JPH0373433B2 - - Google Patents

Info

Publication number
JPH0373433B2
JPH0373433B2 JP60296140A JP29614085A JPH0373433B2 JP H0373433 B2 JPH0373433 B2 JP H0373433B2 JP 60296140 A JP60296140 A JP 60296140A JP 29614085 A JP29614085 A JP 29614085A JP H0373433 B2 JPH0373433 B2 JP H0373433B2
Authority
JP
Japan
Prior art keywords
axis
drive mechanism
hydraulic cylinder
moving
axis moving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60296140A
Other languages
Japanese (ja)
Other versions
JPS61265284A (en
Inventor
Eiichi Narishige
Shinji Yoneyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NARISHIGE KK
NARUMO KAGAKU KIKAI KENKYUSHO KK
Original Assignee
NARISHIGE KK
NARUMO KAGAKU KIKAI KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NARISHIGE KK, NARUMO KAGAKU KIKAI KENKYUSHO KK filed Critical NARISHIGE KK
Priority to JP29614085A priority Critical patent/JPS61265284A/en
Publication of JPS61265284A publication Critical patent/JPS61265284A/en
Publication of JPH0373433B2 publication Critical patent/JPH0373433B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、基礎医学又は近年盛んに研究される
に至つている遺伝子組換えなどのバイオテクノロ
ジーの分野で細胞中の情報を取り出すなどに利用
される硝子電極等を液圧により遠隔操作ができる
ようにしたマニピユレータに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention can be used to extract information from cells in the field of basic medicine or biotechnology such as genetic recombination, which has been actively researched in recent years. The present invention relates to a manipulator that enables remote control of glass electrodes and the like using liquid pressure.

〔従来の技術〕[Conventional technology]

近年、硝子電極は、径1〜3mmφで、長さが50
〜60mmの注射針状の硝子管で、その内部には塩化
カリウムKClや塩化ナトリウムNaCl等の電解液
が注入されており、先端径が0.1μオーダにしたも
のが開発されているのに至つて、これを細胞中に
挿し込むことによつて単一細胞の各種情報を取り
出し、記録が可能となつたことは既に知られると
ころである。
In recent years, glass electrodes have a diameter of 1 to 3 mmφ and a length of 50 mm.
It is a ~60 mm needle-shaped glass tube into which an electrolyte such as potassium chloride KCl or sodium chloride NaCl is injected, and one with a tip diameter on the order of 0.1 μ has been developed. It is already known that by inserting this into a cell, it is possible to extract and record various information about a single cell.

ところで、先端が0.1μの硝子電極を単一細胞内
に挿入する際は、細胞や電極を破壊しないように
電極を正しく位置決めすると共に、微細にかつ振
れや蛇行のないように移動させなければならな
い。
By the way, when inserting a glass electrode with a tip of 0.1μ into a single cell, the electrode must be positioned correctly so as not to destroy the cell or the electrode, and must be moved minutely and without wobbling or meandering. .

本出願人は、その要望を満足させるべく、特願
昭58−27478号(特開昭59−153162号)の如きマ
ニピユレータを提案した。該マニピユレータは、
第8図に示す如く油圧式で、X軸直線駆動機構8
1を操作すると、操作第82に取り付けられた硝
子電極A等が縦方向(以下X軸方向と称す)に移
動し、又Y軸直線駆動機構83を操作すれば、硝
子電極A等が横方向(以下Y軸方向と称す)に移
動し、更に傾倒レバー85を回してZ軸駆動機構
84を作動させれば、硝子電極A等が高さ方向
(以下Z軸方向と称す)に移動するようになつて
いる。しかも、前記傾倒レバー85を何れかの方
向に傾倒させれば、X−Y軸平面内駆動機構86
により、硝子電極等がレバーの傾倒方向と傾倒量
に対応して移動するようになつている。
In order to satisfy this demand, the present applicant proposed a manipulator as disclosed in Japanese Patent Application No. 58-27478 (Japanese Unexamined Patent Publication No. 59-153162). The manipulator is
As shown in Fig. 8, a hydraulic type X-axis linear drive mechanism 8
1, the glass electrode A etc. attached to the operation No. 82 will move in the vertical direction (hereinafter referred to as the X-axis direction), and if the Y-axis linear drive mechanism 83 is operated, the glass electrode A etc. will move in the horizontal direction. (hereinafter referred to as the Y-axis direction) and further rotate the tilting lever 85 to operate the Z-axis drive mechanism 84, so that the glass electrode A etc. will move in the height direction (hereinafter referred to as the Z-axis direction). It's getting old. Moreover, if the tilting lever 85 is tilted in any direction, the X-Y axis in-plane drive mechanism 86
As a result, the glass electrode etc. are moved in accordance with the direction and amount of tilting of the lever.

しかし、このマニピユレータは、X軸直線駆動
機構81及びY軸直線駆動機構83が、X−Y軸
平面内駆動機構86と全く別に形成されて、それ
ぞれが操作台との間において配管され、この結果
極めて部品点数が多いばかりか、操作台82はも
とより、X軸直線駆動機構81、Y軸直線駆動機
構83及びZ軸駆動機構84、更にはX−Y軸平
面内駆動機構86内に組込まれる各液圧シリンダ
が、組込み個所や該個所の機構上の相違に応じ
て、寸法や形状の異なるものが使用されていて、
各液シリンダの相互間で互換性がなく、それ専用
の液圧シリンダを使用せねばならず、甚だ不便で
あつた。又X−Y軸平面内駆動機構86内の各液
圧シリンダ87,88は、操作台82の対応する
液圧シリンダのみならず、X軸直線駆動機構81
の液圧シリンダやY軸直線駆動機構83の液圧シ
リンダにもチユーブで接続されている。従つて、
各液圧シリンダは組込み箇所に応じてそれ専用の
ものを使用せねばならないことはもとより、液の
注入や空気抜きが容易でなく組立が極めて煩瑣
で、予め各液圧シリンダの相互間をチユーブで接
続すると共に、内部に液媒体を封入して、耐圧や
洩れ等の各種の試験を行つた後、操作台82やX
軸直線駆動機構81等の各駆動機構83,84に
組込むことが容易でなく、組込みの後、上記各種
の試験を行つているのが現状であり、試験に長期
間を必要として、この間にマニピユレータとして
の使用ができないなど、利便性に欠けるものであ
つた。
However, in this manipulator, the X-axis linear drive mechanism 81 and the Y-axis linear drive mechanism 83 are formed completely separately from the X-Y-axis in-plane drive mechanism 86, and each is piped between the operation console. Not only are the number of parts extremely large, but also each part incorporated in the operation table 82, the X-axis linear drive mechanism 81, the Y-axis linear drive mechanism 83, the Z-axis drive mechanism 84, and the X-Y axis in-plane drive mechanism 86. Hydraulic cylinders are used with different sizes and shapes depending on the location where they are installed and the mechanical differences in those locations.
The hydraulic cylinders are not compatible with each other, and a dedicated hydraulic cylinder must be used, which is extremely inconvenient. In addition, each hydraulic cylinder 87, 88 in the X-Y axis in-plane drive mechanism 86 is connected not only to the corresponding hydraulic cylinder of the operating table 82 but also to the X-axis linear drive mechanism 81.
It is also connected to the hydraulic cylinder of the Y-axis linear drive mechanism 83 through a tube. Therefore,
Not only does each hydraulic cylinder have to be specially designed depending on where it is installed, but it is also difficult to inject liquid and bleed air, making assembly extremely complicated, and the hydraulic cylinders are connected in advance with tubes. At the same time, after sealing a liquid medium inside and performing various tests such as pressure resistance and leakage,
It is not easy to assemble into each drive mechanism 83, 84 such as the axial linear drive mechanism 81, and the various tests mentioned above are currently conducted after assembly. It lacked convenience as it could not be used as a

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

そこで、本発明は、上記事情に鑑み、予め液圧
シリンダ相互間をチユーブで連繋して液圧シリン
ダユニツトを構成し、内部に液媒体を封入した
後、耐圧や洩れ等の各種の試験を行つておき、マ
ニピユレータのうち何れからの液圧シリンダや液
圧経路に交換の必要性が生じた時、直ちに交換を
してマニピユレータとしての使用ができ、しかも
交換に際して、X軸直線駆動機構等各部所の如何
に拘らず総ての箇所に同じものが容易に取付けで
きる硝子電極等のマニピユレータを提供すること
を目的とする。
Therefore, in view of the above circumstances, the present invention constructs a hydraulic cylinder unit by connecting hydraulic cylinders with each other through tubes, seals a liquid medium inside, and then conducts various tests such as pressure resistance and leakage. In addition, when it becomes necessary to replace the hydraulic cylinder or hydraulic path from any of the manipulators, you can immediately replace them and use them as a manipulator. It is an object of the present invention to provide a manipulator for glass electrodes, etc., which can be easily attached to all locations regardless of the location.

〔発明が解決しようとする手段〕[Means to be solved by the invention]

本発明は、上記目的を達成するために、X軸直
線駆動機構,Y軸直線駆動機構およびZ軸駆動機
構を備えた駆動部と、X軸移動部,Y軸移動部お
よびZ軸移動部を備えた操作部とからなり、駆動
部の各軸移動機構を操作することによつて操作部
の各移動部を移動させて硝子電極等の操作が行わ
れる硝子電極等のマニピユレータにおいて、 駆動部における各軸駆動機構の液圧シリンダ取
付部と操作部における各移動部の液圧シリンダ取
付部を共用形とすると共に、二本の液圧シリンダ
をチユーブで連繋して液圧シリンダユニツトを構
成し、該液圧シリンダユニツトの両液圧シリンダ
を駆動部における軸駆動機構の取付部と操作部に
おける各該当軸移動部の取付部に装着したことを
特徴とする硝子電極等のマニピユレータである。
In order to achieve the above object, the present invention includes a drive unit including an X-axis linear drive mechanism, a Y-axis linear drive mechanism, and a Z-axis drive mechanism, and an X-axis moving unit, a Y-axis moving unit, and a Z-axis moving unit. In a manipulator for glass electrodes, etc., in which operation of a glass electrode, etc. is performed by moving each moving part of the operating part by operating each axis movement mechanism of the driving part. The hydraulic cylinder mounting part of each shaft drive mechanism and the hydraulic cylinder mounting part of each moving part in the operation part are shared, and the two hydraulic cylinders are connected with a tube to form a hydraulic cylinder unit, This is a manipulator for glass electrodes, etc., characterized in that both hydraulic cylinders of the hydraulic cylinder unit are mounted on a mounting part of a shaft drive mechanism in a driving part and a mounting part of each corresponding shaft moving part in an operating part.

〔実施例〕〔Example〕

以下、本発明に係る硝子電極等のマニピユレー
タの一実施例を図面に基づき説明する。本発明
は、X軸直線駆動機構5,Y軸直線駆動機構6お
よびZ軸駆動機構4を備えた駆動部1と、X軸移
動部37,Y軸移動部38およびZ軸移動部39
を備えた操作部2とからなり、駆動部1の各軸移
動機構を操作することによつて操作部2の各移動
部37,38,39を移動させて硝子電極等の操
作が行われる硝子電極等のマニピユレータにおい
て、 駆動部1における各軸駆動機構5,6,4の液
圧シリンダ取付部2と操作部における各移動部3
7,38,39の液圧シリンダ取付部を共用形と
すると共に、二本の液圧シリンダをチユーブで連
繋して液圧シリンダユニツト90を構成し、該液
圧シリンダユニツトUの両液圧シリンダを駆動部
における軸駆動機構5,6,4の取付部と操作部
における各該軸移動部37,38,39の取付部
に装着した硝子電極等のマニピユレータである。
第1図において、1は駆動部、2は操作台であ
る。駆動部1はX−Y軸平面内駆動機構3、Z軸
駆動機構4、X軸直線駆動機構5、及びY軸直線
駆動機構6とからなつている。X−Y軸平面内駆
動機構3は、第1図及び第2図に示す如く、固定
基台7が基盤8にビス止め去れかつ、固定基台7
にY軸スライド台9が横方向つまりY軸方向に摺
動自在に装着されている。固定基台7の端面に
は、L字形のブラケツト10がビス止めされ、更
に該ブラケツト10にはY軸直線駆動機構6の本
体11がビスにより固定されている。本体11に
は、つまみ12のネジ軸13が螺合され、ネジ軸
13内の孔13aにはピストンロツド14の一端
が挿入されている。一方、Y軸スライド台9には
コ字形に形成したブラケツト15がY軸直線駆動
機構6と対応させてビス止めされ、更に該ブラケ
ツト15に液圧シリンダ16がビス17により固
定されている。液圧シリンダ16は後述するよう
に、内部に液圧室を有するケーシング18と、ダ
イヤフラムと、該ダイヤフラムをケーシング18
に取り付けると共にブラケツト15に固定するた
めの筒状体19とからなつている。上記Y軸スラ
イド台9にはX軸スライド台20がY軸スライド
台9に対し摺動自在に装着されている。Y軸スラ
イド台20の摺動方向は縦方向つまりX軸方向
で、固定基台7に対するY軸スライド台9の摺動
方向と直行する方向である。X軸スライド台20
の端面に、前記と同様ブラケツト21がビス止め
され、該ブラケツト21に液圧シリンダ22がビ
スにより固定されている。上記Y軸スライド台9
の端面には、液圧シリンダ22に対応させて、X
軸直線駆動機構5が取り付けられている。X軸直
線駆動機構5は、上記Y軸直線駆動機構6と同様
に、本体23と、該本体23に螺合されたつまみ
24と、該つまみ24のネジ軸の孔に一端が挿入
されたピストンロツド25とからなつていて、本
体23がブラケツト26にネジ止めされるように
なつている。ブラケツト26はY軸スライド台9
にネジ止めされていることは勿論である。X軸ス
ライド台20の上面には支軸27を介して球体2
8が固設されている。球体28には、第1図に示
す如く傾倒レバー29の大球30の受け孔31に
嵌入されている。大球30は調節リング32と押
えリング33と回転自在に支承されている。調節
リング32は、ケース34に螺合されており、該
ケース34に対し調節リング32を回わせば、球
体28の中心と大球30の中心との距離が変化を
し、この変化に伴い傾倒レバー29の傾倒量に対
する軸スライド第9乃至X軸スライド台20の摺
動量が変化し、延いては操作台2に取りつけた硝
子電極Aの移動量が調節できるようになつてい
る。傾倒レバー29には、上記と同様な液圧シリ
ンダ35が内装されており、又該液圧シリンダ3
5のダイヤフラムを押圧するピストンロツド36
aと、本体に螺合されたつまみ36とからなるZ
軸駆動機構4が設けられている。上記各液圧シリ
ンダ16,22,35は、後述するように操作台
2の対応する液圧シリンダに配管されるようにな
つている。
EMBODIMENT OF THE INVENTION Hereinafter, one embodiment of a manipulator such as a glass electrode according to the present invention will be described based on the drawings. The present invention includes a drive unit 1 including an X-axis linear drive mechanism 5, a Y-axis linear drive mechanism 6, and a Z-axis drive mechanism 4, an X-axis moving unit 37, a Y-axis moving unit 38, and a Z-axis moving unit 39.
The glass electrode, etc., is operated by moving each moving part 37, 38, 39 of the operating part 2 by operating each axis moving mechanism of the driving part 1. In a manipulator such as an electrode, the hydraulic cylinder mounting part 2 of each shaft drive mechanism 5, 6, 4 in the drive part 1 and each moving part 3 in the operation part
The hydraulic cylinder mounting parts 7, 38, and 39 are shared, and the two hydraulic cylinders are connected by a tube to form a hydraulic cylinder unit 90, and both hydraulic cylinders of the hydraulic cylinder unit U are connected. This is a manipulator such as a glass electrode attached to the mounting portions of the shaft drive mechanisms 5, 6, 4 in the driving section and the mounting portions of the shaft moving sections 37, 38, 39 in the operation section.
In FIG. 1, 1 is a drive unit, and 2 is an operation console. The drive unit 1 includes an X-Y axis in-plane drive mechanism 3, a Z-axis drive mechanism 4, an X-axis linear drive mechanism 5, and a Y-axis linear drive mechanism 6. As shown in FIGS. 1 and 2, the X-Y axis in-plane drive mechanism 3 has a fixed base 7 fixed to a base 8 with screws, and
A Y-axis slide table 9 is mounted to be slidable in the lateral direction, that is, in the Y-axis direction. An L-shaped bracket 10 is fixed to the end face of the fixed base 7 with screws, and a main body 11 of the Y-axis linear drive mechanism 6 is further fixed to the bracket 10 with screws. A screw shaft 13 of a knob 12 is screwed into the main body 11, and one end of a piston rod 14 is inserted into a hole 13a in the screw shaft 13. On the other hand, a U-shaped bracket 15 is fixed to the Y-axis slide table 9 with screws in correspondence with the Y-axis linear drive mechanism 6, and a hydraulic cylinder 16 is further fixed to the bracket 15 with screws 17. As will be described later, the hydraulic cylinder 16 includes a casing 18 having a hydraulic chamber therein, a diaphragm, and a diaphragm attached to the casing 18.
It consists of a cylindrical body 19 for attaching to the bracket 15 and fixing it to the bracket 15. An X-axis slide table 20 is mounted on the Y-axis slide table 9 so as to be able to slide freely relative to the Y-axis slide table 9. The sliding direction of the Y-axis slide table 20 is the vertical direction, that is, the X-axis direction, which is perpendicular to the sliding direction of the Y-axis slide table 9 with respect to the fixed base 7. X-axis slide stand 20
A bracket 21 is screwed to the end face of the bracket 21 in the same manner as described above, and a hydraulic cylinder 22 is fixed to the bracket 21 by screws. Above Y-axis slide table 9
On the end face of the
An axial linear drive mechanism 5 is attached. The X-axis linear drive mechanism 5, like the Y-axis linear drive mechanism 6, includes a main body 23, a knob 24 screwed onto the main body 23, and a piston rod with one end inserted into a hole in the threaded shaft of the knob 24. 25, and the main body 23 is screwed to a bracket 26. The bracket 26 is the Y-axis slide base 9
Of course, it is screwed to the A sphere 2 is attached to the upper surface of the X-axis slide table 20 via a support shaft 27.
8 is fixed. The ball 28 is fitted into a receiving hole 31 of a large ball 30 of the tilting lever 29, as shown in FIG. The large ball 30 is rotatably supported by an adjustment ring 32 and a presser ring 33. The adjustment ring 32 is screwed into the case 34, and when the adjustment ring 32 is rotated with respect to the case 34, the distance between the center of the sphere 28 and the center of the large sphere 30 changes, and the tilting occurs due to this change. The amount of sliding of the ninth to X-axis slide bases 20 relative to the amount of tilting of the lever 29 changes, and in turn, the amount of movement of the glass electrode A attached to the operating table 2 can be adjusted. The tilting lever 29 is equipped with a hydraulic cylinder 35 similar to the above, and the hydraulic cylinder 3
Piston rod 36 that presses the diaphragm 5
Z consisting of a and a knob 36 screwed onto the main body.
A shaft drive mechanism 4 is provided. Each of the hydraulic cylinders 16, 22, and 35 is arranged to be connected to a corresponding hydraulic cylinder of the operation console 2, as will be described later.

操作台2は、X軸移動部37、Y軸移動部3
8、Z軸移動部39とからなつている。X軸移動
部37、Y軸移動部38、及びZ軸移動部39
は、それぞれ同一構成で、組付けにより移動方向
が縦横及び高さ方向になるようにしたものであ
り、以下X軸移動部37についてのみ説明する。
X軸移動部37は第3乃至第5図に示す如く、断
面略コ字形の基台40を有し、基台40の溝孔4
1内にスライダ42がベアリング43により摺動
自在に装着されている。ベアリング46は、第5
図に示す如く基台40及びスライダ42の各溝内
にそれぞれ2本の線材よりなるレール44,45
を有し、各レール44,45間に複数のスチール
ボール46を介挿させたものである。スライダ4
2の端面中央部に、ピストンロツド47が挿通さ
れており、スライダ42の他端からピストンロツ
ド47の先部に至る孔48が設けてあつて、該孔
48内にリターンスプリング49を挿入し、基台
40の端板50とピストンロツド47の先端との
間にリターンスプリング49を掛け止めしてあ
る。即ち、リターンスプリング49は伸長時乃至
圧縮時において引張係数を損なわないようにでき
るだけ長さを長くしてある。基台40の他端には
ブラケツト51がビス止めされており、更に該ブ
ラケツト51に上記各液圧シリンダ16,22,
35と同一構成の液圧シリンダ52がビスにより
固定されている。液圧シリンダ52は、第4図に
示す如く、内部に液圧室53を有するケーシング
54と筒状体55の間でダイヤフラム56のフラ
ンジを挟圧し、それぞれの相互間をネジリング5
7で固定したものである。ケーシング54の周部
には、液媒の注入や空気抜きなどのための弁部5
8と駆動部1の液圧シリンダ22に接続するため
の口部材59とを有している。ダイヤフラム56
は第6図に示す如く、ゴムに網材が混入されたも
ので、口径が5mm以下と極小に形成され、フラン
ジにはシーリングのためのリング状の突条60が
一体に形成されている。そして、筒状体55は、
ビス61によりブラケツト51に固定されらるよ
うになつている。又、上記リターンスプリング4
9は、不用意に撓まないように、端板50に植設
されたロツド62が挿入されている。
The operation console 2 includes an X-axis moving section 37 and a Y-axis moving section 3.
8 and a Z-axis moving section 39. X-axis moving section 37, Y-axis moving section 38, and Z-axis moving section 39
have the same configuration, and the moving directions are the vertical, horizontal, and height directions when assembled, and only the X-axis moving section 37 will be described below.
As shown in FIGS. 3 to 5, the X-axis moving unit 37 has a base 40 having a substantially U-shaped cross section.
1, a slider 42 is slidably mounted on a bearing 43. The bearing 46 is the fifth
As shown in the figure, rails 44 and 45 each made of two wire rods are installed in each groove of the base 40 and the slider 42.
A plurality of steel balls 46 are inserted between each rail 44, 45. slider 4
A piston rod 47 is inserted into the center of the end face of the slider 42, and a hole 48 is provided from the other end of the slider 42 to the tip of the piston rod 47. A return spring 49 is inserted into the hole 48, and the base A return spring 49 is hooked between the end plate 50 of the piston rod 40 and the tip of the piston rod 47. That is, the length of the return spring 49 is made as long as possible so as not to impair the tensile coefficient during expansion or compression. A bracket 51 is screwed to the other end of the base 40, and the above-mentioned hydraulic cylinders 16, 22,
A hydraulic cylinder 52 having the same configuration as 35 is fixed with screws. As shown in FIG. 4, the hydraulic cylinder 52 squeezes a flange of a diaphragm 56 between a cylindrical body 55 and a casing 54 having a hydraulic chamber 53 therein, and a threaded ring 5 between them.
It is fixed at 7. A valve portion 5 for injecting liquid medium, venting air, etc. is provided around the periphery of the casing 54.
8 and a mouth member 59 for connecting to the hydraulic cylinder 22 of the drive unit 1. diaphragm 56
As shown in FIG. 6, it is made of rubber mixed with a mesh material, has a very small diameter of 5 mm or less, and has a ring-shaped protrusion 60 integrally formed on the flange for sealing. And the cylindrical body 55 is
It is designed to be fixed to the bracket 51 with screws 61. Also, the above return spring 4
9 has a rod 62 implanted in the end plate 50 inserted therein to prevent it from being unintentionally bent.

上記X軸移動部37のスライダ42に、Y軸移
動部38のスライダ63が、又該Y軸移動部38
の基台64にロツド65を介してZ軸移動部39
のスライダ66がそれぞれ固設されるようになつ
ている。この場合、硝子電極AがX軸移動部37
Y軸移動部38及びZ軸移動部39により縦横及
び高さ方向つまりX軸、Y軸、Z軸の方向に移動
可能な配置で組付けられることは勿論である。硝
子電極AはZ軸移動部39の基台67に取付け具
77を介して装着されるようになつている。又、
X軸移動部37、Y軸移動部38及びZ軸移動部
39の相互間を組付ける際に、板材などの取付け
具78,79を介在させて取付けることも可能で
ある。X軸移動部37の基台40は、操作つまみ
68〜70を備えて、X軸、Y軸及びZ軸方向に
手動で移動させるためのマニユアル移動機構76
を介して顕微鏡等の理化学器械に取付けるように
なつている。X軸移動部37の基台40をそのま
ま理化学器械に取り付けることができることはも
とより、X軸移動部37、Y軸移動部38及びZ
軸移動部39のそれぞれが極めて小型なため、マ
ニユアル移動機構76組付けるのが容易で、第1
図に示すものの他、各種の組付け形式を取ること
ができる。上記X軸移動部37の液圧シリンダ5
2は、駆動部1の液圧シリンダ22にチユーブ7
1で、又Y軸移動部38の液圧シリンダ72が駆
動部1の液圧シリンダ16にチユーブ73で、更
にZ軸移動部39の液圧シリンダ75が駆動部1
の液圧シリンダ35にチユーブそれぞれ接続され
ている。各液圧シリンダ16,22,35,5
2,72,74内に封入する液媒として、種々研
究、実験の結果、実施例では膨張率の小さい水を
採用した。
The slider 63 of the Y-axis moving section 38 is attached to the slider 42 of the X-axis moving section 37, and the slider 63 of the Y-axis moving section 38
The Z-axis moving part 39 is attached to the base 64 of the
sliders 66 are fixedly installed. In this case, the glass electrode A is
It goes without saying that the Y-axis moving section 38 and the Z-axis moving section 39 can be assembled in a position that allows movement in the vertical, horizontal, and height directions, that is, in the X-axis, Y-axis, and Z-axis directions. The glass electrode A is attached to the base 67 of the Z-axis moving section 39 via a fixture 77. or,
When assembling the X-axis moving section 37, the Y-axis moving section 38, and the Z-axis moving section 39, it is also possible to attach them using mounting tools 78, 79 such as plates. The base 40 of the X-axis moving unit 37 includes operation knobs 68 to 70, and a manual moving mechanism 76 for manually moving in the X-axis, Y-axis, and Z-axis directions.
It is designed to be attached to physical and chemical instruments such as microscopes through the . Not only can the base 40 of the X-axis moving unit 37 be attached to a physical and chemical instrument as is, but also the base 40 of the X-axis moving unit 37, the Y-axis moving unit 38, and the Z-axis
Since each of the shaft moving parts 39 is extremely small, it is easy to assemble the manual moving mechanism 76, and the first
Various types of assembly other than those shown in the figure can be used. Hydraulic cylinder 5 of the X-axis moving section 37
2 is a tube 7 connected to the hydraulic cylinder 22 of the drive unit 1.
1, the hydraulic cylinder 72 of the Y-axis moving section 38 is connected to the hydraulic cylinder 16 of the driving section 1 through a tube 73, and the hydraulic cylinder 75 of the Z-axis moving section 39 is connected to the driving section 1.
The tubes are each connected to a hydraulic cylinder 35. Each hydraulic cylinder 16, 22, 35, 5
As a result of various studies and experiments, water, which has a small expansion coefficient, was adopted as the liquid medium sealed in the tubes 2, 72, and 74 in this embodiment.

尚、水を液媒としたので、水洩れ防止のために
シーリングに十分な配慮を施した。
Since water was used as the liquid medium, sufficient consideration was given to sealing to prevent water leakage.

上記硝子電極等のマニピユレータにおいて、先
ず上記硝子電極Aを細胞のある位置にまで移動さ
せるにはマニユアル移動機構76、更にX軸直線
移動機構5、Y軸直線移動機構6、Z軸駆動機構
4によつて行い、細胞を加工し、又は細胞から情
報を採る時には、X−Y軸平面駆動機構3によ
り、更にZ軸駆動機構4をも使用して、硝子電極
Aを移動させる。この時、X軸直線駆動機構5及
びY軸直線駆動機構6をも適時併用させて行うこ
ともできる。
In the manipulator for the glass electrode, etc., first, in order to move the glass electrode A to the position where the cell is, the manual movement mechanism 76 is used, and then the X-axis linear movement mechanism 5, the Y-axis linear movement mechanism 6, and the Z-axis drive mechanism 4 are used. When processing cells or obtaining information from cells, the glass electrode A is moved using the X-Y axis plane drive mechanism 3 and also the Z-axis drive mechanism 4. At this time, the X-axis linear drive mechanism 5 and the Y-axis linear drive mechanism 6 can also be used together as appropriate.

そこで、X軸直線移動機構5のつまみ24を回
わしたとすると、この回転でピストンロツド25
が液圧シリンダ22のダイヤフラムを押圧し、若
しくは減圧すれば、液圧シリンダ22の押圧力の
変化が、操作台2のX軸移動部37における液圧
シリンダ52に伝達され、ピストンロツド47に
よる液圧シリンダ52のダイヤフラム56の押圧
力が変化し、この結果基台40に対してスライダ
42がつまみ24の回動量に対応した量だけ摺動
する。Y軸直線駆動機構6及びZ軸移動機構4を
操作した時においても同様に、操作台2のY軸移
動部38及びZ軸移動部39が操作量に応動して
動作する。傾倒レバー29を傾倒させた時は、そ
の傾倒方向及び傾倒量に応じてX−Y軸平面内駆
動機構3が動作する。つまり、傾倒レバー29の
傾倒方向及び傾倒量に応じY軸スライド台9が固
定基台7に対し摺動し、又X軸スライド台20が
Y軸スライド台9に対し摺動する。これらの摺動
により各ピストンロツド14,25による液圧シ
リンダ16,22の押圧力が変化をし、この変化
がY軸移動部38の液圧シリンダ72及びX軸移
動部37の液圧シリンダ52に伝達されて、上記
同様に動作をして、硝子電極Aが移動する。操作
台2の各液圧シリンダ52,72,74の押圧力
が減少した時は、リターンスプリング49の弾性
付勢によつて早い応答速度で動作する。
Therefore, if we turn the knob 24 of the X-axis linear movement mechanism 5, this rotation will move the piston rod 25.
When the diaphragm of the hydraulic cylinder 22 is pressed or depressurized, the change in the pressing force of the hydraulic cylinder 22 is transmitted to the hydraulic cylinder 52 in the X-axis moving part 37 of the operation console 2, and the hydraulic pressure by the piston rod 47 is increased. The pressing force of the diaphragm 56 of the cylinder 52 changes, and as a result, the slider 42 slides relative to the base 40 by an amount corresponding to the amount of rotation of the knob 24. Similarly, when the Y-axis linear drive mechanism 6 and the Z-axis moving mechanism 4 are operated, the Y-axis moving section 38 and the Z-axis moving section 39 of the console 2 operate in response to the manipulated variables. When the tilt lever 29 is tilted, the X-Y axis in-plane drive mechanism 3 operates according to the direction and amount of tilt. In other words, the Y-axis slide table 9 slides on the fixed base 7, and the X-axis slide table 20 slides on the Y-axis slide table 9, depending on the direction and amount of tilt of the tilt lever 29. Due to these sliding movements, the pressing force of each piston rod 14, 25 on the hydraulic cylinders 16, 22 changes, and this change is applied to the hydraulic cylinder 72 of the Y-axis moving section 38 and the hydraulic cylinder 52 of the X-axis moving section 37. The glass electrode A moves in the same manner as described above. When the pressing force of each hydraulic cylinder 52, 72, 74 of the operation console 2 decreases, the operation is performed at a fast response speed due to the elastic bias of the return spring 49.

尚、駆動部1におけるX軸直線駆動機構5、Y
軸直線駆動機構6およびZ軸駆動機構4の各液圧
シリンダと、操作部2におけるX軸移動部37、
Y軸移動部38およびZ軸移動部39の各液圧シ
リンダは、予めチユーブで連繋した液圧シリンダ
ユニツト90で連通される。
In addition, the X-axis linear drive mechanism 5, Y
Each hydraulic cylinder of the axis linear drive mechanism 6 and the Z-axis drive mechanism 4, the X-axis moving unit 37 in the operating unit 2,
The hydraulic cylinders of the Y-axis moving section 38 and the Z-axis moving section 39 are communicated with each other through a hydraulic cylinder unit 90 that is connected in advance through a tube.

上記本実施例は、液媒として油に比較して熱膨
脹率の小さい水を使用したので、温度変化に対す
る硝子電極Aの位置ずれ所謂熱によるドリフトを
極めて小さくすることができ、例えば液媒として
油を用いた時の6分の1に低減することができ、
かつ内部容積を従来の油を用いたマニピユレータ
に比較して小さくすると、上記ドリフトを1分の
1にまで減少させることができる。
In this embodiment, water, which has a smaller coefficient of thermal expansion than oil, is used as the liquid medium, so it is possible to extremely minimize the so-called thermal drift of the glass electrode A due to temperature changes. can be reduced to one-sixth of that using
Moreover, by making the internal volume smaller than that of a conventional manipulator using oil, the above-mentioned drift can be reduced to one-half.

又、操作台2は、口径を5mm以下とちした極小
のダイヤフラム56を用い、X軸移動部37、Y
軸移動部38及びZ軸移動部39の各リターンス
プリング49を中央部に、つまりスライダ42,
63,66の中央部ピストンロツド47の先端ま
で達する孔48を設け、該孔48にリターンスプ
リング49を収納することで、全体の形状を極め
て小型に形成できる。従つて、操作台2は、さほ
どスペース的に余裕のない顕微鏡のステージ上方
に臨むように取付けることができ、この結果従来
に比較して取付け具77から硝子電極Aの先端ま
での距離を短縮でき、このため振動によるぶれな
どを低減できて、良好に作業ができるばかりか、
多くのマニピユレータを顕微鏡のステージ上方に
臨ませて取付けることができる。しかも操作台2
が極めて小型であることから、マニユアル移動機
構76や顕微鏡に装着するためのアダプターに一
体的に組込むことも容易になし得て便利である。
In addition, the operating table 2 uses an extremely small diaphragm 56 with a diameter of 5 mm or less, and
Each return spring 49 of the axis moving part 38 and the Z-axis moving part 39 is placed in the center, that is, the slider 42,
By providing a hole 48 that reaches the tip of the central piston rod 47 of 63, 66 and housing a return spring 49 in the hole 48, the overall shape can be made extremely compact. Therefore, the operation table 2 can be mounted so as to face above the stage of a microscope that does not have much space, and as a result, the distance from the fixture 77 to the tip of the glass electrode A can be shortened compared to the conventional method. This not only reduces shake caused by vibration and allows for better work, but also
Many manipulators can be mounted facing above the microscope stage. Moreover, the control panel 2
Since it is extremely small, it is convenient because it can be easily integrated into the manual moving mechanism 76 or an adapter for attaching it to a microscope.

〔発明の効果〕〔Effect of the invention〕

以上の如く、本発明に係る硝子電極等のマニピ
ユレータによれば、予め2個の液圧シリンダの相
互間をチユーブで連繋して液圧シリンダユニツト
を構成するとともに、液媒を注入して耐圧や洩れ
等の各種試験を行つておき、マニピユレータの液
圧シリンダや液圧経路に交換の必要性が生じた
時、直ちに交換をしてマニピユレータとしての使
用が可能であり、従来の如く交換の後、長期間の
各種試験期間を設けねばならないといつたことが
なく、又交換に際して、X軸直線駆動機構等各部
所の如何に拘わらず総ての箇所に同じものが容易
に取付けできる。従つて、製造時には、簡略化、
合理化、更にはコストの低廉化を図ることがで
き、又輸出等に際し、部品のみを現地に送つて組
立てることができ、しかもテスト期間も短かくて
すみ、この結果販売等に極めて便利である。
As described above, according to the manipulator such as a glass electrode according to the present invention, two hydraulic cylinders are connected in advance with a tube to form a hydraulic cylinder unit, and a liquid medium is injected to increase the pressure resistance. After conducting various tests for leakage, etc., when it becomes necessary to replace the manipulator's hydraulic cylinder or hydraulic path, it can be replaced immediately and used as a manipulator. There has never been a need for a long period of various tests, and when replacing, the same one can be easily installed in all parts, such as the X-axis linear drive mechanism, regardless of where they are. Therefore, during manufacturing, simplification,
It is possible to rationalize and further reduce costs, and when exporting, etc., only the parts can be sent to the site and assembled, and the testing period is short, and as a result, it is extremely convenient for sales, etc.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明に係る硝子電極等のマニピユレー
タの一実施例を示し、第1図は全体を示す構成
図、第2図はX−Y軸平面内駆動機構の一部を分
解した斜視図、第3図はX軸移動部の一部を分解
した斜視図、第4図はX軸移動部の縦断面図、第
5図は液圧シリンダユニツトの斜視図、第6図は
第4図の−線断面図、第7図はダイヤフラム
の断面図、第8図は従来の硝子電極のマニピユレ
ータの構成図である。 1……駆動部、2……操作台、3……X−Y軸
平面内駆動機構、4……Z軸駆動機構、5……X
軸直線駆動機構、6……Y軸直線駆動機構、1
6,22,35,52,72,74……液圧シリ
ンダ、37……X軸移動部、38……Y軸移動
部、39……Z軸移動部、40……基台、42…
…スライダ、47……ピストンロツド、49……
リターンスプリング、56……ダイヤフラム、9
0……液圧シリンダユニツト。
The drawings show an embodiment of a manipulator such as a glass electrode according to the present invention, and FIG. 1 is an overall configuration diagram, FIG. 2 is a partially exploded perspective view of the X-Y axis in-plane drive mechanism, and FIG. 3 is a partially exploded perspective view of the X-axis moving section, FIG. 4 is a vertical sectional view of the X-axis moving section, FIG. 5 is a perspective view of the hydraulic cylinder unit, and FIG. 7 is a cross-sectional view of a diaphragm, and FIG. 8 is a configuration diagram of a conventional glass electrode manipulator. 1...Drive unit, 2...Operation console, 3...X-Y axis in-plane drive mechanism, 4...Z-axis drive mechanism, 5...X
Axis linear drive mechanism, 6... Y-axis linear drive mechanism, 1
6, 22, 35, 52, 72, 74... Hydraulic cylinder, 37... X-axis moving section, 38... Y-axis moving section, 39... Z-axis moving section, 40... Base, 42...
...Slider, 47...Piston rod, 49...
Return spring, 56...Diaphragm, 9
0...Hydraulic cylinder unit.

Claims (1)

【特許請求の範囲】 1 X軸直線駆動機構,Y軸直線駆動機構および
Z軸駆動機構を備えた駆動部と、X軸移動部,Y
軸移動部およびZ軸移動部を備えた操作部とから
なり、駆動部の各軸移動機構を操作することによ
つて操作部の各移動部を移動させて硝子電極等の
操作が行われる硝子電極等のマニピユレータにお
いて、 駆動部における各軸駆動機構の液圧シリンダ取
付部と操作部における各移動部の液圧シリンダ取
付部を同形とすると共に、二本の液圧シリンダを
チユーブで連繋して液圧シリンダユニツトを構成
し、該液圧シリンダユニツトの両液圧シリンダを
駆動部における軸駆動機構の取付部と操作部にお
ける各該当軸移動部の取付部に装着したことを特
徴とする硝子電極等のマニピユレータ。
[Claims] 1. A drive unit including an X-axis linear drive mechanism, a Y-axis linear drive mechanism, and a Z-axis drive mechanism, an X-axis moving unit, and a Y-axis linear drive mechanism.
A glass device comprising an operating section including an axis moving section and a Z-axis moving section, and in which glass electrodes, etc. are operated by moving each moving section of the operating section by operating each axis moving mechanism of the drive section. In manipulators such as electrodes, the hydraulic cylinder mounting parts of each shaft drive mechanism in the driving part and the hydraulic cylinder mounting parts of each moving part in the operating part are made the same shape, and the two hydraulic cylinders are connected with a tube. A glass electrode constituting a hydraulic cylinder unit, characterized in that both hydraulic cylinders of the hydraulic cylinder unit are attached to a mounting part of a shaft drive mechanism in a driving part and a mounting part of each corresponding shaft moving part in an operating part. etc. manipulator.
JP29614085A 1985-12-26 1985-12-26 Manipulator for glass electrode,etc. Granted JPS61265284A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29614085A JPS61265284A (en) 1985-12-26 1985-12-26 Manipulator for glass electrode,etc.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29614085A JPS61265284A (en) 1985-12-26 1985-12-26 Manipulator for glass electrode,etc.

Publications (2)

Publication Number Publication Date
JPS61265284A JPS61265284A (en) 1986-11-25
JPH0373433B2 true JPH0373433B2 (en) 1991-11-21

Family

ID=17829665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29614085A Granted JPS61265284A (en) 1985-12-26 1985-12-26 Manipulator for glass electrode,etc.

Country Status (1)

Country Link
JP (1) JPS61265284A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2624719B2 (en) * 1987-10-28 1997-06-25 株式会社日立製作所 Micro injection device
JP2525389Y2 (en) * 1989-08-02 1997-02-12 株式会社成茂科学器械研究所 Coarse motion table integrated manipulator such as glass electrode
JP2783984B2 (en) * 1995-04-21 1998-08-06 プリマハム株式会社 Micromanipulation device and cell manipulation method using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59153162A (en) * 1983-02-21 1984-09-01 Narumo Kagaku Kikai Kenkyusho:Kk Minute movement operating apparatus of glass electrode or the like

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59153162A (en) * 1983-02-21 1984-09-01 Narumo Kagaku Kikai Kenkyusho:Kk Minute movement operating apparatus of glass electrode or the like

Also Published As

Publication number Publication date
JPS61265284A (en) 1986-11-25

Similar Documents

Publication Publication Date Title
JPH0373432B2 (en)
JPH0411169Y2 (en)
JPS61230897A (en) Manipulator device
US5979070A (en) Method and apparatus for selectively locking a movement direction of a coordinate measurement probe
US20170030812A1 (en) Testing assembly including a multiple degree of freedom stage
US6888920B2 (en) Low-cost, high precision goniometric stage for x-ray diffractography
CN108427016A (en) Numerical control rotary probe switching device based on environment controllable type atomic force microscope
GB2135737A (en) Fine control system for glass electrode
JPH0373433B2 (en)
US7141914B2 (en) Micromanipulator including piezoelectric benders
JPS62234858A (en) Goniometer table
JP2009076521A (en) Precise fine positioning device and fine positioning stage having the same, aligner, and inspection apparatus
JP2000221409A (en) Micro manipulation device for fine work and micro probe for fine work
JPH0629734Y2 (en) Fine movement operation device such as glass electrode
JP2012247805A (en) Stage and microscope system
JPH0531093B2 (en)
US5256876A (en) Scanning tunnel microscope equipped with scanning electron microscope
JPH0760220B2 (en) Inverted microscope with manipulator
US5890863A (en) Micromanipulator fine control apparatus
US6762415B1 (en) Vacuum chamber with recessed viewing tube and imaging device situated therein
JP4290991B2 (en) Negative pressure actuator
JPH074135Y2 (en) Manipulator for glass electrodes
JP2004358601A (en) Micro-hand
JPS63240772A (en) Manipulator for glass electrode or the like
JP2002172582A (en) Compliance unit

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term