JPH0480301A - Cu alloy powder and manufacture thereof - Google Patents

Cu alloy powder and manufacture thereof

Info

Publication number
JPH0480301A
JPH0480301A JP2192088A JP19208890A JPH0480301A JP H0480301 A JPH0480301 A JP H0480301A JP 2192088 A JP2192088 A JP 2192088A JP 19208890 A JP19208890 A JP 19208890A JP H0480301 A JPH0480301 A JP H0480301A
Authority
JP
Japan
Prior art keywords
powder
alloy
oxide
fine
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2192088A
Other languages
Japanese (ja)
Other versions
JP2748666B2 (en
Inventor
Koji Hoshino
孝二 星野
Teruo Shimizu
輝夫 清水
Toru Kono
河野 通
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2192088A priority Critical patent/JP2748666B2/en
Publication of JPH0480301A publication Critical patent/JPH0480301A/en
Application granted granted Critical
Publication of JP2748666B2 publication Critical patent/JP2748666B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture Cu alloy powder with fine Al2O3 enclosed in the powder by executing oxidizing treatment, if necessary, inner part oxidizing treatment and carrying out reducing treatment to Cu-Al alloy raw material powder specifying Al content. CONSTITUTION:The oxidizing treatment is executed to the Cu-Al alloy powder containing 1.5 - 10% Al at 600 - 1000 deg.C and preferably under powder fluidized condition. The formed oxide powder is made to have structure containing matrix composed of copper oxide as essential material and annular complex oxide phase annularly flocculated fine Cu-Al complex oxide at between powder center and powder peripheral part in the whole cross sectional face passing through the powder center part. The reducing treatment is executed to this oxide powder at 200 - 400 deg.C. CaO forming the matrix in the oxide powder as the essential material is reduced to Cu and the above annular complex oxide phase is changed to annular hardened phase containing fine Al2O3 as the essential material.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、特に、すぐれた耐摩耗性を杓゛する焼結体
の製造に用いるのに適したCu合金粉末およびその製造
法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention particularly relates to a Cu alloy powder suitable for use in producing a sintered body with excellent wear resistance and a method for producing the same. be.

〔従来の技術〕[Conventional technology]

従来、例えば特開昭133−241128号公報および
特開昭59−150043号公報に記載される通り、重
量%で(以下%は重量%を示す)、 1!:0.1〜1%、 を含有し、残りが実質的にCuからなる組成を有するC
u−AN合金原料粉末に、 大気中、300〜500℃の温度に加熱保持、の条件で
表面酸化処理を施した後、 不活性ガス雰囲気中、800〜9(10℃の温度に加熱
保持、 の条件で内部酸化処理を施し、 引続いて余剰の酸素を除去する目的で、還元性雰囲気中
、400〜800℃の温度に加熱保持、 の条件で還元処理を施して、上記内部酸化によって生成
した微細な酸化アルミニウム(以下Al203で示す)
がCuまたはCu−A、Q合金の素地に均一に分散した
組織を有するCu合金粉末を製造する方法が知られてい
る。
Conventionally, as described in, for example, JP-A-133-241128 and JP-A-59-150043, in weight % (hereinafter % indicates weight %), 1! : 0.1 to 1%, with the remainder consisting essentially of Cu.
The u-AN alloy raw material powder was subjected to surface oxidation treatment under the conditions of heating and holding at a temperature of 300 to 500°C in the air, and then heating and holding at a temperature of 800 to 9 (10°C) in an inert gas atmosphere. Internal oxidation treatment is performed under the conditions of , followed by heating and holding at a temperature of 400 to 800°C in a reducing atmosphere for the purpose of removing excess oxygen, and reduction treatment is performed under the conditions of . fine aluminum oxide (hereinafter referred to as Al203)
A method of producing a Cu alloy powder having a structure in which Cu or Cu-A, Q alloy is uniformly dispersed is known.

また、この方法で製造されたCu合金粉末が、含油軸受
やガイドブツシュ、さらにバルブシートなどの各種駆動
装置の構造部材を通常の粉末冶金法により製造するに際
して、原料粉末として用いられていることも良く知られ
るところである。
In addition, the Cu alloy powder produced by this method is used as a raw material powder when manufacturing structural members of various drive devices such as oil-impregnated bearings, guide bushes, and valve seats by ordinary powder metallurgy. It is also well known.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

一方、近年の各種駆動装置の高性能化および高速化はめ
ざましく、これに伴ない、これの構造部材の使用環境も
一段と苛酷さを増し、このため構造部材には一層の耐摩
耗性が要求されているが、上記の従来内部酸化による方
法で製造されたCu合金粉末を用いて製造された焼結体
製構造部材では耐摩耗性が十分でなく、これらの要求に
満妃して対応することができないのが現状である。
On the other hand, in recent years, the performance and speed of various drive devices have increased dramatically, and as a result, the environments in which these structural members are used have become even more severe, and as a result, structural members are required to have even higher wear resistance. However, structural members made of sintered bodies manufactured using Cu alloy powder manufactured by the conventional internal oxidation method described above do not have sufficient wear resistance, and it is necessary to fully meet these demands. The current situation is that this is not possible.

なお、この場合上記内部酸化法により製造された従来C
u合金粉末において、素地に均一に分散するAg2O3
の含有割合を多くして耐摩耗性の向上をはかる試みもな
されたが、粉末表面に露出するAI  O粒の割合が増
すと、Ag2O3粒が粗大化し易くなることと合まって
、焼結性が著しく低下し、この結果焼結体の強度低下を
招き、強度の面で実用に供することができないものであ
る。
In this case, the conventional C produced by the above internal oxidation method
In u alloy powder, Ag2O3 is uniformly dispersed in the base material.
Attempts have been made to improve wear resistance by increasing the content of Ag2O3, but as the proportion of AIO grains exposed on the powder surface increases, the Ag2O3 grains tend to become coarser, and the sinterability This results in a significant decrease in the strength of the sintered body, making it impossible to put it to practical use in terms of strength.

〔課題を解決するための手段〕[Means to solve the problem]

そこで、本発明者等は、上述のような観点から、各種駆
動装置の構造部材として用いた場合に、すぐれた耐摩耗
性を発揮する焼結体を製造すべく、上記従来Cu合金粉
末に着目し研究を行なった結果、 まず、上記の従来内部酸化によるCu合金粉末の製造に
用いられているCu−AN合金原料粉末における0、1
〜1%のAj7含有量に比して相対的に多い割合の1.
5〜lO%のANを含有したCu −Al1合金粉末を
用い、 このCu−A、Q合金原料粉末に、上記の従来内部酸化
による製造法における300〜500”Cの酸化温度よ
り一段と高い600〜l000℃の温度で、望ましくは
粉末流動化状態で、酸化処理を施すと、形成された酸化
物粉末は、主体が酸化銅(以下CuOで示す)からなる
素地に、粉末中心部を通るあらゆる断面において、粉末
中心部と粉末周辺部との間に、微細なCu−A、Q複合
酸化物〔以下、Cu(AgO2)2で示す〕が環状に凝
集してなる環状複合酸化物相、いいかえれば粉末内部に
層をなしてシェル状に凝集分布する微細なCu(AN 
O,、) 2で構成された環状複合酸化物相が存在する
組織をもつようになり、 さらに、この酸化物粉末に、同じく上記の従来方法にお
ける400〜800℃の還元温度に比して相対的に低い
200〜400℃の温度で還元処理を施すと、 上記酸化物粉末の素地を形成していた主体のCuOがC
uに還元され、かつ上記環状複合酸化物相が微細なAg
2O3を主体とする環状硬質相に変化するようになり、 この結果得られたCu合金粉末は、相対的にAg2O3
の含有割合が高いので、耐摩耗性が飛貿的に向上するよ
うになり、さらに上記の通りA F 20 a粒が粉末
表面に存在せず、内部に層をなしてシェル状に分布する
ので、焼結性か損なわれることがなく、Ag2O3の含
有割合が高いにもかかわらず、高強度の焼結体を製造す
ることができるようになるという研究結果を得たのであ
る。
Therefore, from the above-mentioned viewpoint, the present inventors focused on the conventional Cu alloy powder described above in order to produce a sintered body that exhibits excellent wear resistance when used as a structural member of various drive devices. As a result of our research, we first found that 0 and 1
Compared to the Aj7 content of ~1%, a relatively large proportion of 1.
A Cu-Al1 alloy powder containing 5 to 10% AN is used, and this Cu-A, Q alloy raw material powder is heated at 600 to 500"C, which is much higher than the oxidation temperature of 300 to 500"C in the conventional internal oxidation method described above. When subjected to oxidation treatment at a temperature of 1000°C, preferably in a powder fluidized state, the formed oxide powder is applied to a matrix mainly composed of copper oxide (hereinafter referred to as CuO) in all cross sections passing through the center of the powder. , between the powder center and the powder periphery, there is a cyclic complex oxide phase, in other words, a cyclic complex oxide phase in which fine Cu-A, Q complex oxide [hereinafter referred to as Cu(AgO2)2] aggregates in a ring shape. Fine Cu (AN
The oxide powder now has a structure in which a cyclic composite oxide phase composed of When reduction treatment is performed at a relatively low temperature of 200 to 400°C, the main CuO that formed the base of the oxide powder becomes carbon.
Ag is reduced to u and the cyclic composite oxide phase is fine.
The resulting Cu alloy powder changes to a hard annular phase mainly composed of 2O3, and the resulting Cu alloy powder is relatively Ag2O3.
Since the content ratio of A F20 is high, the abrasion resistance is dramatically improved, and as mentioned above, the A F 20 a grains are not present on the powder surface but are distributed in a shell-like layer inside the powder. The research results showed that a high-strength sintered body can be produced without impairing sinterability and despite the high content of Ag2O3.

この発明は、上記研究結果にもとづいてなされたもので
あって、 八ρ;】、5〜10重足%、 を含有し、残りがCuと不可避不純物からなるCu−A
l1合金原料粉末に、 酸化性雰囲気中、600〜l000℃の温度に、望まし
くは流動化状態で加熱保持、 の条件で酸化処理を施して、主体がCuOからなる素地
に、粉末中心部を通るあらゆる断面において、粉末中心
部と粉末周辺部との間に、微細なCu(Al02)2が
環状に凝集してなる環状複合酸化物相が存在する組織を
もった酸化物粉末を形成し、 引続いて、上記酸化物粉末に、 還元性雰囲気中、200〜4−00 ”Cの温度に加熱
保持、 の条件で還元処理を施して、上記酸化物粉末の素地をC
uまたはCu−A、CLa金とすると共に、上記環状複
合酸化物相を微細なAl1203を主体とする環状硬質
相とする、主要工程によってCu合金粉末を製造する方
法、 並びに、この方法で製造された、 AD : 1.5〜9.2%、 酸素:1.3〜8.2%、 を含有し、賎りがCuと不可避不純物からなる組成、並
びにCuまたはCu−AΩ合金からなる素地に、粉末中
心部を通るあらゆる断面において、粉末中心部と粉末周
辺部との間に、環状に凝集した微細なAg2O3を主体
とする環状硬質相が存在する組織を有するCu合金粉末
に特徴を有するものである。
This invention was made based on the above research results, and includes Cu-A containing 8 ρ;
The l1 alloy raw material powder is subjected to an oxidation treatment in an oxidizing atmosphere at a temperature of 600 to 1000°C, preferably maintained in a fluidized state, and passed through the center of the powder into a base mainly composed of CuO. In every cross section, an oxide powder is formed with a structure in which a cyclic composite oxide phase formed by agglomeration of fine Cu(Al02)2 exists between the center of the powder and the periphery of the powder. Subsequently, the above oxide powder was subjected to a reduction treatment under the conditions of heating and holding at a temperature of 200 to 4-00"C in a reducing atmosphere to convert the base material of the oxide powder to C.
A method for producing a Cu alloy powder through the main steps of making u or Cu-A, CLa gold and making the above-mentioned cyclic composite oxide phase a cyclic hard phase mainly composed of fine Al1203, and a method produced by this method. AD: 1.5 to 9.2%, oxygen: 1.3 to 8.2%, and the composition is composed of Cu and unavoidable impurities, and the base is composed of Cu or Cu-AΩ alloy. , which is characterized by a Cu alloy powder having a structure in which a ring-shaped hard phase mainly consisting of fine Ag2O3 aggregated in an annular shape exists between the powder center and the powder periphery in every cross section passing through the powder center. It is.

つぎに、この発明のCu合金粉末およびこれの製造法に
おいて、成分組成および製造条件を上記の通りに限定し
た理由を説明する。
Next, the reason why the component composition and manufacturing conditions are limited as described above in the Cu alloy powder and the manufacturing method thereof of the present invention will be explained.

(a)  Cu合金粉末の成分組成 An)は酸素と結合して粉末内部で層をなしてシェル状
に凝集分布する微細なAg2O3を形成し、粉末の焼結
性を損なうことなく、かつこれを原料粉末として用いて
製造された焼結体の耐摩耗性を著しく向上させる作用か
あり、この場合Al含有量がきまれば必然的に酸化処理
で酸素含有量もきまるものであり、したがって、l含6
−mが1.5%未満になると酸素含有量も1.3%未満
となり、A j! 20 gの形成割合が不十分で所望
のすくれた耐摩耗性を確保することができず、一方A、
Q含有量が9.2%を越えると、酸素含有量も8.2%
を越えて多くなり、この結果多量のAl2O3が形成さ
れることになるので、Ag2O3粒の粗大化が避けられ
ず、相手攻撃性が現われるようになることから、Al含
有量を1.5〜9.2%、酸素含有量を1.3〜8.2
%と定めた。
(a) The component composition An) of the Cu alloy powder combines with oxygen to form fine Ag2O3 that forms a layer inside the powder and is aggregated and distributed in a shell shape, without impairing the sinterability of the powder. It has the effect of significantly improving the wear resistance of the sintered body produced using it as a raw material powder, and in this case, if the Al content is determined, the oxygen content will also be determined by the oxidation treatment. 6
When −m becomes less than 1.5%, the oxygen content also becomes less than 1.3%, and A j! The formation ratio of 20 g was insufficient and the desired low wear resistance could not be secured, while A,
When the Q content exceeds 9.2%, the oxygen content also increases to 8.2%.
As a result, a large amount of Al2O3 is formed, and as a result, coarsening of Ag2O3 grains is unavoidable and aggressiveness appears, so the Al content is set to 1.5 to 9. .2%, oxygen content 1.3-8.2
%.

(b)  Cu合金原料粉末のAI含有量l含有Hが1
,5%未満ては、酸化処理で形成されるCu(AgO2
)2の粉末内部での塊状凝集が十分に行なわれず、この
結果還元処理後の粉末表面に比較的多量のA I) 2
0 aが存在するようになって焼結性が低下し、焼結体
の強度低下の原因となり、一方AN含有量力月0%を越
えると、酸化処理で形成されるC u(Al02 ) 
2並びに還元処理で形成されるAg2O3の組径が粗大
化し、これを焼結体とした場合相手攻撃性が増すように
なることから、AΩ含有量を1.5〜lO%と定めた。
(b) AI content l content H of Cu alloy raw material powder is 1
, less than 5% is Cu(AgO2 formed by oxidation treatment).
) 2 powder is not sufficiently aggregated, and as a result, a relatively large amount of AI remains on the powder surface after reduction treatment.
When the AN content exceeds 0%, the sinterability decreases and the strength of the sintered body decreases.On the other hand, when the AN content exceeds 0%, Cu(Al02) formed by oxidation treatment decreases.
The AΩ content was determined to be 1.5 to 10% because the aggregate diameter of Ag2O3 formed by 2 and reduction treatment becomes coarse, and when this is made into a sintered body, the aggressiveness towards others increases.

(e)  酸化処理温度 その温度が800℃未満では、Cu(A 1’ 02 
) 2の環状凝集が不十分であり、一方その温度が10
00℃を越えると、粉末を流動化しても粉末同志に融着
が起り易くなることから、その温度を600〜1000
℃と定めた。
(e) Oxidation treatment temperature If the temperature is less than 800°C, Cu(A 1' 02
) The annular aggregation of 2 is insufficient, while the temperature is 10
If the temperature exceeds 00°C, powders tend to fuse together even if they are fluidized, so the temperature should be adjusted to 600-1000°C.
It was set as ℃.

(d)還元温度 その温度が200℃未満では、酸化物粉末の還元に長時
間を要し、実用的でなく、一方その温度が400℃を越
えると、還元処理で形成されるAg2O3が粗大化する
ようになり、この結果焼結体の相手攻撃性が増すように
なることから、その温度を200〜400℃と定めた。
(d) Reduction temperature If the temperature is less than 200°C, it takes a long time to reduce the oxide powder, making it impractical. On the other hand, if the temperature exceeds 400°C, Ag2O3 formed in the reduction process becomes coarse. As a result, the aggressiveness of the sintered body toward others increases, so the temperature was set at 200 to 400°C.

〔実 施 例〕〔Example〕

つぎに、この発明のCu合金粉末およびその装造法を実
施例により具体的に説明する。
Next, the Cu alloy powder of the present invention and its packaging method will be specifically explained with reference to Examples.

それぞれ第1表に示される平均粒径およびAil含有量
のCu−Al1合金原料粉末を用意し、これらCu−A
ρ合金原料粉末に、同じく第1表に示される条件で、酸
化処理、必要に応じて内部酸化処理、および還元処理を
施すことにより本発明法1〜8および従来法1〜3を実
施し、それぞれ本発明Cu合金粉末1〜8および従来C
u合金粉末1〜3を製造した。
Cu-Al1 alloy raw material powders having the average particle diameter and Ail content shown in Table 1 are prepared, and these Cu-A
Methods 1 to 8 of the present invention and conventional methods 1 to 3 are carried out by subjecting the ρ alloy raw material powder to oxidation treatment, internal oxidation treatment if necessary, and reduction treatment under the conditions also shown in Table 1, Cu alloy powders 1 to 8 according to the present invention and conventional C
U alloy powders 1 to 3 were manufactured.

ついで、この結果得られた各種Cu合金粉末について、
成分組成を1llll定すると共に、その断面組織を金
属顕微鏡(倍率: 1000倍)を用いて観察し、さら
に本発明Cu合金粉末1〜8については、30個の粉末
のそれぞれの断面の中心部を通る任意直線上における粒
径、並びに環状硬質相の外径および内径をJl定し、こ
れらの平均値を算出した。これらの結果を第2表に示し
た。
Next, regarding the various Cu alloy powders obtained as a result,
In addition to determining the component composition, the cross-sectional structure was observed using a metallurgical microscope (magnification: 1000 times), and for Cu alloy powders 1 to 8 of the present invention, the central part of the cross section of each of the 30 powders was The particle diameter on an arbitrary straight line passing through the sample and the outer diameter and inner diameter of the annular hard phase were determined by Jl, and the average value thereof was calculated. These results are shown in Table 2.

さらにこれらの各種のCu合金粉末を原料粉末として用
い、これより3Lon/c−の圧力で圧粉体にプレス成
形し、この圧粉体を、水素中、800℃の温度に30分
間保持の条件で焼結して、断面+1010mmX1O、
長さ=55II11の寸法をもった焼結体を製造し、こ
の焼結体について、強度を評価する目的て引張強さをn
1定すると共に、摩耗試験を行なった。
Furthermore, using these various Cu alloy powders as raw material powders, they were press-molded into a green compact at a pressure of 3 Lon/c-, and the green compact was held at a temperature of 800°C for 30 minutes in hydrogen. Sintered with, cross section +1010mmX1O,
A sintered body having a length of 55II11 was manufactured, and the tensile strength of this sintered body was determined to be n for the purpose of evaluating the strength.
At the same time, an abrasion test was conducted.

なお、摩耗試験は、回転軸を水平とした外径:40龍×
内径:30mmX長さ:15關の鋳鉄(F C25)製
熱処理リング(硬さ: H,C30)の上方から、上記
焼結体から8mmX8mmX35+++mの寸法に切出
した試験片を水平に当接させ、この状態で上記試験片に
5kgの荷重を垂直にかけ、前記リングを1.2m/秒
の周速で回転させ、10分後の試験片の最大摩耗深さを
測定することにより行なった。これらの結果も第2表に
示した。
In addition, the wear test was performed using an outer diameter of 40× with the rotation axis horizontal.
A test piece cut out from the above sintered body into a size of 8 mm x 8 mm x 35+++ m was horizontally brought into contact with a heat-treated ring made of cast iron (FC25) (hardness: H, C30) with an inner diameter of 30 mm and a length of 15 mm. A load of 5 kg was vertically applied to the test piece in this state, the ring was rotated at a circumferential speed of 1.2 m/sec, and the maximum wear depth of the test piece was measured after 10 minutes. These results are also shown in Table 2.

〔発明の効果〕〔Effect of the invention〕

第1,2表に示される通り、本発明法1〜8によれば、
粉末内部に微細なA II 20 aが断面組織でみて
環状に凝集してなる環状硬質相が存在したCu合金粉末
(本発明Cu合金粉末1〜8)を製造することができ、
この本発明Cu合金粉末1〜8は、上記の通りAll含
有量が高いにもかかわらず、A I 20 sが粉末内
部に封じ込められた状態になっているので、これを原料
粉末として用いて焼結体を製造した場合、良好な焼結性
が確保されることから、高強度の焼結体を製造すること
ができるばかりでなく、相対的に高含6星のA II 
20 aによって、これより製造された焼結体は、相手
材である熱処理リングの損耗がきわめて少ない状態、す
なわち相手攻撃性が抑制された状態で、すぐれた耐摩耗
性を示すのに対して、従来法1〜3で製造されたCu合
金粉末(従来Cu合金粉末1〜3)は、A 1) 20
 aが粉末全体に均一に分散分布した組織をもつので、
All含有量が相対的に低いことと含まって、焼結性の
低下はあまりなく、したがってほぼ同等の強度を有する
焼結体を製造することができるものの、摩耗試験ではか
なり劣った結果しか示さないことが明らかである。
As shown in Tables 1 and 2, according to methods 1 to 8 of the present invention,
It is possible to produce Cu alloy powders (Cu alloy powders 1 to 8 of the present invention) in which a ring-shaped hard phase formed by agglomeration of fine A II 20 a in a ring shape in a cross-sectional structure is present inside the powder,
Although the Cu alloy powders 1 to 8 of the present invention have a high Al content as described above, the A I 20 s is confined inside the powder, so this can be used as a raw material powder for sintering. When producing a compact, good sinterability is ensured, so not only can a high-strength sintered compact be produced, but also a relatively high 6-star A II
The sintered body produced by 20 a exhibits excellent wear resistance in a state where there is extremely little wear on the heat-treated ring that is the mating material, that is, in a state where the aggressiveness to the mating material is suppressed. Cu alloy powders manufactured by conventional methods 1 to 3 (conventional Cu alloy powders 1 to 3) have A1) 20
Since a has a uniformly distributed structure throughout the powder,
Although the sinterability does not deteriorate much due to the relatively low All content, and therefore it is possible to produce sintered bodies with almost the same strength, they show considerably inferior results in wear tests. It is clear that there is no.

上述のように、この発明の方法によれば、相対的に多量
の微細なAg2O3が粉末内部に層をなしてシェル状に
封じ込められたCu合金粉末を製造することができ、し
たがってこの結果製造されたCu合金粉末は焼結性がき
わめて良好で、これを用いて製造された焼結体は高強度
をもち、かつすぐれた耐摩耗性を示すようになるので、
これを用いて上記のほかに、ブロックリングやロッカー
アーム用チップ、ブレーキ用バット、さらにクラッチ板
などの各種駆動装置の構造部材を製造した場合、すぐれ
た性能を発揮するようになるなど工業上有用な効果がも
たらされるのである。
As mentioned above, according to the method of the present invention, it is possible to produce a Cu alloy powder in which a relatively large amount of fine Ag2O3 is layered inside the powder and confined in a shell shape, and as a result, the produced Cu alloy powder is The Cu alloy powder has extremely good sinterability, and the sintered bodies manufactured using it have high strength and excellent wear resistance.
In addition to the above, when this is used to manufacture structural members of various drive devices such as block rings, rocker arm tips, brake butts, and clutch plates, it exhibits excellent performance and is industrially useful. This brings about a great effect.

Claims (3)

【特許請求の範囲】[Claims] (1)Al:1.5〜9.2重量%、 酸素:1.3〜8.2重量%、 を含有し、残りがCuと不可避不純物からなる組成、並
びにCuまたはCu−Al合金からなる素地に、粉末中
心部を通るあらゆる断面において、粉末中心部と粉末周
辺部との間に、環状に凝集した微細な酸化アルミニウム
を主体とする環状硬質相が存在する組織、を有すること
を特徴とするCu合金粉末。
(1) Contains Al: 1.5 to 9.2% by weight, Oxygen: 1.3 to 8.2% by weight, and the remainder is Cu and unavoidable impurities, and Cu or Cu-Al alloy. The base material is characterized by having a structure in which a ring-shaped hard phase mainly composed of fine aluminum oxide agglomerated in an annular shape exists between the powder center and the powder periphery in every cross section passing through the powder center. Cu alloy powder.
(2)Al:1.5〜10重量%、 を含有し、残りがCuと不可避不純物からなるCu−A
l合金原料粉末に、 酸化性雰囲気中、600〜1000℃の温度に加熱保持
、 の条件で酸化処理を施して、主体が酸化銅からなる素地
に、粉末中心部を通るあらゆる断面において、粉末中心
部と粉末周辺部との間に、微細なCu−Al複合酸化物
が環状に凝集してなる環状複合酸化物相が存在する組織
をもった酸化物粉末を形成し、 ついで、上記酸化物粉末に、 還元性雰囲気中、200〜400℃の温度に加熱保持、 の条件で還元処理を施して、上記酸化物粉末の素地をC
uまたはCu−Al合金とすると共に、上記環状複合酸
化物相を微細な酸化アルミニウムで構成された環状硬質
相とすることを特徴とするCu合金粉末の製造法。
(2) Al: Cu-A containing 1.5 to 10% by weight, with the remainder consisting of Cu and inevitable impurities
l Alloy raw material powder is subjected to oxidation treatment under the conditions of heating and holding at a temperature of 600 to 1000℃ in an oxidizing atmosphere, and the powder center is An oxide powder having a structure in which a cyclic composite oxide phase formed by agglomerating fine Cu-Al composite oxides in a ring shape is formed between the part and the peripheral part of the powder, and then the above-mentioned oxide powder is Then, in a reducing atmosphere, heat and hold at a temperature of 200 to 400 ° C. A reduction treatment was performed under the following conditions to transform the base of the oxide powder into C
A method for producing a Cu alloy powder, characterized in that the cyclic composite oxide phase is a cyclic hard phase composed of fine aluminum oxide.
(3)上記酸化処理が、上記Cu−Al合金原料粉末を
流動化させながら行なわれることを特徴とする上記特許
請求の範囲第(2)項記載のCu合金粉末の製造法。
(3) The method for producing Cu alloy powder according to claim (2), wherein the oxidation treatment is performed while fluidizing the Cu-Al alloy raw material powder.
JP2192088A 1990-07-20 1990-07-20 Cu alloy powder and method for producing the same Expired - Lifetime JP2748666B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2192088A JP2748666B2 (en) 1990-07-20 1990-07-20 Cu alloy powder and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2192088A JP2748666B2 (en) 1990-07-20 1990-07-20 Cu alloy powder and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0480301A true JPH0480301A (en) 1992-03-13
JP2748666B2 JP2748666B2 (en) 1998-05-13

Family

ID=16285451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2192088A Expired - Lifetime JP2748666B2 (en) 1990-07-20 1990-07-20 Cu alloy powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP2748666B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7544259B2 (en) 2002-07-18 2009-06-09 Honda Giken Kogyo Kabushiki Kaisha Copper alloy, copper alloy producing method, copper complex material, and copper complex material producing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7544259B2 (en) 2002-07-18 2009-06-09 Honda Giken Kogyo Kabushiki Kaisha Copper alloy, copper alloy producing method, copper complex material, and copper complex material producing method

Also Published As

Publication number Publication date
JP2748666B2 (en) 1998-05-13

Similar Documents

Publication Publication Date Title
KR100249006B1 (en) Water spray iron powder for powder plating and its manufacturing method
JPH01195247A (en) Reduction of irregularity of mechanical characteristic of tungsten-nickel-iron alloy
JP2002504188A (en) Manufacturing method for high density high carbon sintered metal powder steel parts
JPH0120215B2 (en)
JP2014019945A (en) Titanium alloy and method for producing the same
JPS63297502A (en) High-strength alloy steel powder for powder metallurgy and its production
JP2748667B2 (en) Ni alloy powder and method for producing the same
JPH0480301A (en) Cu alloy powder and manufacture thereof
US5830257A (en) Manufacturing method for alumina-dispersed reinforced copper
JPH0499102A (en) Ni-cu series alloy powder and manufacture thereof
JP2006328492A (en) Damping sintered alloy
JPS62196306A (en) Production of double layer tungsten alloy
JPH0499101A (en) Cu-ni series alloy powder and manufacture thereof
JPH04128302A (en) Fe-base alloy powder and manufacture thereof
JPH04128301A (en) Co-base alloy powder and manufacture thereof
JPS6229481B2 (en)
JP2605866B2 (en) Manufacturing method of composite compound dispersion type Cu-Zn-A (1) sintered alloy with excellent wear resistance
JP2856251B2 (en) High-strength wear-resistant Al-Si alloy forged member having low coefficient of thermal expansion and method for producing the same
JP2643743B2 (en) High strength valve seat made of lead impregnated iron-based sintered alloy for internal combustion engine
JP3384101B2 (en) Silicon nitride powder and method for producing the same
JPS61238947A (en) Manufacture of al-si alloy blank
JPH01279701A (en) Production of forged member
JPH04183835A (en) Manufacture of ni-ti alloy member
JPS60121257A (en) Alloy steel powder for sintered high-speed steel
JPH02101125A (en) Manufacture of aluminum alloy excellent in tensile strength and fatigue strength