JPH0479534B2 - - Google Patents
Info
- Publication number
- JPH0479534B2 JPH0479534B2 JP59130043A JP13004384A JPH0479534B2 JP H0479534 B2 JPH0479534 B2 JP H0479534B2 JP 59130043 A JP59130043 A JP 59130043A JP 13004384 A JP13004384 A JP 13004384A JP H0479534 B2 JPH0479534 B2 JP H0479534B2
- Authority
- JP
- Japan
- Prior art keywords
- sample plate
- measured
- thermal diffusivity
- amplitude
- distance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 claims description 7
- 238000007707 calorimetry Methods 0.000 claims description 5
- 239000000919 ceramic Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000615 nonconductor Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N25/00—Investigating or analyzing materials by the use of thermal means
- G01N25/18—Investigating or analyzing materials by the use of thermal means by investigating thermal conductivity
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Description
本発明は、肉薄の試料板の厚さ方向に対して直
角方向(面方向)の熱拡散率を求める交流カロリ
メトリによる熱拡散率測定方法に関する。
従来、熱拡散率の測定には種々の方法が考案さ
れているが、肉薄の試料の厚さ方向に対して直角
方向の熱拡散率を求めることができなかつた。し
かし近年、エレクトロニクスの技術の進歩にとも
ない、薄い電気絶縁物、たとえばセラミツク板の
上に半導体を0.5mm以下の膜薄に蒸着することが
多くなり、これ等の肉薄板状材料の熱的性質を知
ることが必要になつてきた。
本発明は、肉薄な試料板の厚さ方向に対して直
角方向(面方向)の熱拡散率を測定する交流カロ
リメトリによる熱拡散率の測定方法を提供するこ
とをその目的としたもので、厚さが一定の被測定
試料板の片面の一部を覆い部材で覆つた状態で該
片面に一定振幅の熱エネルギを種々の周波数で断
続照射し、被測定試料板の被遮蔽部における前記
覆い部材の端部から2つの距離の点の温度波の振
幅を当該交流周波数で測定し、該周波数の平方根
を変数とする2つの距離の点の温度波の振幅比の
対数の特性線からその勾配mを求める次式
但し、lfは2点間の距離。
より前記被測定試料板の面方向への熱拡散率Df
を得ることを特徴とする。
以下本発明の実施例を図面につき説明する。
第1図及び第2図は、被測定試料板の厚さ方向
に対して直角方向(面方向)への熱拡散率Dfを
求めるために使用する測定装置の一例を示す。同
図において、1は厚さが例えば0.1〜0.5mm程度の
薄い被測定試料板で、該試料板1の上部には試料
板1の片面の一部を覆う覆い板2を試料板1の面
に沿つて移動自在に配置し更に覆い板2の上部に
チヨツパ3を付設した例えばタングステンランプ
のような熱源4を配置した。該チヨツパ3は第2
図示のように直径上の中心で回転自在に軸支さ
れ、図示されないモータにより所定の回転数で回
転される半円形板から成る。5は前記覆い板2と
連結されたマイクロメータ、6は覆い板2で熱源
4の熱エネルギの照射から遮蔽される被測定試料
板1の面における、覆い板2の端部から距離Lfの
点に点溶接した熱電対で、該熱電対6を例えばフ
オトトランジスタからなるセンサ7の出力を参照
信号とするロツクイン増幅器8に接続し、該ロツ
クイン増幅器8により熱電対6の交流出力を増幅
するようにした。尚、被測定試料板1は、図示し
ないが熱浴中に配置し、該試料板1から外へ熱が
逃げるときの熱抵抗を大とした。
以上の、チヨツパ3を付設した熱源4、試料板
1に点溶接される熱電対6及びロツクイン増幅器
8は、周知の交流カロリメトリ装置を構成するも
のである。
交流カロリメトリでは、図示しない熱浴(大き
な熱容量をもち一定温度に保たれている中空の金
属などのブロツク)中に、熱浴に対して所定の熱
抵抗で接続された状態で配置された被測定試料板
1にチヨツパなどで一定周波数の熱波を与えて該
試料板1を交流的に加熱したとき、該試料板1の
温度波の振幅が該試料板1の比熱に逆比例すると
いう原理により該試料板1の比熱をを求める方法
であり、被測定試料板1の厚さは、熱波の波長に
対して著しく短く選定されている。
次に該測定装置を使用して本発明の被測定試料
板1の面方向への熱拡散率Dfの測定方法につい
て説明する。
被測定試料板1の片面の露出部に、チヨツパ3
により交流化された単位面積当り振幅Qの熱エネ
ルギを照射する。
このとき熱電対6で検出される温度波Tacは前
記距離Lfの関数として次式で与えられる。
Tac=Q/4πfρCe-k fLf−i(kfLf+π/2)……(1
)
但し、
ρは試料板1の密度
Cは試料板1の比熱
またkfの逆数は熱拡散長であり
kf=√f f
但し
fはチヨツパによる熱エネルギの交流周波数
Dfは試料1の両方向への熱拡散率
(1)式から明らかなように距離Lfにおける被測定試
料板1の温度波Tacの振幅値|Tac|は
|Tac|=Q/4πfρC・e-k fLf ……(3)
であり、この値は熱電対6の出力信号をロツクイ
ン増幅器8で増幅することにより測定される。被
測定試料1の被遮蔽部における覆い板2の端部か
ら距離Lf1、Lf2である2点の温度波の振幅|Tac1
|、|Tac2|の比をとると、(3)式から
|Tac1|/|Tac2|=l-k f(Lf1−Lf2) ……(4)
(4)式を変形すると、
(5)式から明らかなように、関数log|Tac1|/|Tac2は
変
数√の一次式であり、
The present invention relates to a method for measuring thermal diffusivity using AC calorimetry for determining the thermal diffusivity in a direction perpendicular to the thickness direction (plane direction) of a thin sample plate. Conventionally, various methods have been devised for measuring thermal diffusivity, but it has not been possible to determine the thermal diffusivity in a direction perpendicular to the thickness direction of a thin sample. However, in recent years, with advances in electronics technology, semiconductors are often deposited on thin electrical insulators, such as ceramic plates, to a thickness of 0.5 mm or less. It has become necessary to know. An object of the present invention is to provide a method for measuring thermal diffusivity by AC calorimetry, which measures the thermal diffusivity in a direction perpendicular to the thickness direction (plane direction) of a thin sample plate. A part of one side of the sample plate to be measured with a constant thickness is covered with a covering member, and thermal energy of a constant amplitude is intermittently irradiated to the one side at various frequencies, and the covering member is applied to the shielded part of the sample plate to be measured. The amplitude of the temperature wave at two points at a distance from the end of is measured at the AC frequency, and its slope m is calculated from the characteristic line of the logarithm of the amplitude ratio of the temperature wave at the two points at a distance with the square root of the frequency as a variable. The following formula to find However, l f is the distance between two points. Therefore, the thermal diffusivity D f in the plane direction of the sample plate to be measured is
It is characterized by obtaining. Embodiments of the present invention will be described below with reference to the drawings. FIGS. 1 and 2 show an example of a measuring device used to determine the thermal diffusivity D f in a direction perpendicular to the thickness direction (plane direction) of a sample plate to be measured. In the figure, reference numeral 1 denotes a thin sample plate to be measured with a thickness of, for example, about 0.1 to 0.5 mm, and a cover plate 2 covering a part of one side of the sample plate 1 is installed on the top of the sample plate 1. Further, a heat source 4 such as a tungsten lamp with a chopper 3 attached thereto is disposed on the upper part of the cover plate 2. The Chiyotsupa 3 is the second
As shown in the figure, it consists of a semicircular plate that is rotatably supported at its diametrical center and rotated at a predetermined number of rotations by a motor (not shown). 5 is a micrometer connected to the cover plate 2; 6 is a micrometer connected to the cover plate 2; The thermocouple 6 is connected to a lock-in amplifier 8 which uses the output of a sensor 7 made of a phototransistor as a reference signal, and the AC output of the thermocouple 6 is amplified by the lock-in amplifier 8. I made it. Note that the sample plate 1 to be measured was placed in a heat bath (not shown) to increase the thermal resistance when heat escapes from the sample plate 1 to the outside. The heat source 4 provided with the chopper 3, the thermocouple 6 spot-welded to the sample plate 1, and the lock-in amplifier 8 described above constitute a well-known AC calorimetry device. In AC calorimetry, the object to be measured is placed in a heat bath (not shown) (a hollow metal block that has a large heat capacity and is kept at a constant temperature) and is connected to the heat bath with a predetermined thermal resistance. Based on the principle that when the sample plate 1 is heated in an alternating current manner by applying a heat wave of a constant frequency to the sample plate 1 using a chopper or the like, the amplitude of the temperature wave on the sample plate 1 is inversely proportional to the specific heat of the sample plate 1. This is a method for determining the specific heat of the sample plate 1, and the thickness of the sample plate 1 to be measured is selected to be significantly shorter than the wavelength of the heat wave. Next, a method of measuring the thermal diffusivity D f in the surface direction of the sample plate 1 to be measured according to the present invention using the measuring device will be explained. A chipper 3 is placed on the exposed part of one side of the sample plate 1 to be measured.
Thermal energy of amplitude Q per unit area is irradiated by alternating current. At this time, the temperature wave T ac detected by the thermocouple 6 is given by the following equation as a function of the distance L f . T ac =Q/4πfρCe -k f L f -i(k f L f +π/2)……(1
) However, ρ is the density of sample plate 1, C is the specific heat of sample plate 1 , and the reciprocal of k f is the thermal diffusion length. As is clear from the thermal diffusivity equation (1) in both directions, the amplitude value of the temperature wave T ac on the sample plate 1 to be measured at the distance L f |T ac | is |T ac |=Q/4πfρC・e -k f L f ...(3) This value is measured by amplifying the output signal of the thermocouple 6 with the lock-in amplifier 8. Amplitude of temperature waves at two points at distances L f1 and L f2 from the end of cover plate 2 in the shielded part of sample 1 to be measured | T ac1
Taking the ratio of | and |T ac2 |, from equation (3) we get |T ac1 |/|T ac2 |=l -k f (L f1 −L f2 )...(4) Transforming equation (4) , As is clear from equation (5), the function log|T ac1 |/|T ac2 is a linear expression with variable √,
【式】(但し、lf=Lf1−
Lf2)
は該一次式の勾配でmfである。
かくして、マイクロメータ5により覆い板2を
移動して、試料板1における該覆い板2の端部か
ら熱電対6までの距離がLf1、Lf2の2点の、種々
の数端数での温度波の振幅値|Tac1|、|Tac2|
をロツクイン増幅器8の出力から求める。そして
周波数の平方根√を変数する2つの距離Lf1、
Lf2の点の温度波Tac1、Tac2の振幅比の対数の特
性線を描くと直線が得られるから、この直線の勾
配mを求め、[Formula] (where l f = L f1 − L f2 ) is the slope of the linear equation, which is m f . In this way, by moving the cover plate 2 using the micrometer 5, the temperature at various fractions of the distance L f1 and L f2 from the end of the cover plate 2 to the thermocouple 6 on the sample plate 1 is measured. Wave amplitude value |T ac1 |, |T ac2 |
is obtained from the output of the lock-in amplifier 8. And two distances L f1 that vary the square root of the frequency,
If you draw a characteristic line of the logarithm of the amplitude ratio of the temperature waves T ac1 and T ac2 at the point L f2 , a straight line will be obtained, so find the slope m of this straight line,
【式】より熱拡散率Dfを
得る。
以上の本発明の実施例では、前記特性線を描い
て、その特性線の勾配を求めて熱拡散率を得た
が、該特性線を紙上に描くことなくその他の手段
で勾配を求めてもよい。
このように本発明によるときは、厚さが例えば
0.5mm以下の肉薄の試料板の、厚さ方向に対して
直角方向の熱拡散率を得ることができる効果を有
する。Obtain the thermal diffusivity D f from [Formula]. In the above embodiments of the present invention, the thermal diffusivity was obtained by drawing the characteristic line and determining the slope of the characteristic line, but the slope may also be determined by other means without drawing the characteristic line on paper. good. According to the present invention, the thickness may be, for example,
It has the effect of being able to obtain the thermal diffusivity in the direction perpendicular to the thickness direction of a thin sample plate of 0.5 mm or less.
第1図は本発明の実施に使用する測定装置の線
図、第2図は熱源及びロツクイン増幅器を除いた
第1図示のものの平面図を示す。
1……被測定試料板、2……覆い板、3……チ
ヨツパ、4……熱源、5……マイクロメータ、6
……熱電対、7……センサ、8……ロツクイン増
幅器。
FIG. 1 shows a diagram of a measuring device used in the practice of the invention, and FIG. 2 shows a plan view of the device shown in FIG. 1 without the heat source and lock-in amplifier. 1... Sample plate to be measured, 2... Cover plate, 3... Chiyotsupa, 4... Heat source, 5... Micrometer, 6
...Thermocouple, 7...Sensor, 8...Lock-in amplifier.
Claims (1)
い部材で覆つた状態で該片面に一定振幅の熱エネ
ルギを種々の周波数で断続照射し、被測定試料板
の被遮蔽部における前記覆い部材の端部から2つ
の距離の点の温度波の振幅を当該交流周波数で測
定し、該周波数の平方根を変数とする2つの距離
の点の温度波の振幅比の対数の特性線からその勾
配mを求め、次式 但し、lfは2点間の距離。 より前記被測定試料板の面方向への熱拡散率Df
を得ることを特徴とする交流カロリメトリによる
熱拡散率測定方法。[Scope of Claims] 1. A method in which a part of one side of a sample plate to be measured having a constant thickness is covered with a covering member, and thermal energy of a constant amplitude is intermittently irradiated to the same side at various frequencies, and the sample plate to be measured is Measure the amplitude of the temperature wave at two distance points from the end of the covering member in the shielded part at the AC frequency, and calculate the amplitude ratio of the temperature wave at the two distance points using the square root of the frequency as a variable. Find the slope m from the logarithmic characteristic line and use the following formula However, l f is the distance between two points. Therefore, the thermal diffusivity D f in the plane direction of the sample plate to be measured is
A method for measuring thermal diffusivity by alternating current calorimetry, characterized by obtaining the following properties:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13004384A JPS6110751A (en) | 1984-06-26 | 1984-06-26 | Measurement for diffusivity of heat by intermittent heating |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13004384A JPS6110751A (en) | 1984-06-26 | 1984-06-26 | Measurement for diffusivity of heat by intermittent heating |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6110751A JPS6110751A (en) | 1986-01-18 |
JPH0479534B2 true JPH0479534B2 (en) | 1992-12-16 |
Family
ID=15024708
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13004384A Granted JPS6110751A (en) | 1984-06-26 | 1984-06-26 | Measurement for diffusivity of heat by intermittent heating |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6110751A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0514200Y2 (en) * | 1986-11-18 | 1993-04-15 | ||
JPS63241457A (en) * | 1987-03-30 | 1988-10-06 | Kawasaki Steel Corp | Instrument for measuring thermal property of thin film-like material |
JPH0210145A (en) * | 1988-06-28 | 1990-01-12 | Nec Corp | Measuring instrument for thermal diffusivity |
JPH0731119Y2 (en) * | 1989-12-28 | 1995-07-19 | 川崎炉材株式会社 | Molten metal container lining structure |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57163856A (en) * | 1981-11-16 | 1982-10-08 | Showa Denko Kk | Measuring method for thermal diffusivity of material |
-
1984
- 1984-06-26 JP JP13004384A patent/JPS6110751A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57163856A (en) * | 1981-11-16 | 1982-10-08 | Showa Denko Kk | Measuring method for thermal diffusivity of material |
Also Published As
Publication number | Publication date |
---|---|
JPS6110751A (en) | 1986-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Adams et al. | Thermal diffusivity and thickness measurements for solid samples utilising the optoacoustic effect | |
IT8121546A0 (en) | ELECTROCHEMICAL MEASURING PROBE FOR DETERMINING THE OXYGEN CONTENT IN GAS AND PROCEDURE FOR PRODUCING SENSOR ELEMENTS FOR SUCH MEASURING PROBES. | |
US3805156A (en) | Wood slope of grain indicator | |
US3672204A (en) | Transient thermal method and means for nondestructively testing a sample | |
US3635681A (en) | Differential conductivity-measuring apparatus | |
JPH0479411B2 (en) | ||
JPH0479534B2 (en) | ||
JP4104785B2 (en) | Method and apparatus for measuring thermal diffusivity of thin film by laser heating angstrom method | |
JP5426115B2 (en) | Thermophysical property measurement method | |
US3186226A (en) | Apparatus for determining the temperature of travelling strip | |
JPH0479535B2 (en) | ||
JPH07103921A (en) | Method and equipment for measuring thermal constant by ac calorimetry | |
Simpson | Relationship between speed of sound and moisture content of red oak and hard maple during drying | |
Murdock et al. | Polarization impedance at low frequencies | |
JP4042816B2 (en) | Moisture content detection sensor | |
SU857837A1 (en) | Method of thermal flaw detection | |
JPH059737B2 (en) | ||
Zheng et al. | 3 ω slope comparative method for fluid and powder thermal conductivity measurements | |
Hintermann et al. | High‐Speed Rotating Disk Electrode Unit | |
SU1224695A1 (en) | Method of determining heat conduction of non-metallic wet capillary-porous materials | |
JPS54135589A (en) | Thermal diffusivity measuring apparatus | |
SU911278A1 (en) | Method of measuring hard construction material temperature conductivity | |
JPH0479536B2 (en) | ||
RU2023237C1 (en) | Method of determining layer thickness | |
Janssen et al. | Studies of copper patina by photothermal beam deflection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |