JPH0480510B2 - - Google Patents

Info

Publication number
JPH0480510B2
JPH0480510B2 JP58134999A JP13499983A JPH0480510B2 JP H0480510 B2 JPH0480510 B2 JP H0480510B2 JP 58134999 A JP58134999 A JP 58134999A JP 13499983 A JP13499983 A JP 13499983A JP H0480510 B2 JPH0480510 B2 JP H0480510B2
Authority
JP
Japan
Prior art keywords
electrode plate
graphite
lead
active material
lattice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58134999A
Other languages
Japanese (ja)
Other versions
JPS6028164A (en
Inventor
Akio Tokunaga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP58134999A priority Critical patent/JPS6028164A/en
Publication of JPS6028164A publication Critical patent/JPS6028164A/en
Publication of JPH0480510B2 publication Critical patent/JPH0480510B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • H01M4/16Processes of manufacture
    • H01M4/20Processes of manufacture of pasted electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はペースト式鉛蓄電池用極板の製造方法
の改良に関するもので、その目的とするところは
化成性および放電性能に優れた極板を得ることに
ある。 鉛蓄電池の小型軽量化は省資源、省エネルギー
世論の高まりとともに最近とみに活発な開発が行
なわれるようになつた。 この目的のためには鉛蓄電池を構成する部品の
各々を軽量化しなければならないが、鉛蓄電池の
構成部品の中で格子体の軽量化は比較的容易であ
るため、電池の軽量化は専ら格子の軽量化に努力
が払われている。 格子体の軽量化は形状はそのままにして薄型に
する方法と格子の厚みはそのままにしてます目を
粗くする方法が考えられるが、いずれも一長一短
がある。すなわち、前者の方法では格子骨が細く
なるので、陽極酸化を受ける正極板に使用した場
合は、腐食の進行によつて集電体としての機能が
早期に失われてしまい、寿命性能が良いものが得
られない。一方、後者では前者よりも格子骨を太
くできるから、腐食が進行しても格子骨の芯は集
電体としての機能を維持し続け、寿命性能の低下
はない。しかし、正極活物質は格子に使用する鉛
合金より電気伝導度が小さいので、格子骨から離
れた位置の活物質は充電や放電反応に寄与しにく
く、化成性や放電性能の低下を招くという欠点が
あつた。 本発明はこのような格子骨の粗い軽量格子の持
つ欠点を改良するために提案したものであり、極
板の内部と表面にコロイド状黒鉛の分散液で処理
することによつて黒鉛層を形成したことを特徴と
し、ます目の粗い格子体を使用しても、極板の化
成性が良好でありかつ電池性能の向上も可能にし
たものである。 黒鉛は導電性が比較的良好で、二酸化鉛
(PbO2)や金属鉛(Pb)に近い良導体であり、
耐酸性や耐酸化性にも優れている。 本発明の実施に用いるコロイド状黒鉛の分散液
は、1μ程度の黒鉛微粒子を水や有機溶媒に分散
させたもので、材料に塗布すれば黒鉛微粒子が連
続して結合した強固な黒鉛層を形成することがで
きる。したがつて、これを用いれば極板内部やそ
の表面に黒鉛層を設けることは容易であり、極極
の化成性や放電性能の改善に有効であることがわ
かつた。 次に本発明を一実施例に基いて説明する。 厚みが約0.1cmで格子骨のます目が粗い自動車
電池用格子体に常法により調製した正極蓄電池ペ
ーストを格子体の厚みまで充填した。これをコロ
イド状黒鉛の水性分散液(固形分20%)に浸漬し
た後、極板表面を速乾して該極板の両面に厚み
100μ程度の黒鉛層を形成した。その後さらに蓄
電池ペーストの充填とコロイド状黒鉛処理を行つ
て最終的に厚み0.2cmの正極板を作製した。図は
前記の作製した未化極板の断面を示すもので、1
は格子骨、2は活物質、3は黒鉛層である。また
このようにして作製した未化極板を希硫酸中に浸
漬すると、希硫酸は活物質中によく浸透し、活物
質内部および極板表面に形成した黒鉛層は多孔性
であることがわかる。次にこの極板を用いて公称
容量25Ahの電池を組立て、充電後の極板を観察
するとともに容量試験を行つた結果を第1表に示
す。
The present invention relates to an improvement in a method for manufacturing electrode plates for paste-type lead-acid batteries, and its purpose is to obtain electrode plates with excellent chemical formation properties and discharge performance. Recently, the development of lead-acid batteries to make them smaller and lighter has been actively carried out along with growing public interest in resource and energy conservation. For this purpose, it is necessary to reduce the weight of each component that makes up a lead-acid battery, but since it is relatively easy to reduce the weight of the lattice body among the components of a lead-acid battery, the weight reduction of the battery is exclusively done by the lattice body. Efforts are being made to reduce the weight of To reduce the weight of the lattice, there are two methods: making it thinner while keeping the same shape, and making the lattice coarser while leaving the same thickness, but each method has its advantages and disadvantages. In other words, in the former method, the lattice bones become thinner, so if it is used on a positive electrode plate that undergoes anodization, it will lose its function as a current collector early due to the progress of corrosion, so it will not last long. is not obtained. On the other hand, in the latter case, the lattice bones can be made thicker than in the former, so even if corrosion progresses, the core of the lattice bones continues to maintain its function as a current collector, and there is no reduction in service life performance. However, since the positive electrode active material has lower electrical conductivity than the lead alloy used for the lattice, the active material located away from the lattice bones is less likely to contribute to charging and discharging reactions, resulting in a decrease in chemical formation and discharge performance. It was hot. The present invention was proposed to improve the drawbacks of such lightweight grids with coarse lattice bones, and forms a graphite layer by treating the inside and surface of the electrode plate with a dispersion of colloidal graphite. Even if a coarse grid is used, the formation of the electrode plate is good and the battery performance can be improved. Graphite has relatively good conductivity, and is a good conductor similar to lead dioxide (PbO 2 ) and metallic lead (Pb).
It also has excellent acid resistance and oxidation resistance. The colloidal graphite dispersion used in the implementation of the present invention is made by dispersing graphite particles of about 1μ in water or an organic solvent, and when applied to a material, it forms a strong graphite layer in which the graphite particles are continuously bonded. can do. Therefore, it was found that by using this, it is easy to provide a graphite layer inside the electrode plate or on its surface, and that it is effective in improving the chemical formation properties and discharge performance of the electrode. Next, the present invention will be explained based on one embodiment. An automobile battery lattice body with a thickness of about 0.1 cm and coarse grid ribs was filled with positive electrode storage battery paste prepared by a conventional method to the thickness of the lattice body. After immersing this in an aqueous dispersion of colloidal graphite (solid content 20%), the surface of the electrode plate is quickly dried to create a thickness on both sides of the electrode plate.
A graphite layer of about 100μ was formed. After that, the material was further filled with storage battery paste and treated with colloidal graphite to produce a final positive electrode plate with a thickness of 0.2 cm. The figure shows a cross section of the uncured electrode plate prepared above.
2 is an active material, and 3 is a graphite layer. Furthermore, when the unformed electrode plate prepared in this way is immersed in dilute sulfuric acid, the dilute sulfuric acid penetrates well into the active material, and the graphite layer formed inside the active material and on the electrode plate surface is porous. . Next, a battery with a nominal capacity of 25 Ah was assembled using this electrode plate, and the electrode plate after charging was observed and a capacity test was conducted.Table 1 shows the results.

【表】 第1表において、Aは従来品であり、Bは本発
明品で、ペースト充填後の極板をコロイド状黒鉛
の水性分散液で浸漬処理し、活物質内部と極板表
面に黒鉛層を設けた正極板を用いた電池である。
既に述べた如く、試験に使つた格子体は活物質層
の厚みより薄く、しかも格子骨のます目が広いた
めに、従来法で作製した従来品Aでは初充電後の
極板状態が不良で、活物質のPbO2は71%であ
り、未化成部分が多いのでPbSO4も多かつた。一
方、本発明法に基づき黒鉛層を設けた本発明品B
は極板状態は非常に良く、PbO290%、PbSO41.1
%であつた。これが電池性能にも反映して本発明
品Bは従来品Aに比べて10%以上も容量が多く、
高率放電での電圧も高かつた。 以上詳述した如く本発明によれば、薄形でます
目の粗い軽量格子を用いても、化成性、放電性能
とも優れた極板が得られ、電池の軽量化に寄与す
るところが大きい。 なお、本発明の実施例では正極板に黒鉛層を設
けた場合について述べたが、負極板でも同様の効
果が得られた。また黒鉛層の形成物質として使用
したコロイド状黒鉛の水性分散液のかわりに有機
溶媒に分散した速乾性のコロイド状黒鉛を使うこ
とも可能であり、浸漬に対して塗布や噴霧の方法
で黒鉛層を形成してもその有効性に変わりはな
い。
[Table] In Table 1, A is a conventional product and B is a product of the present invention.The electrode plate after filling with paste was immersed in an aqueous dispersion of colloidal graphite, and graphite was added inside the active material and on the electrode plate surface. This is a battery that uses a positive electrode plate with layers.
As already mentioned, the lattice body used in the test was thinner than the active material layer, and the lattice bones had wide squares, so in conventional product A manufactured using the conventional method, the plate condition after the first charge was poor. The PbO 2 content of the active material was 71%, and since there were many unformed parts, there was also a large amount of PbSO 4 . On the other hand, product B of the present invention provided with a graphite layer based on the method of the present invention
The plate condition is very good, PbO 2 90%, PbSO 4 1.1
It was %. This is reflected in the battery performance, and product B of the present invention has a capacity that is more than 10% higher than conventional product A.
The voltage during high rate discharge was also high. As described in detail above, according to the present invention, even if a thin, coarsely meshed lightweight grid is used, an electrode plate having excellent chemical formability and discharge performance can be obtained, which greatly contributes to reducing the weight of batteries. In addition, although the case where the graphite layer was provided in the positive electrode plate was described in the Example of this invention, the same effect was obtained also in the negative electrode plate. Furthermore, instead of the aqueous dispersion of colloidal graphite used as the material for forming the graphite layer, it is also possible to use quick-drying colloidal graphite dispersed in an organic solvent. Even if it is formed, its effectiveness remains unchanged.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明による鉛蓄電池用極板の製造方法に
より作製した極判の一実施例を示す要部断面図で
ある。 1……格子骨、2……活物質、3……黒鉛層。
The figure is a cross-sectional view of a main part showing an embodiment of the polar plate manufactured by the method of manufacturing an electrode plate for a lead-acid battery according to the present invention. 1... Lattice bone, 2... Active material, 3... Graphite layer.

Claims (1)

【特許請求の範囲】[Claims] 1 最終的に形成される活物質層の厚みよりも薄
く、ます目の粗い格子体に鉛蓄電池ペーストを充
填した後、コロイド状黒鉛の分散液で浸漬、塗布
または噴霧処理して両面に黒鉛層を設けた極板
に、前記ペーストを再充填し、上記コロイド状黒
鉛処理を施すことにより、極板内部と表面に黒鉛
微粒子が連続して結合した黒鉛層を形成したこと
を特徴とする鉛蓄電池用極板の製造方法。
1 After filling a lead-acid battery paste into a grid with coarse mesh that is thinner than the thickness of the active material layer to be finally formed, it is dipped, coated, or sprayed with a colloidal graphite dispersion to form a graphite layer on both sides. A lead-acid battery characterized in that a graphite layer in which fine graphite particles are continuously bonded inside and on the surface of the electrode plate is formed by refilling the paste with the electrode plate and subjecting it to the colloidal graphite treatment described above. Method for manufacturing electrode plates.
JP58134999A 1983-07-22 1983-07-22 Production method of electrode plate for lead storage battery Granted JPS6028164A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58134999A JPS6028164A (en) 1983-07-22 1983-07-22 Production method of electrode plate for lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58134999A JPS6028164A (en) 1983-07-22 1983-07-22 Production method of electrode plate for lead storage battery

Publications (2)

Publication Number Publication Date
JPS6028164A JPS6028164A (en) 1985-02-13
JPH0480510B2 true JPH0480510B2 (en) 1992-12-18

Family

ID=15141565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58134999A Granted JPS6028164A (en) 1983-07-22 1983-07-22 Production method of electrode plate for lead storage battery

Country Status (1)

Country Link
JP (1) JPS6028164A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56159062A (en) * 1980-05-09 1981-12-08 Japan Storage Battery Co Ltd Lead acid battery
JPS5840780A (en) * 1981-09-01 1983-03-09 Sanyo Electric Co Ltd Lead storage battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56161774U (en) * 1980-04-30 1981-12-02

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56159062A (en) * 1980-05-09 1981-12-08 Japan Storage Battery Co Ltd Lead acid battery
JPS5840780A (en) * 1981-09-01 1983-03-09 Sanyo Electric Co Ltd Lead storage battery

Also Published As

Publication number Publication date
JPS6028164A (en) 1985-02-13

Similar Documents

Publication Publication Date Title
EP3496203B1 (en) Energy storage devices comprising carbon-based additives and methods of making thereof
JP4364460B2 (en) Negative electrode for lead acid battery
JP7106448B2 (en) Improved lead-acid battery electrodes
JPH08170126A (en) Porous metallic body, its production and plate for battery using the same
CA1283699C (en) Method of improving the formation efficiency of positive plates of a lead-acid battery
WO2010122873A1 (en) Process for producing negative plate for lead storage battery, and lead storage battery
JP2003036882A (en) Sealed type lead storage battery
JP2003123760A (en) Negative electrode for lead-acid battery
JP5396216B2 (en) Lead acid battery
JPH0315162A (en) Sealed lead-acid battery and manufacture of positive plate of sealed lead-acid battery
JP4949553B2 (en) Improved lead acid battery
JP4843842B2 (en) Method for manufacturing positive electrode plate for lithium secondary battery
JPH0480510B2 (en)
JP2002313332A (en) Control valve type lead-acid battery
JP3267075B2 (en) Manufacturing method of electrode plate for lead-acid battery
JPH10270028A (en) Positive electrode plate for lead-acid battery
JP3987998B2 (en) Unformed positive electrode plate for lead acid battery
JP4066509B2 (en) Manufacturing method of lead acid battery
JP4239510B2 (en) Lead-acid battery and manufacturing method thereof
JPH10247491A (en) Lead-acid battery and its manufacture
JPH0250585B2 (en)
JPH01302661A (en) Lead acid battery and its manufacture
JPS6028165A (en) Production method of electrode plate for lead storage battery
JPH0410181B2 (en)
JPH11273666A (en) Positive electrode plate for lead-acid battery and manufacture thereof