JPH0479535B2 - - Google Patents

Info

Publication number
JPH0479535B2
JPH0479535B2 JP59130044A JP13004484A JPH0479535B2 JP H0479535 B2 JPH0479535 B2 JP H0479535B2 JP 59130044 A JP59130044 A JP 59130044A JP 13004484 A JP13004484 A JP 13004484A JP H0479535 B2 JPH0479535 B2 JP H0479535B2
Authority
JP
Japan
Prior art keywords
sample plate
points
measured
thermal diffusivity
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59130044A
Other languages
Japanese (ja)
Other versions
JPS6110752A (en
Inventor
Ichiro Hatsuta
Akira Ikushima
Akiichi Maezono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINGIJUTSU JIGYODAN
SHINKU RIKO KK
Original Assignee
SHINGIJUTSU JIGYODAN
SHINKU RIKO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINGIJUTSU JIGYODAN, SHINKU RIKO KK filed Critical SHINGIJUTSU JIGYODAN
Priority to JP13004484A priority Critical patent/JPS6110752A/en
Publication of JPS6110752A publication Critical patent/JPS6110752A/en
Publication of JPH0479535B2 publication Critical patent/JPH0479535B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/18Investigating or analyzing materials by the use of thermal means by investigating thermal conductivity

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、肉薄な試料板の厚さ方向の熱拡散率
を求める交流カロリメトリによる熱拡散率測定方
法に関する。 従来、熱拡散の測定には種々の方法が考案され
ているが、厚さが0.5mm以下の肉薄の試料の厚さ
方向の熱拡散率を求めることは不可能であつた。
しかし近年、エレクトロニクスの技術の進歩にと
もない、薄い電気絶縁物、たとえばセラミツク板
の上に半導体材料を0.5mm以下の膜厚に蒸着する
ことが多くなつており、これ等の肉薄板状材料の
熱的性質も知ることが必要になつてきた。 本発明は、肉薄な試料板の厚さ方向の熱拡散率
を測定する交流カロリメトリによる熱拡散率測定
方法を提供することをその目的としたもので、そ
の第1発明は楔形の被測定試料板の表面に一定振
幅の熱エネルギを種々の周波数で断熱照射し、該
試料板の裏面の厚さが異なる2つの点の温度波の
振幅比の対数の特性線からその勾配mを求め、次
但し、ltは2点の厚さの差 より前記被測定試料板の厚さ方向の熱拡散率Dt
を得ることを特徴とし、第2発明は楔形の被測定
試料板の表面に一定振幅の熱エネルギを種々の周
波数で断熱照射し、該試料板の裏面の厚さが異な
る2つの点の温度波の位相差の特性線からその勾
配mを求め、次式 但し、ltは2点の厚さの差 より前記被測定試料板の厚さ方向の熱拡散率Dt
を得ることを特徴とする。 以下本発明の実施例を図面につき説明する。 第1図及び第2図は、被測定試料板の厚さ方向
の熱拡散率Dtを求めるために使用する測定装置
の一例を示す。 同図において、1は厚さに対して十分に長い楔
形の被測定試料板で、第3図に拡大して示すよう
に、該被測定試料板1の裏面の厚さLt1、Lt2の個
所にそれぞれ熱電対21,22を取着した。3は被
測定試料板1の上部に配置した例えばタングステ
ンランプのような熱源、4は被測定試料板1に照
射する熱源3の熱エネルギーを断続するチヨツパ
で、該チヨツパ4は第2図示のように直径上の中
心で回転自在に軸支され、図示されないモータに
より種々の回転数で回転される半円形板から成
る。5は、例えばフオトトランジスタからなるセ
ンサ6の出力を参照信号とし、切換スイツチ7を
介して入力する熱電対21,22の交流出力を増幅
するロツクイン増幅器である。 尚、第1図及び第2図では図示しないが、被測
定試料板1は熱浴中に配置し、該試料板1から外
へ熱が逃げるときの熱抵抗を大とした。 以上の、試料板1に取着した熱電対21,22
熱源3、チヨンパ4及びクロツクイン増幅器5は
周知の交流カロリメトリ装置を構成するものであ
る。 交流カロリメトリは、図示しない熱浴(大きな
熱容量をもち一定温度に保たれている中空の金属
などのブロツク)中に、熱浴に対して所定の熱抵
抗で接続された状態で配置された被測定試料板1
にチヨツパなどで一定周波数の熱波を与えて該試
料板1を交流的に加熱したとき、該試料板1の温
度波の振幅が該試料板1の比熱を求める方法であ
り、被測定試料板1の厚さは、熱波の波長に対し
て著しく短く選定されている。次に、第1図及び
第2図に示す測定装置を用いて被測定試料板と厚
さ方向への熱拡散率Dtを測定する本発明の第1
の測定方法について説明する。 第1図に示すように、楔形の被測定試料板1の
表面に、単位面積当り振幅Qの熱エネルギをチヨ
ツパ4により設定した周波数で断続して照射す
る。 このとき、試料板1の裏面の厚さLtにおける温
度波Tacは次式で与えられる。 Tac=QR/cosh〔ktLt(1+i)〕+RStkt(1+i)si
nh〔ktLt(1+i)〕……(1) 但し、Rは試料板1から外へ熱が逃げるときの
熱抵抗 Stは試料板1の厚さ方向へ熱伝動率 また、ktの逆数は熱拡張長であり、 kt=√t ……(2) 但し、fはチヨツパによる熱エネルギの交流周
波数 Dtは試料1の厚さ方向への熱拡散率 前記熱抵抗Rを大きくし、また交流周波数を高く
すると(1)式は次のようになる。 Tac=√2Q/Stkte−ktLt−i(ktLt+π/4) ……(3) この式から明らかなように、厚さLtにおける被測
定試料板1の温度波Tacの振幅地|Tac|は |Tac|=√2Q/Stkte−ktLt ……(4) である。 かくて、比測定試料板1の厚さがLt1、Lt2の個
所の2点の温度波Tacの振幅が|Tac1|、|Tac2
の比をとると |Tac1|/|Tac2|=e−kt(Lt1−Lt2)……(5) (5)式を変形すると (6)式から明らかなように、関数log|Tac1|/|Tac2
は変 数√の1次式であり、
The present invention relates to a thermal diffusivity measurement method using AC calorimetry for determining the thermal diffusivity in the thickness direction of a thin sample plate. Conventionally, various methods have been devised to measure thermal diffusion, but it has been impossible to determine the thermal diffusivity in the thickness direction of thin samples with a thickness of 0.5 mm or less.
However, in recent years, with advances in electronics technology, it has become common for semiconductor materials to be deposited on thin electrical insulators, such as ceramic plates, to a thickness of 0.5 mm or less. It has become necessary to know the properties of An object of the present invention is to provide a thermal diffusivity measurement method using AC calorimetry for measuring the thermal diffusivity in the thickness direction of a thin sample plate. The surface of the sample plate is adiabatically irradiated with thermal energy of a constant amplitude at various frequencies, and its slope m is determined from the characteristic line of the logarithm of the amplitude ratio of the temperature wave at two points with different thicknesses on the back surface of the sample plate, and the slope m is calculated using the following formula. However, l t is the thermal diffusivity D t in the thickness direction of the sample plate to be measured based on the difference in thickness between the two points.
The second invention is characterized in that the surface of a wedge-shaped sample plate to be measured is adiabatically irradiated with thermal energy of a constant amplitude at various frequencies to generate temperature waves at two points with different thicknesses on the back surface of the sample plate. Find the slope m from the characteristic line of the phase difference, and use the following formula However, l t is the thermal diffusivity D t in the thickness direction of the sample plate to be measured based on the difference in thickness between the two points.
It is characterized by obtaining. Embodiments of the present invention will be described below with reference to the drawings. FIGS. 1 and 2 show an example of a measuring device used to determine the thermal diffusivity D t in the thickness direction of a sample plate to be measured. In the figure, reference numeral 1 denotes a wedge-shaped sample plate to be measured that is sufficiently long relative to its thickness, and as shown in an enlarged view in FIG . Thermocouples 2 1 and 2 2 were attached to each location. 3 is a heat source such as a tungsten lamp placed above the sample plate 1 to be measured, and 4 is a chopper that cuts off the thermal energy of the heat source 3 irradiating the sample plate 1 to be measured, and the chopper 4 is as shown in the second figure. It consists of a semicircular plate that is rotatably supported at its diametrical center and rotated at various rotational speeds by a motor (not shown). Reference numeral 5 denotes a lock-in amplifier that amplifies the alternating current outputs of the thermocouples 2 1 and 2 2 input via the changeover switch 7, using the output of a sensor 6 made of, for example, a phototransistor as a reference signal. Although not shown in FIGS. 1 and 2, the sample plate 1 to be measured was placed in a heat bath to increase the thermal resistance when heat escapes from the sample plate 1 to the outside. The above thermocouples 2 1 , 2 2 attached to the sample plate 1,
The heat source 3, the selector 4, and the clock-in amplifier 5 constitute a well-known AC calorimetry device. In AC calorimetry, the object to be measured is placed in a heat bath (not shown) (a hollow metal block that has a large heat capacity and is kept at a constant temperature) and is connected to the heat bath with a predetermined thermal resistance. Sample plate 1
This is a method for determining the specific heat of the sample plate 1 based on the amplitude of the temperature wave of the sample plate 1 when the sample plate 1 is heated in an alternating current manner by applying a heat wave of a constant frequency to the sample plate 1. 1 is chosen to be significantly shorter than the wavelength of the heat wave. Next, in the first aspect of the present invention, the thermal diffusivity D t in the thickness direction of the sample plate to be measured is measured using the measuring apparatus shown in FIGS. 1 and 2.
The measurement method will be explained. As shown in FIG. 1, the surface of a wedge-shaped sample plate 1 to be measured is intermittently irradiated with thermal energy having an amplitude Q per unit area at a set frequency using a chopper 4. At this time, the temperature wave T ac at the thickness L t of the back surface of the sample plate 1 is given by the following equation. T ac = QR/cosh [k t L t (1+i)] + RS t k t (1+i) si
nh [k t L t (1+i)]...(1) However, R is the thermal resistance when heat escapes from the sample plate 1, S t is the thermal conductivity in the thickness direction of the sample plate 1, and k t The reciprocal of is the thermal expansion length, k t = √ t ...(2) However, f is the AC frequency of thermal energy by the chopper D t is the thermal diffusivity in the thickness direction of sample 1 However, if the AC frequency is increased, equation (1) becomes as follows. Tac=√2Q/S t k te −k t L t −i (k t L t +π/4) ...(3) As is clear from this equation, the temperature of the sample plate 1 to be measured at the thickness L t The amplitude of the wave T ac |T ac | is |T ac |=√2Q/S t k te −k t L t ……(4). Thus, the amplitudes of the temperature waves T ac at the two points where the thickness of the ratio measurement sample plate 1 is L t1 and L t2 are |T ac1 |, |T ac2 |
Taking the ratio of |T ac1 |/|T ac2 |= e −k t (L t1 −L t2 )……(5) Transforming equation (5), As is clear from equation (6), the function log | T ac1 | / | T ac2 |
is a linear expression of variable √,

【式】 (但しlt=Lt1−Lt2) は該一次式の勾配mである。 かくて試料板1の裏面の厚さLt1、Lt2における
2点の種々の周波数での温度波の振幅|Tac1|、
|Tac2|をその2点にそれぞれ取着させた熱電対
1,22の出力を増幅するロツクイン増幅器5の
出力から求める。それから周波数の平方根√を
変数とする厚さLt1、LtDの2点の温度波Tac1
Tac2の振幅比の対数の特性線を描き、その直線の
勾配mを求め、 から試料板1の厚さ方向の熱拡散率Dtを得る。 次に、前記被測定試料板1の厚さ方向へ熱拡散
率Dtを測定する本発明の第2測定方法について
説明する。 被測定試料板1の厚さLtにおける温度波Tac
前述のように3式が成立するから、厚さLt1、Lt2
における2点の温度波Tacの位相差(Lt1)−
(Lt2)は、(3)式より 但し、
[Formula] (where l t =L t1 -L t2 ) is the slope m of the linear equation. Thus, the amplitude of the temperature wave at various frequencies at two points in the thicknesses L t1 and L t2 of the back surface of the sample plate 1 |T ac1 |,
|T ac2 | is determined from the output of the lock-in amplifier 5 that amplifies the output of the thermocouples 2 1 and 2 2 attached to the two points, respectively. Then, the temperature wave T ac1 at two points with thickness L t1 and L tD with the square root of the frequency as a variable,
Draw a characteristic line of the logarithm of the amplitude ratio of T ac2 , find the slope m of the straight line, The thermal diffusivity D t in the thickness direction of the sample plate 1 is obtained from Next, a second measuring method of the present invention for measuring the thermal diffusivity D t in the thickness direction of the sample plate 1 to be measured will be explained. The temperature wave T ac at the thickness L t of the sample plate 1 to be measured satisfies the three equations as described above, so the thicknesses L t1 , L t2
The phase difference between the temperature waves T ac at two points (L t1 ) −
(L t2 ) is from equation (3) however,

【式】 が得られる。 かくて、試料板1の裏面の厚さLt1、Lt2におけ
る2点の種々の周波数での温度波の位相差をその
2点にそれぞれ取着された熱電対21,22の出力
を増幅するロツクイン増幅器5の出力から求め
る。 それから、(7)式にもとづき、周波数の平方根√
fを変数とする厚さLt1、Lt2の2点の温度波
Tac1、Tac2の位相差の特性線を描き、その直線勾
配mを求め、 (但し、ltはLt1−Lt2)から、試料板1の厚み方
向への熱拡散率Dtを得る。以上の本発明の第1
及び第2の測定方法の実施例では、いずれも周波
数の平行根√を変数とする厚さの異なる2点の
温度波の振幅比の対数の特性線と周波数の平行根
を変数とする厚さの異なる2点の温度波の位相差
を特性線を描き、その直線の勾配を求めて熱拡散
率を得たが、該特性線を紙上に描くことなくその
他の手段で勾配を求めてもよい。 上述の説明から明らかなように、本発明の第1
及び第2方法によれば肉薄な試料板の厚さ方向の
熱拡散率しを容易に得ることができる効果を有す
る。
[Formula] is obtained. Thus, the phase difference of the temperature waves at various frequencies at two points at the thicknesses L t1 and L t2 of the back surface of the sample plate 1 can be expressed as the outputs of the thermocouples 2 1 and 2 2 respectively attached to the two points. It is determined from the output of the lock-in amplifier 5 for amplification. Then, based on equation (7), the square root of the frequency √
Temperature wave at two points with thickness L t1 and L t2 with f as a variable
Draw a characteristic line of the phase difference between T ac1 and T ac2 and find its linear slope m, (However, L t is L t1 −L t2 ) to obtain the thermal diffusivity D t in the thickness direction of the sample plate 1. The first aspect of the present invention
In the example of the second measurement method, the characteristic line of the logarithm of the amplitude ratio of temperature waves at two points with different thicknesses with the parallel root of the frequency as a variable and the thickness with the parallel root of the frequency as a variable. Thermal diffusivity was obtained by drawing a characteristic line representing the phase difference between two temperature waves at different points and determining the slope of the line; however, the slope may be determined by other means without drawing the characteristic line on paper. . As is clear from the above description, the first aspect of the present invention
According to the second method, the thermal diffusivity in the thickness direction of a thin sample plate can be easily obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施に使用する測定装置の線
図、第2図は熱源及びロツクイン増幅器を除いた
第1図示のものの平面図、第3図は本発明の実施
に使用する被測定試料の斜視図を示す。 1……被測定試料板、21,22……熱電対、3
……熱源、4……チヨツパ、5……ロツクイン増
幅器、6……センサ、7……切換スイツチ。
Fig. 1 is a diagram of the measuring device used in the practice of the present invention, Fig. 2 is a plan view of the device shown in Fig. 1 excluding the heat source and lock-in amplifier, and Fig. 3 is the sample to be measured used in the practice of the present invention. A perspective view of the figure is shown. 1... Sample plate to be measured, 2 1 , 2 2 ... Thermocouple, 3
... Heat source, 4 ... Chipper, 5 ... Lock-in amplifier, 6 ... Sensor, 7 ... Changeover switch.

Claims (1)

【特許請求の範囲】 1 楔形の被測定試料板の表面に一定振幅の熱エ
ネルギを種々の周波数で断熱照射し、該試料板の
裏面の厚さが異なる2つの点の温度波の振幅を当
該交流周波数で測定し、該周波数の平方根を変数
とする前記2つの点の温度波の振幅比の対数の特
性線からその勾配mを求め、次式 但し、ltは2点の厚さの差 より前記被測定試料板の厚さ方向の熱拡散率Dt
を得ることを特徴とする交流カロリメトリによる
熱拡散率測定方法。 2 楔形の被測定試料板の表面に一定振幅の熱エ
ネルギを種々の周波数で断熱照射し、該試料板の
裏面の厚さが異なる2つの点の温度波の振幅を当
該交流周波数で測定し、該周波数の平方根を変数
とする2つの点の温度波の位相差の特性線からそ
の勾配mを求め、次式 但し、ltは2点の厚さの差 より前記被測定試料板の厚さ方向の熱拡散率Dt
を得ることを特徴とする交流カロリメトリによる
熱拡散率測定方法。
[Claims] 1. The surface of a wedge-shaped sample plate to be measured is adiabatically irradiated with thermal energy of a constant amplitude at various frequencies, and the amplitude of the temperature wave at two points with different thicknesses on the back surface of the sample plate is The slope m is determined from the characteristic line of the logarithm of the amplitude ratio of the temperature wave at the two points, measured at the AC frequency and using the square root of the frequency as a variable, and the slope m is calculated using the following formula. However, l t is the thermal diffusivity D t in the thickness direction of the sample plate to be measured based on the difference in thickness between the two points.
A method for measuring thermal diffusivity by alternating current calorimetry, characterized by obtaining the following properties: 2. The surface of a wedge-shaped sample plate to be measured is adiabatically irradiated with thermal energy of a constant amplitude at various frequencies, and the amplitude of the temperature wave at two points with different thicknesses on the back side of the sample plate is measured at the AC frequency, Find the slope m from the characteristic line of the phase difference of the temperature wave at two points with the square root of the frequency as a variable, and use the following formula: However, l t is the thermal diffusivity D t in the thickness direction of the sample plate to be measured based on the difference in thickness between the two points.
A method for measuring thermal diffusivity by alternating current calorimetry, characterized by obtaining the following properties:
JP13004484A 1984-06-26 1984-06-26 Measurement for diffusitivity of heat by intermittent heating Granted JPS6110752A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13004484A JPS6110752A (en) 1984-06-26 1984-06-26 Measurement for diffusitivity of heat by intermittent heating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13004484A JPS6110752A (en) 1984-06-26 1984-06-26 Measurement for diffusitivity of heat by intermittent heating

Publications (2)

Publication Number Publication Date
JPS6110752A JPS6110752A (en) 1986-01-18
JPH0479535B2 true JPH0479535B2 (en) 1992-12-16

Family

ID=15024730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13004484A Granted JPS6110752A (en) 1984-06-26 1984-06-26 Measurement for diffusitivity of heat by intermittent heating

Country Status (1)

Country Link
JP (1) JPS6110752A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK2119472T3 (en) * 2004-02-12 2014-10-13 Proventure Far East Ltd Skin / hårbehandlingssystem

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5772052A (en) * 1980-10-24 1982-05-06 Nippon Telegr & Teleph Corp <Ntt> Measuring method for heat transmission factor of thin film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5772052A (en) * 1980-10-24 1982-05-06 Nippon Telegr & Teleph Corp <Ntt> Measuring method for heat transmission factor of thin film

Also Published As

Publication number Publication date
JPS6110752A (en) 1986-01-18

Similar Documents

Publication Publication Date Title
Adams et al. Thermal diffusivity and thickness measurements for solid samples utilising the optoacoustic effect
US3045473A (en) Apparatus for measuring thermal conductivity
US3672204A (en) Transient thermal method and means for nondestructively testing a sample
JP4093333B2 (en) Thermophysical property measuring method and apparatus
JP4104785B2 (en) Method and apparatus for measuring thermal diffusivity of thin film by laser heating angstrom method
JPH0479535B2 (en)
JPH0479411B2 (en)
JPS6250652A (en) Method and instrument for measuring thermal diffusivity
US3186226A (en) Apparatus for determining the temperature of travelling strip
JPH0479534B2 (en)
Takahashi et al. Quantitative evaluation of one-dimensional temperature distribution on material surface using surface acoustic wave
JPH07103921A (en) Method and equipment for measuring thermal constant by ac calorimetry
Delenclos et al. A new calibration procedure for the determination of thermal parameters and their temperature dependence using the photopyroelectric method
Defer et al. The characterization of thermophysical properties by thermal impedance measurements taken under random stimuli taking sensor-induced disturbance into account
JP4042816B2 (en) Moisture content detection sensor
RU186025U1 (en) DEVICE FOR DETERMINING THERMAL PROPERTIES OF MATERIALS
RU2023237C1 (en) Method of determining layer thickness
SU1267242A1 (en) Method of determining thermal physical properties of materials
Rantala et al. A New Infrared Measurement Method for Determination of Anisotropic Thermal Conductivities of Plastic Foils
SU1332210A1 (en) Method of determining the thermal-physical properties of materials
JPH0765976B2 (en) Method and apparatus for measuring thermal diffusivity by AC calorimetry
SU1160291A1 (en) Device for determining material thermal diffusivity coefficient
SU1366928A1 (en) Method of determining thermal-physical properties of materials
JP2846764B2 (en) Thermophysical property measurement method
RU2114421C1 (en) Method of bispectral pulse-frequency inspection

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term