514 A JPH02130514 A JP H02130514A JP 28415588 A JP28415588 A JP 28415588A JP 28415588 A JP28415588 A JP 28415588A JP H02130514 A JPH02130514 A JP H02130514A
Authority
JP
Japan
Prior art keywords
fine movement
operator
base member
micromanipulator
elastic hinge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28415588A
Other languages
Japanese (ja)
Inventor
Yukinori Kawamura
幸則 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP28415588A priority Critical patent/JPH02130514A/en
Publication of JPH02130514A publication Critical patent/JPH02130514A/en
Pending legal-status Critical Current

Links

Landscapes

  • Microscoopes, Condenser (AREA)

Abstract

PURPOSE:To drive the micromanipulator accurately and smoothly through easy operation by composing a fine adjusting device of a base member, a moving member, and a displacement member consisting of a lamination type piezoelectric element, and holding an operating element on the moving member of this fine adjusting device and controlling the fine moving operation of the operating element electrically. CONSTITUTION:The lamination type piezoelectric element is used as the displacement member 4 and the displacement member 4 composed of the lamination type piezoelectric element is interposed between the base member 2 and the moving member 3 coupled with this base member 2 through an elastic hinge 6 through the elastic hinge 5 to constitute the fine adjusting device. When the displacement member 4 is displaced P by being applied with a DC voltage, the moving member 3 which holds the operating element 9 rotates and moves by a fine angle in plane about the elastic hinge 6 as a fulcrum and the tip of the operating element 9 is also displaced Q correspondingly. Consequently, the operating element is moved smoothly with high accuracy by the extremely simple mechanism. Further, the micromanipulator is constituted very compactly.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は、微生物や細胞などを顕微鏡下で観察する際
に、微細針などを微小変位させるために用いるマイクロ
マニピュレータに関する。
The present invention relates to a micromanipulator used to minutely displace a fine needle or the like when observing microorganisms, cells, etc. under a microscope.

【従来の技術】[Conventional technology]

生体の持っている機能を研究する生物学の分野において
、生体を構成する基本単位である細胞に直接実験操作を
加えることは最も重要な研究方法の一つである。生体の
細胞は、普通数ミクロンから数十ミクロンの大きさであ
り、肉眼で実験操作を加えることは不可能である。した
がって、顕微鏡下で操作されることが多く、その視野内
で正確に操作するための手に当たるマイクロマニピュレ
−タは必要不可欠である。 すなわち、マイクロマニピュレータは、生体の細胞や器
官に、摘出、分離、刺激、引張、圧縮などの操作を加え
る手の働きをするもので、通常は針状の操作子が用いら
れる。 従来のマイクロマニピュレータにおける操作子のミクロ
ンオーダの微小量駆動機構としては、ラック・ピニオン
ギヤ機構、ねじ機構、あるいは油圧機構などが採用され
ており、その位置決めや駆動はすべて手動操作で行って
いた。
In the field of biology, which studies the functions of living organisms, one of the most important research methods is to directly perform experimental manipulations on cells, which are the basic units that make up living organisms. Living cells usually have a size of several microns to several tens of microns, making it impossible to perform experiments with the naked eye. Therefore, it is often operated under a microscope, and a micromanipulator that can be used in the hand to operate accurately within the field of view is essential. That is, a micromanipulator functions as a hand that performs operations such as extraction, separation, stimulation, tension, and compression on living cells and organs, and typically uses a needle-like operator. Conventional micromanipulators employ rack-and-pinion gear mechanisms, screw mechanisms, or hydraulic mechanisms as microscopic drive mechanisms on the order of microns for operating elements, and all positioning and driving are performed manually.

【発明が解決しようとする課題】[Problem to be solved by the invention]

ところが、このような従来のマイクロマニピュレータは
操作が複雑で、位置決め精度にも問題があった。そこで
、パルスモータを駆動源としたマイクロマニピュレータ
も考えられているが、やはり位置決め精度、再現性、応
答性、あるいは動きの滑らかさなどにおいて満足するよ
うな結果を得ることは困難である。 この発明は、操作子の微小動作を電気的に制御すること
により、簡単な操作で精度良く、かつ滑らかに駆動でき
るようにしたマイクロマニピュレータを提供することを
目的とするものである。
However, such conventional micromanipulators are complicated to operate and have problems with positioning accuracy. Therefore, a micromanipulator using a pulse motor as a driving source has been considered, but it is still difficult to obtain satisfactory results in terms of positioning accuracy, reproducibility, responsiveness, or smoothness of movement. An object of the present invention is to provide a micromanipulator that can be driven accurately and smoothly with simple operation by electrically controlling minute movements of an operator.

【課題を解決するための手段】[Means to solve the problem]

上記目的を達成するために、この発明のマイクロマニピ
ュレータは、ベース部材と、このベース部材に弾性ヒン
ジを介して結合した移動部材と、この移動部材と前記ベ
ース部材との間に弾性ヒンジを介して挿入した積層型圧
電素子からなる変位部材とにより微動装置を構成し、こ
の微動装置の前記移動部材に操作子を保持させものであ
る。 また、この発明のマイクロマニピュレータは、ベース部
材と、このベース部材に弾性ヒンジを介して結合した移
動部材と、この移動部材と前記ベース部材との間に弾性
ヒンジを介して挿入した積層型圧電素子からなる変位部
材とにより構成した微動部材を2組設け、これらの微動
装置を同軸上で互いに90度回転させた状態で一方の前
記微妙装置の前記移動部材に他方の前記微動装置の前記
ベース部材を結合することにより直列に接続し、他方の
前記移動部材に操作子を保持させるものである。 更にまた、この発明のマイクロマニピュレータは、上記
マイクロマニピュレータにおいて、操作子と移動部材と
の間に、前記操作子の軸方向に変位する積層型圧電素子
からなる変位部材を介挿するものである。
In order to achieve the above object, the micromanipulator of the present invention includes a base member, a movable member coupled to the base member via an elastic hinge, and a movable member coupled to the base member via an elastic hinge. A fine movement device is constituted by the inserted displacement member made of a laminated piezoelectric element, and the operating member is held by the moving member of this fine movement device. Further, the micromanipulator of the present invention includes a base member, a movable member coupled to the base member via an elastic hinge, and a laminated piezoelectric element inserted between the movable member and the base member via the elastic hinge. Two sets of fine movement members are provided, and with these fine movement devices rotated 90 degrees with respect to each other on the same axis, the base member of the other fine movement device is attached to the moving member of one of the fine movement devices. The two movable members are connected in series, and the other movable member holds the operator. Furthermore, in the micromanipulator of the present invention, a displacement member made of a laminated piezoelectric element that is displaced in the axial direction of the operator is inserted between the operator and the moving member.

【作 用】[For use]

積層型圧電素子は圧電セラミックスなどからなる圧電材
料層と電極層とを交互に積層したもので、電極層間に直
流電圧を印加すると各圧電材料層が圧電縦効果により伸
長し、その総和として積層型圧電素子が縦方向に伸長す
る。この変位は印加電圧の制御によりサブミクロンオー
ダで制御できる。 そこで、この発明はこの積層型圧電素子を変位部材とし
て用い、ベース部材とこのベース部材に弾性ヒンジを介
して結合された移動部材との間に積層型圧電素子からな
る変位部材を弾性ヒンジを介して挿入し、微動装置を構
成したものである。 変位部材に直流電圧を印加して変位させると、操作子を
保持した移動部材は弾性ヒンジを支点として平面内で微
小角度回転移動し、これに応じて操作子の先端も変位す
る。 また、2組の微動装置を同軸上で互いに90度回転させ
た状態で、一方の前記微動装置の前記移動部材に他方の
前記微動装置の前記ベース部材を結合することにより直
列に接続し、他方の微動装置の移動部材に操作子を保持
させることにより、操作子の先端を2次元平面内で変位
させることができる。更に、この操作子と移動部材との
間に変位部材を介挿することにより、操作子の先端を3
次元空間内で変位させることができる。
A laminated piezoelectric element is made by alternately laminating piezoelectric material layers made of piezoelectric ceramics, etc. and electrode layers. When a DC voltage is applied between the electrode layers, each piezoelectric material layer expands due to the piezoelectric longitudinal effect, and the sum of the piezoelectric material layers is a laminated piezoelectric element. The piezoelectric element extends vertically. This displacement can be controlled on the submicron order by controlling the applied voltage. Therefore, the present invention uses this laminated piezoelectric element as a displacement member, and connects the displacement member made of the laminated piezoelectric element between a base member and a movable member connected to the base member via an elastic hinge. This device is inserted into a fine movement device. When a direct current voltage is applied to the displacement member to cause the displacement member to be displaced, the movable member holding the operator rotates within a plane by a small angle using the elastic hinge as a fulcrum, and the tip of the operator is also displaced accordingly. Further, two sets of fine movement devices are coaxially rotated 90 degrees with respect to each other, and connected in series by coupling the base member of the other fine movement device to the moving member of one of the fine movement devices, and the other fine movement device is connected in series. By holding the operating element in the movable member of the fine movement device, the tip of the operating element can be displaced within a two-dimensional plane. Furthermore, by inserting a displacement member between this operator and the movable member, the tip of the operator can be
It can be displaced in dimensional space.

【実施例】 第1図はこの発明の第1の実施例を示す側面図である。 第1図において、1はマイクロマニピュレータの微動装
置である。この微動装置1において、2は断面が長方形
、側面形状が図示の通りL形のフレームを兼ねたベース
部材、3は直方体状の移動部材、4は積層型圧電素子か
らなる変位部材、5は変位部材4を保持するための断面
が長方形の保持部材である。 ベース部材2と移動部材3とは弾性ヒンジ6で結合され
、また保持部材5はベース部材2及び移動部材3とそれ
ぞれ弾性ヒンジ7を介して結合されている。これらベー
ス部材2、移動部材3、保持部材5、弾性ヒンジ6.7
はステンレス、りん青銅などの金属を用い、切削加工に
より一体に形成されている。変位部材4は断面が4×5
胴、長さが20飾の積層型圧電素子(例えば、日本電気
■製、NPAシリーズ)で、保持部材5,5間に接着に
より保持されている。移動部材3にはホルダ8が溶接さ
れ、このホルダ8に操作子9が取り付けられている。操
作子9として、図示実施例では微小ガラス針が用いられ
ている。変位部材4にはリード線10が取り付けられ、
このリード線10は直流電源11に接続されている。 このような構成において、変位部材4に直流電源11か
ら電圧を印加すると、変位部材4が電圧に応じた量だけ
図の矢印P方向に伸び、移動部材3は弾性ヒンジ6を支
点として図の時計方向に微小角度回転変位する。その結
果、移動部材3に保持された操作子9の先端は、図の矢
印Q方向に変位する。図示実施例の場合、電圧を0〜1
50vの範囲内で変化させたところ、変位部材4は最大
15μm変位し、このとき移動部材3は約0.05度回
転変位し、操作子9の先端は約75μm変位した。変位
部材4の分解能は0.1μm程度であった。 第2図はこの発明の第2の実施例を示し、第2図(A)
は一部分を断面にした側面図、第2図(B)はその平面
図である。第2の実施例においては、第1の実施例にお
ける微動装置lが2組設けられている。各微動装置1は
同一構造のものであるが、第2図上はそれぞれA及びB
の添字を付して区別するものとする。 さて、第2図において、微動装置IAとIBとは、同軸
上で、すなわち、ベース部材2人と2Bの軸線を通る共
通線上で互いに90度回転した状態で、微動装置IAの
移動部材3Aに微動装置IBのベース部材2Bが結合さ
れて直列に接続されている。図示実施例においては、微
動装置IAとIBの全体がステンレスを切削加工して一
体に形成され、したがって、移動部材3Aとベース部材
2Bとは一体となっている。 微動装置IBの移動部材3Bには、操作子9が保持され
ているが、この操作子9と移動部材3Bとの間には、変
位部材12が介挿されている。具体的には、移動部材3
Bに溶接されたステンレスなどの金属からなる棒状のベ
ース部材13内に変位部材12と、この変位部材12に
つば状の基端部14aが当接するホルダ14とがスライ
ド可能に納められ、ホルダ14に微小針からなる操作子
9が取り付けられている。ベース部材13とホルダ14
の基端部14aとの間には、ホルダ14を変位部材12
に常時押圧する圧縮ばね15が挿入されている。変位部
材12は、断面が2×2ffII11、長さが10++
+mの積層型圧電素子(例えば、日本電気■製、NPA
シリーズ)が用いられている。変位部材4A、4B及び
12は、共に図示しない直流電源に接続され、それぞれ
独立して電圧が印加されるようになっている。 このような構成において、変位部材4Aに電圧を印加す
ると、移動部材3Aは弾性ヒンジ6Aを支点にして第2
図(A)の反時計方向に回転変位し、操作子9は図のy
方向に変位する。また、変位部材4Bに電圧を印加する
と、移動部材3Bは弾性ヒンジ6Bを支点にして第2図
(B)の時計方向に回転変位し、操作子9は図のX方゛
向に変位する。更に、変位部材12に電圧を印加すると
、変位部材12は圧縮ばね15のばね力に抗して第2図
(A)の矢印R方向に変位し、操作子9は図の2方向に
変位する。 このように、第2の実施例においては、各変位部材4A
、4B、12に電圧を印加することにより、操作子9を
3次元空間内で変位させることができる。2次元変位の
みでよい場合は、操作子9を移動部材3Bに直接取り付
ければよい。図示実施例の場合、電圧をO〜150■の
範囲内で変化させたところ、操作子9の先端はx、y方
向にそれぞれ約100μmS z方向に約10am変位
した。このときの分解能は、約0,1μmであった。 なお、マイクロマニピュレータの粗動機構については従
来装置を使用できるので、上記実施例にの説明には含め
なかった。
Embodiment FIG. 1 is a side view showing a first embodiment of the present invention. In FIG. 1, 1 is a fine movement device of a micromanipulator. In this fine movement device 1, 2 is a base member that also serves as a frame with a rectangular cross section and an L-shaped side profile as shown, 3 is a rectangular parallelepiped moving member, 4 is a displacement member made of a laminated piezoelectric element, and 5 is a displacement member. It is a holding member with a rectangular cross section for holding the member 4. The base member 2 and the movable member 3 are coupled by an elastic hinge 6, and the holding member 5 is coupled to the base member 2 and the movable member 3 via elastic hinges 7, respectively. These base member 2, moving member 3, holding member 5, elastic hinge 6.7
is made of metal such as stainless steel or phosphor bronze, and is integrally formed by cutting. The displacement member 4 has a cross section of 4×5
The body is a laminated piezoelectric element having a length of 20 pieces (for example, NPA series manufactured by NEC Corporation), and is held between holding members 5 by adhesive. A holder 8 is welded to the movable member 3, and an operator 9 is attached to the holder 8. As the operator 9, a minute glass needle is used in the illustrated embodiment. A lead wire 10 is attached to the displacement member 4,
This lead wire 10 is connected to a DC power source 11. In such a configuration, when a voltage is applied to the displacement member 4 from the DC power source 11, the displacement member 4 extends in the direction of the arrow P in the figure by an amount corresponding to the voltage, and the movable member 3 uses the elastic hinge 6 as a fulcrum to rotate the clock in the figure. A minute rotational displacement in the direction. As a result, the tip of the operator 9 held by the movable member 3 is displaced in the direction of arrow Q in the figure. In the illustrated embodiment, the voltage is 0 to 1
When the voltage was varied within a range of 50 V, the displacement member 4 was displaced by a maximum of 15 μm, the movable member 3 was rotationally displaced by about 0.05 degrees, and the tip of the operator 9 was displaced by about 75 μm. The resolution of the displacement member 4 was approximately 0.1 μm. FIG. 2 shows a second embodiment of the invention, and FIG.
2 is a partially sectional side view, and FIG. 2(B) is a plan view thereof. In the second embodiment, two sets of fine movement devices l in the first embodiment are provided. Each fine movement device 1 has the same structure, but the ones shown in Fig. 2 are A and B, respectively.
shall be distinguished by adding a subscript. Now, in FIG. 2, the fine movement devices IA and IB are rotated 90 degrees to each other on the same axis, that is, on a common line passing through the axes of the two base members and 2B, and the movement member 3A of the fine movement device IA is The base members 2B of the fine movement device IB are coupled and connected in series. In the illustrated embodiment, the entire fine movement devices IA and IB are integrally formed by cutting stainless steel, and therefore, the moving member 3A and the base member 2B are integrally formed. An operator 9 is held on the moving member 3B of the fine movement device IB, and a displacement member 12 is inserted between the operator 9 and the moving member 3B. Specifically, the moving member 3
A displacement member 12 and a holder 14 whose brim-shaped base end 14 a is in contact with the displacement member 12 are slidably housed in a rod-shaped base member 13 made of metal such as stainless steel and welded to B. An operator 9 made of a microneedle is attached to the holder. Base member 13 and holder 14
The holder 14 is disposed between the displacing member 12 and the base end 14a of the holder 14.
A compression spring 15 is inserted which constantly presses the . The displacement member 12 has a cross section of 2×2ffII11 and a length of 10++.
+m laminated piezoelectric element (for example, manufactured by NEC Corporation, NPA
series) are used. The displacement members 4A, 4B, and 12 are all connected to a DC power source (not shown), and a voltage is applied to each of them independently. In such a configuration, when a voltage is applied to the displacement member 4A, the movable member 3A moves to the second position using the elastic hinge 6A as a fulcrum.
Rotationally displaced in the counterclockwise direction in Figure (A), the operator 9 is
Displaced in the direction. Further, when a voltage is applied to the displacement member 4B, the displacement member 3B is rotationally displaced clockwise in FIG. 2(B) using the elastic hinge 6B as a fulcrum, and the operator 9 is displaced in the X direction in the figure. Furthermore, when a voltage is applied to the displacement member 12, the displacement member 12 is displaced in the direction of arrow R in FIG. 2(A) against the spring force of the compression spring 15, and the operator 9 is displaced in the two directions shown in the figure. . In this way, in the second embodiment, each displacement member 4A
, 4B, and 12, the operator 9 can be displaced in three-dimensional space. If only two-dimensional displacement is required, the operator 9 may be directly attached to the moving member 3B. In the case of the illustrated embodiment, when the voltage was varied within the range of 0 to 150 cm, the tip of the operator 9 was displaced by approximately 100 μm S in each of the x and y directions and approximately 10 am in the z direction. The resolution at this time was approximately 0.1 μm. Note that the coarse movement mechanism of the micromanipulator is not included in the description of the above embodiments because a conventional device can be used.

【発明の効果】【Effect of the invention】

この発明によれば、非常に簡単な機構で操作子を高精度
に、かつ滑らかに移動させることができ、しかもマイク
ロマニピュレータ全体を非常にコンパクトに構成するこ
とができる。また、電圧制御により変位量を変化させら
れるので、操作が簡便で、自動化、省力化も容易である
According to this invention, the operator can be moved with high precision and smoothly using a very simple mechanism, and the entire micromanipulator can be configured very compactly. Furthermore, since the amount of displacement can be changed by voltage control, operation is simple, and automation and labor saving are also easy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の第1の実施例の側面図、第2図(A
)はこの発明の第2の実施例の一部分を断面にした側面
図、第2図(B)はその平面図である。 1、IA、IB・・・微動装置、2.2A、2B・・・
ベース部材、3.3A、3B・・・移動部材、4.4A
、4B・・・変位部材、6.6A、6B、7.7A。 7B・・・弾性ヒンジ、9・・・操作子、11・・・直
流電源、12・・・変位部材。
FIG. 1 is a side view of the first embodiment of the invention, and FIG. 2 (A
) is a partially sectional side view of the second embodiment of the present invention, and FIG. 2(B) is a plan view thereof. 1, IA, IB...fine movement device, 2.2A, 2B...
Base member, 3.3A, 3B... Moving member, 4.4A
, 4B...displacement member, 6.6A, 6B, 7.7A. 7B... Elastic hinge, 9... Operator, 11... DC power supply, 12... Displacement member.

Claims (1)

【特許請求の範囲】 1)ベース部材と、このベース部材に弾性ヒンジを介し
て結合した移動部材と、この移動部材と前記ベース部材
との間に弾性ヒンジを介して挿入した積層型圧電素子か
らなる変位部材とにより微動装置を構成し、この微動装
置の前記移動部材に操作子を保持させたことを特徴とす
るマイクロマニピュレータ。 2)ベース部材と、このベース部材に弾性ヒンジを介し
て結合した移動部材と、この移動部材と前記ベース部材
との間に弾性ヒンジを介して挿入した積層型圧電素子か
らなる変位部材とにより構成した微動部材を2組設け、
これらの微動装置を同軸上で互いに90度回転させた状
態で一方の前記微動装置の前記移動部材に他方の前記微
動装置の前記ベース部材を結合することにより直列に接
続し、他方の前記移動部材に操作子を保持させたことを
特徴とするマイクロマニピュレータ。 3)請求項1又は請求項2記載のマイクロマニピュレー
タにおいて、操作子と移動部材との間に、前記操作子の
軸方向に変位する積層型圧電素子からなる変位部材を介
挿したことを特徴とするマイクロマニピュレータ。
[Claims] 1) A base member, a movable member coupled to the base member via an elastic hinge, and a laminated piezoelectric element inserted between the movable member and the base member via an elastic hinge. 1. A micromanipulator comprising: a fine movement device configured by a displacement member; and an operator is held by the moving member of the fine movement device. 2) Consisting of a base member, a movable member coupled to this base member via an elastic hinge, and a displacement member consisting of a laminated piezoelectric element inserted between this movable member and the base member via an elastic hinge. Two sets of fine movement members are provided,
These fine movement devices are connected in series by coupling the base member of the other fine movement device to the moving member of one of the fine movement devices in a state where they are rotated 90 degrees with respect to each other on the same axis, and the movement member of the other fine movement device is connected in series. A micromanipulator characterized by holding an operator. 3) The micromanipulator according to claim 1 or 2, characterized in that a displacement member made of a laminated piezoelectric element that is displaced in the axial direction of the operator is inserted between the operator and the moving member. micromanipulator.
JP28415588A 1988-11-10 1988-11-10 Micromanipulator Pending JPH02130514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28415588A JPH02130514A (en) 1988-11-10 1988-11-10 Micromanipulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28415588A JPH02130514A (en) 1988-11-10 1988-11-10 Micromanipulator

Publications (1)

Publication Number Publication Date
JPH02130514A true JPH02130514A (en) 1990-05-18

Family

ID=17674890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28415588A Pending JPH02130514A (en) 1988-11-10 1988-11-10 Micromanipulator

Country Status (1)

Country Link
JP (1) JPH02130514A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06167657A (en) * 1992-12-01 1994-06-14 Sanyuu Denshi Kk Micro-manipulator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06167657A (en) * 1992-12-01 1994-06-14 Sanyuu Denshi Kk Micro-manipulator

Similar Documents

Publication Publication Date Title
CA2005028C (en) Microdrive apparatus
US4610475A (en) Piezoelectric polymer micromanipulator
JPH03119989A (en) Micro-injector and method for controlling injection thereof
KR900005637A (en) Piezo actuator
JPH0266841A (en) Micromanipulator
KR970706940A (en) ELECTROMECHANICAL POSITIONING UNIT
US5768038A (en) Lens device
Breguet et al. Applications of piezo-actuated micro-robots in micro-biology and material science
EP1455990B1 (en) Micromanupulator including piezoelectric benders
Bergander et al. Micropositioners for microscopy applications based on the stick-slip effect
JPH02262876A (en) Piezoelectric rotery device
JPH02130514A (en) Micromanipulator
JP6638124B2 (en) Stage device and drive mechanism used for same
Bergander et al. Development of miniature manipulators for applications in biology and nanotechnologies
JP5126675B2 (en) Manipulator system
JP5024657B2 (en) manipulator
IT8909590A1 (en) MICRO-CONTROL DEVICE
JPH0772520B2 (en) Piezoelectric fuel injection valve
JP2642636B2 (en) Driving mechanism of probe unit and driving method thereof
JPS62168207A (en) Fine adjustment device for micromanipulator
JP2607560B2 (en) Linear actuator
JPS63240772A (en) Manipulator for glass electrode or the like
JPH0332378A (en) Micro moving device
JP2016077056A (en) Vibration actuator
JPH02269583A (en) Micromanipulator