JPH0479250B2 - - Google Patents

Info

Publication number
JPH0479250B2
JPH0479250B2 JP1193499A JP19349989A JPH0479250B2 JP H0479250 B2 JPH0479250 B2 JP H0479250B2 JP 1193499 A JP1193499 A JP 1193499A JP 19349989 A JP19349989 A JP 19349989A JP H0479250 B2 JPH0479250 B2 JP H0479250B2
Authority
JP
Japan
Prior art keywords
pulse
pulse wave
wave signal
signal
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1193499A
Other languages
Japanese (ja)
Other versions
JPH0357428A (en
Inventor
Hiroyuki Odagiri
Hiroyuki Masaki
Juichi Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP1193499A priority Critical patent/JPH0357428A/en
Priority to DE69022662T priority patent/DE69022662T2/en
Priority to EP90308020A priority patent/EP0410658B1/en
Priority to US07/557,303 priority patent/US5190047A/en
Publication of JPH0357428A publication Critical patent/JPH0357428A/en
Publication of JPH0479250B2 publication Critical patent/JPH0479250B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光電脈波式脈拍計に関する。特にその
脈拍数表示の安定性を向上させることに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a photoplethysmometer. In particular, it relates to improving the stability of the pulse rate display.

〔発明の概要〕[Summary of the invention]

本発明は、指先等の毛細血管に光を照射し、拍
動によつて変化する反射光の強弱を脈拍として検
出する光電脈波式脈拍計において、脈波を検出す
る脈波検出回路と、脈波信号の周期を測定して一
分間当たりの脈拍数を演算する脈拍演算手段との
間に、脈波パルス幅評価手段を設けることにより
脈拍数表示の安定性を向上させたものである。
The present invention provides a pulse wave detection circuit that detects a pulse wave in a photoplethysmometer that irradiates light to capillaries of a fingertip or the like and detects the intensity of reflected light that changes depending on the pulsation as a pulse. The stability of the pulse rate display is improved by providing a pulse wave pulse width evaluation means between the pulse wave calculation means that measures the period of the pulse wave signal and calculates the number of pulses per minute.

〔従来の技術〕[Conventional technology]

従来から携帯型脈拍計の脈拍表示を安定せる試
みは種々行われてきた。しかしそれらのほとんど
は、特開昭61−106130、特開昭61−106131、特開
昭61−209634等に開示されたように、脈波検出回
路で得られた脈波信号の周期から1分間の脈拍数
を計算する際の計算値の処理手法であつた。ここ
でその一例として4データ選択移動方式という処
理方式を説明する。4データ選択移動方式とは、
4つの脈拍換算データのうち最大値から2個、最
小値から1個除去し、残りの1データを表示する
ものである。具体的な例を第2図に示す。第2図
は脈波検出回路の出力に飛び飛びに雑音が存在し
た場合の動作を示している。図中のa,b,c,
d,e,fは、連続した2つの脈波信号の周期の
平均から1分間当たりの脈拍数に換算した値であ
る。第2図に示すように飛び飛びの雑音に対して
は、表示値が安定していることが分かる。
Various attempts have been made to stabilize the pulse display of portable pulse meters. However, most of them, as disclosed in JP-A No. 61-106130, JP-A No. 61-106131, JP-A No. 61-209634, etc., are based on the period of 1 minute from the period of the pulse wave signal obtained by the pulse wave detection circuit. It was a method for processing calculated values when calculating the pulse rate of a person. Here, as an example, a processing method called 4 data selection movement method will be explained. 4. What is the data selection movement method?
Of the four pulse rate conversion data, two from the maximum value and one from the minimum value are removed, and the remaining one data is displayed. A specific example is shown in FIG. FIG. 2 shows the operation when noise is present randomly in the output of the pulse wave detection circuit. a, b, c in the diagram,
d, e, and f are values converted into the number of pulses per minute from the average of the periods of two consecutive pulse wave signals. As shown in FIG. 2, it can be seen that the displayed value is stable in response to discrete noises.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記したように、飛び飛びの雑音に対しては効
果が見られる。しかし連続した雑音に対しては効
果が無い。第3図に連続して雑音が存在する場合
の動作を示す。第3図の脈波検出回路出力波形
は、前に述べた第2図と同一であるが、連続した
雑音には全く効果の無い様子が出ている。このよ
うにデータ処理で雑音を除去しようとする方法で
は雑音も脈波信号と認めて演算処理してしまう
為、脈拍数表示の安定性及び精度には限界があ
る。
As mentioned above, the effect can be seen on discrete noises. However, it is not effective against continuous noise. FIG. 3 shows the operation when there is continuous noise. The output waveform of the pulse wave detection circuit in FIG. 3 is the same as that in FIG. 2 described above, but it appears to have no effect on continuous noise. In this method of removing noise through data processing, the noise is recognized as a pulse wave signal and subjected to arithmetic processing, so there is a limit to the stability and accuracy of pulse rate display.

〔課題を解決するための手段〕[Means to solve the problem]

上記問題点を解決するため本発明は、雑音に起
因するパルスが比較的幅のせまいパルスであるこ
とを着目し脈波検出回路と脈波演算手段との間
に、脈波検出回路が出力する脈波信号のパルス幅
を評価する脈波パルス幅評価手段を設けた。
In order to solve the above problems, the present invention focuses on the fact that pulses caused by noise are relatively narrow pulses, and the pulse wave detection circuit outputs an output signal between the pulse wave detection circuit and the pulse wave calculation means. A pulse wave pulse width evaluation means for evaluating the pulse width of the pulse wave signal was provided.

〔作用〕[Effect]

上記のように脈波パルス幅評価手段を設け、脈
波検出回路の出力する脈波信号を評価し、正規の
脈波信号と認められる信号のみを脈拍演算手段に
伝達することで、連続的に入力されるノイズも削
除することが可能となり、脈拍表示の安定性を大
幅に向上させることが出来る。
As mentioned above, by providing a pulse wave pulse width evaluation means, evaluating the pulse wave signal output from the pulse wave detection circuit, and transmitting only the signal recognized as a regular pulse wave signal to the pulse calculation means, continuous Input noise can also be deleted, and the stability of pulse rate display can be greatly improved.

〔実施例〕〔Example〕

第1図に本発明の実施例を示すブロツク図を示
し動作を説明する。脈波検出回路1で検出された
脈波信号は、脈波信号パルス幅評価手段2へ出力
される。脈波信号パルス幅評価手段2は、脈拍演
算手段3が表示手段4に前回表示させた脈拍数に
よつてて決まる評価基準と基準信号発生回路5か
らの基準周波数信号とで、脈波検出回路1の出力
する脈波信号を評価する。評価した結果、基準以
上のパルス幅を有する脈波信号の場合、脈波信号
パルス幅評価手段2は脈拍演算手段3へ脈波信号
の入力を伝達する。脈拍演算手段3は脈波信号パ
ルス幅評価手段2から伝達される脈波信号の周期
から一分間当たりの脈拍数を計算し、その結果を
表示手段4へ出力する関係にある。
FIG. 1 is a block diagram showing an embodiment of the present invention, and its operation will be explained. The pulse wave signal detected by the pulse wave detection circuit 1 is output to the pulse wave signal pulse width evaluation means 2. The pulse wave signal pulse width evaluation means 2 uses the evaluation standard determined by the pulse rate previously displayed on the display means 4 by the pulse calculation means 3 and the reference frequency signal from the reference signal generation circuit 5 to evaluate the pulse wave detection circuit. The pulse wave signal outputted by No. 1 is evaluated. As a result of the evaluation, if the pulse wave signal has a pulse width greater than the reference, the pulse wave signal pulse width evaluation means 2 transmits the input of the pulse wave signal to the pulse calculation means 3. The pulse calculation means 3 calculates the number of pulses per minute from the period of the pulse wave signal transmitted from the pulse wave signal pulse width evaluation means 2, and outputs the result to the display means 4.

以上の様に脈波信号パルス幅評価手段2を設け
ることである幅以上の信号でないと脈波信号と認
められない為、表示手段4の脈拍数表示は安定化
される。次に脈波信号パルス幅評価手段2の評価
基準が、脈拍演算手段3の内容によつて複数種用
意されている理由を説明する。光電脈波検出の場
合、脈波検出回路1を増幅回路とフイルターと単
純な波形整形回路とで構成すると、第4図と第5
図に示すように脈拍数によつて脈波信号のパルス
幅が変化する。脈拍数が高いと脈波信号のパルス
幅は狭く、脈拍数が低いとパルス幅が広くなる関
係にある。したがつて脈波信号パルス幅評価手段
2の評価基準を1種類とすると、脈拍数が高い場
合のパルス幅に合わせた評価基準にする必要が有
る。そうすると脈拍数が低い場合の雑音除去性能
が低下してしまう。そこで本発明では、脈拍数の
レベルに合わせて脈波信号パルス幅評価手段2の
評価基準が変化するように構成している。
As described above, by providing the pulse wave signal pulse width evaluation means 2, the pulse rate display on the display means 4 is stabilized because unless the signal has a certain width or more, it is not recognized as a pulse wave signal. Next, the reason why a plurality of evaluation standards for the pulse wave signal pulse width evaluation means 2 are prepared depending on the content of the pulse calculation means 3 will be explained. In the case of photoplethysmogram detection, if the pulse wave detection circuit 1 is composed of an amplifier circuit, a filter, and a simple waveform shaping circuit, the results shown in FIGS.
As shown in the figure, the pulse width of the pulse wave signal changes depending on the pulse rate. When the pulse rate is high, the pulse width of the pulse wave signal is narrow, and when the pulse rate is low, the pulse width is wide. Therefore, if there is one type of evaluation standard for the pulse wave signal pulse width evaluation means 2, it is necessary to set the evaluation standard to match the pulse width when the pulse rate is high. If this happens, the noise removal performance will deteriorate when the pulse rate is low. Therefore, in the present invention, the evaluation standard of the pulse wave signal pulse width evaluation means 2 is configured to change according to the level of the pulse rate.

次に第6図に本発明の第1の実施例を示し動作
を説明する。第6図には脈波信号パルス幅評価手
段の詳細な一実施例を示す。脈波検出回路1及び
脈拍演算手段は通常一般的に使用されているもの
である為、詳細な図は省略する。脈波検出回路1
から出力される脈波信号パルスが“1”の間
ANDゲート21の出力には、基準信号発生回路
5からの基準周波数、たとえば128Hzが出力され
る。脈波信号パルスが“1”の間は、インバータ
22を介してTタイプフリツプフロツプ(以下
TFFと略す)23〜27で構成されるバイナリ
ーカウンタのリセツトが解除されているので、
ANDゲート21の128Hz出力をTFF23〜27
がカウントする。ANDゲート21の128Hz出力を
8発カウントすると、TFF26のQ出力は“1”
に立上がる。TFF26のQ出力はDタイプフリ
ツプフロツプ(以下DFFと略す)30とANDゲ
ート31で構成される微分回路に接続されている
ので、TFF26のQ出力が“1”となつた瞬間
にある幅のパルス信号がANDゲート31の出力
に発生する。このパルス信号のパルス幅はDFF
30のクロツク端子Cに基準信号発生回路5から
256Hzが接続さされているので、1.95msのパルス
幅の信号が発生する。この微分回路の出力にパル
スが発生するまでの時間は、脈波検出回路1の出
力に脈波信号が出力されてから約62.5msである。
この時間が約である理由は、脈波検出回路1の脈
波信号出力と基準信号発生回路5の信号が同期し
ていない為である。非同期である為に発生する脈
拍数の誤差は、脈拍数210前後で±6程度になる。
この誤差を小さくする1つのの方法はANDゲー
ト21で使用する128Hzをもつと高い周波数にす
れば良い。他にも方法は有るが、本発明の説明に
は直接関係しない為、この誤差は無視して説明を
続ける。
Next, FIG. 6 shows a first embodiment of the present invention and its operation will be explained. FIG. 6 shows a detailed embodiment of the pulse wave signal pulse width evaluation means. Since the pulse wave detection circuit 1 and the pulse calculation means are commonly used, detailed diagrams are omitted. Pulse wave detection circuit 1
While the pulse wave signal pulse output from is “1”
The AND gate 21 outputs the reference frequency from the reference signal generation circuit 5, for example, 128 Hz. While the pulse wave signal pulse is “1”, a T-type flip-flop (hereinafter referred to as
Since the binary counter consisting of 23 to 27 (abbreviated as TFF) has been reset,
128Hz output of AND gate 21 to TFF23~27
counts. When the 128Hz output of AND gate 21 is counted 8 times, the Q output of TFF26 is “1”
stand up. Since the Q output of TFF26 is connected to a differentiating circuit composed of a D-type flip-flop (hereinafter abbreviated as DFF) 30 and an AND gate 31, there is a certain width at the moment the Q output of TFF26 becomes "1". A pulse signal of is generated at the output of AND gate 31. The pulse width of this pulse signal is DFF
30 from the reference signal generation circuit 5 to the clock terminal C.
Since 256Hz is connected, a signal with a pulse width of 1.95ms is generated. The time until a pulse is generated at the output of the differentiating circuit is approximately 62.5 ms after the pulse wave signal is output at the output of the pulse wave detection circuit 1.
The reason why this time is about 20 minutes is because the pulse wave signal output from the pulse wave detection circuit 1 and the signal from the reference signal generation circuit 5 are not synchronized. The error in the pulse rate that occurs due to the non-synchronization is about ±6 when the pulse rate is around 210.
One way to reduce this error is to use a higher frequency than the 128 Hz used in the AND gate 21. There are other methods, but since they are not directly related to the explanation of the present invention, the explanation will continue with this error ignored.

約62.5ms後にANDゲート31の出力にパルス
が発生したのち、更にANDゲート21の128Hz出
力を8発カウントすると今度はTFF27のQ出
力が“1”に立ち上がる。TFF27のQ出力は、
DFF28とANDゲート29で構成される微分回
路に接続されているので、TFF27のQ出力が
“1”になつた瞬間にANDゲート29の出力に
1.95msのパルス幅の信号が発生する。この微分
回路の出力にパルスが発生するまでの時間は、脈
波検出回路1の出力に脈波信号が出力されてから
約125ms後である。前述した約62.5msのANDゲ
ート31の出力と、約125ms後のANDゲート2
9の出力は、ANDORゲート33とインバータ3
2で構成されるマルチプレクサに接続される。マ
ルチプレクサは、脈拍演算手段4からの制御信号
によつて、ANDゲート31又は29の出力を脈
拍演算手段4へ出力する。脈拍演算手段4の前回
の演算結果が脈拍数100以下であつた場合、制御
信号が“1”、100以上の場合“0”になるように
脈拍演算手段4を構成しておくと脈拍演算手段4
は脈拍数100以下の場合、約125ms以上のパルス
幅を持つ脈波信号の入力があつたときに脈拍演算
を行う。又、脈拍数が100以上の場合、約62.5ms
以上のパルス幅を持つ脈波信号の入力があつたと
きに脈拍演算を行うことになる。
Approximately 62.5ms later, a pulse is generated at the output of the AND gate 31, and when the 128Hz output of the AND gate 21 is counted eight more times, the Q output of the TFF 27 rises to "1". The Q output of TFF27 is
Since it is connected to a differentiator circuit consisting of DFF28 and AND gate 29, the moment the Q output of TFF27 becomes "1", the output of AND gate 29 becomes
A signal with a pulse width of 1.95ms is generated. The time until a pulse is generated at the output of the differentiating circuit is approximately 125 ms after the pulse wave signal is output at the output of the pulse wave detection circuit 1. The output of AND gate 31 at about 62.5ms mentioned above and the output of AND gate 2 after about 125ms
The output of 9 is ANDOR gate 33 and inverter 3
It is connected to a multiplexer consisting of 2. The multiplexer outputs the output of the AND gate 31 or 29 to the pulse calculation means 4 according to the control signal from the pulse calculation means 4. If the pulse rate calculation means 4 is configured so that the control signal is "1" when the previous calculation result of the pulse rate calculation means 4 is 100 or less, and "0" when the pulse rate is 100 or more, the pulse rate calculation means 4
performs pulse calculation when a pulse wave signal with a pulse width of approximately 125 ms or more is input when the pulse rate is 100 or less. Also, if the pulse rate is 100 or more, approximately 62.5ms
Pulse calculation is performed when a pulse wave signal having a pulse width equal to or greater than the above is input.

以上述べたように脈波検出回路1と脈拍演算手
段4との間に、脈波パルス幅評価手段2を設ける
ことで、ある一定パルス幅以上の脈波信号で脈拍
を演算することが可能となる。この結果、パルス
幅の狭い雑音を無視するので、脈拍表示を安定さ
せることが可能になる。又、本実施例では脈波信
号のパルス幅評価基準値を2種としたが、これを
更に増やす事は容易に行える。そうすることによ
つて更に雑音除去性能を向上させることが出来
る。又、脈拍数が高い時、すなわち比較的に脈拍
信号パルスのパルス幅が狭い時に、長い評価基準
を適用すると測定不能になるのでは、と言つた懸
念がある。しかしこれについては、評価基準値の
値及び基準値を選択する方法によつて容易に解決
可能であり、全く本発明の欠点に成るものでは無
い。たとえば脈拍が得られにくい状況になつた場
合、最小の評価基準値に自動的に選択されるよう
にしておく方法等も有る。
As described above, by providing the pulse wave pulse width evaluation means 2 between the pulse wave detection circuit 1 and the pulse calculation means 4, it is possible to calculate the pulse using a pulse wave signal having a certain pulse width or more. Become. As a result, noise with a narrow pulse width is ignored, making it possible to stabilize the pulse rate display. Further, in this embodiment, there are two types of pulse width evaluation reference values of the pulse wave signal, but it is easy to further increase the number of pulse width evaluation reference values. By doing so, the noise removal performance can be further improved. Furthermore, there is a concern that if a long evaluation criterion is applied when the pulse rate is high, that is, when the pulse width of the pulse signal pulse is relatively narrow, measurement may become impossible. However, this problem can be easily solved by the evaluation standard value and the method of selecting the standard value, and is not a drawback of the present invention at all. For example, when it becomes difficult to obtain a pulse, there is a method in which the minimum evaluation reference value is automatically selected.

次に本発明の他の実施例を示しその動作を説明
する。前述した脈波信号パルス幅評価手段と脈拍
演算手段をマイクロプロセツサのソフトウエア処
理で実現しようとした場合について述べる。第7
図にソフトウエアで脈波信号パルス幅評価手段と
脈拍演算手段を実現した場合のフローチヤートを
示す。脈波信号の立上がりで割り込みが発生し、
ソフトが起動する。まず初めの処理STEP1では、
脈波信号パルスの信号レベルをチエツクし“H”
であればSTEP2へ進む。STEP2では、前回の脈
拍表示が100以上であつたか100以下であつたかを
チエツクする。チエツクした結果、100以下の場
合、脈波信号パルス幅評価値をaとする。又、
100以上であつた場合、脈波信号パルス幅評価値
をbとする。次のSTEP4ではHカウンタに+1
する。次のSTEP5ではHカウンタの内容が定め
られた脈波信号パルス幅評価値に等しくなつたか
どうか比較し、等しい場合はSTEP6で脈拍演算
サブルーチンをコールして脈拍数の演算を行う。
等しく無い場合はSTEP1の処理に戻りHカウン
タの値が定められた脈波信号パルス幅評価値に等
しくなるまでSTEP1〜STEP5のループを繰り返
す。その間に脈波信号パルスが立下がり“L”と
なるとSTEP7でHカウンタをクリアーしHALT
する。以上述べたような処理で、ある一定幅以上
の脈波信号でないと脈拍演算を行うことが出来な
くなる。この結果、パルス幅の狭い雑音を無視す
るので脈拍表示を安定させることが出来る。
Next, another embodiment of the present invention will be shown and its operation will be explained. A case will be described in which the aforementioned pulse wave signal pulse width evaluation means and pulse rate calculation means are attempted to be realized by software processing of a microprocessor. 7th
The figure shows a flowchart when the pulse wave signal pulse width evaluation means and the pulse calculation means are realized by software. An interrupt occurs at the rise of the pulse wave signal,
The software starts. In the first processing step 1,
Check the signal level of pulse wave signal pulse and make it “H”
If so, proceed to STEP 2. In STEP 2, check whether the previous pulse rate display was 100 or more or 100 or less. If the checked result is 100 or less, the pulse wave signal pulse width evaluation value is set as a. or,
If it is 100 or more, the pulse wave signal pulse width evaluation value is set as b. In the next STEP 4, add 1 to the H counter.
do. In the next STEP 5, it is compared whether the contents of the H counter are equal to a predetermined pulse wave signal pulse width evaluation value, and if they are equal, the pulse rate calculation subroutine is called in STEP 6 to calculate the pulse rate.
If they are not equal, the process returns to STEP 1 and the loop of STEP 1 to STEP 5 is repeated until the value of the H counter becomes equal to the predetermined pulse wave signal pulse width evaluation value. During that time, if the pulse wave signal pulse falls and becomes “L”, clear the H counter in STEP 7 and HALT.
do. With the processing described above, pulse calculation cannot be performed unless the pulse wave signal has a certain width or more. As a result, noise with a narrow pulse width is ignored, making it possible to stabilize the pulse rate display.

〔発明の効果〕〔Effect of the invention〕

上記してきたように本発明によれば、脈波検出
回路の出力する脈波信号を評価する脈波信号パル
ス幅評価手段で、雑音を除去し本来の脈波信号だ
けを脈拍演算手段へ伝達することが可能となるの
で、脈拍数表示の安定性を大幅に向上させること
が出来る。
As described above, according to the present invention, the pulse wave signal pulse width evaluation means for evaluating the pulse wave signal output from the pulse wave detection circuit removes noise and transmits only the original pulse wave signal to the pulse calculation means. This makes it possible to greatly improve the stability of pulse rate display.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示すブロツク図、第
2図は4データ選択移動方式の動作を示す図、第
3図は連続して雑音が存在する場合の4データ選
択移動方式の動作を示す図、第4図は脈拍数が低
い場合の脈波検出回路の波形を示す図、第5図は
脈拍数が高い場合の脈波検出回路の波形を示す
図、第6図は本発明の第1の実施例を示す図、第
7図は本発明の第2の実施例を説明するフローチ
ヤートである。 1……脈波検出回路、2……脈波信号パルス幅
評価手段、3……脈拍演算手段、4……表示手
段、5……基準信号発生回路。
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is a diagram showing the operation of the 4-data selection movement method, and FIG. 3 is a diagram showing the operation of the 4-data selection movement method when noise continuously exists. Figure 4 is a diagram showing the waveform of the pulse wave detection circuit when the pulse rate is low, Figure 5 is a diagram showing the waveform of the pulse wave detection circuit when the pulse rate is high, and Figure 6 is a diagram showing the waveform of the pulse wave detection circuit when the pulse rate is high. FIG. 7, which is a diagram showing the first embodiment, is a flowchart explaining the second embodiment of the present invention. DESCRIPTION OF SYMBOLS 1...Pulse wave detection circuit, 2...Pulse wave signal pulse width evaluation means, 3...Pulse calculation means, 4...Display means, 5...Reference signal generation circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 光電脈波式の脈拍計において、脈波を検出す
る脈波検出回路と、前記脈波検出回路の出力する
脈波信号のパルス幅を評価する脈波信号パルス幅
評価手段と、前記脈波信号パルス幅評価手段によ
つて評価され、脈波信号と認められた脈波信号パ
ルスの時間間隔を測定し、一分当たりの脈拍数を
演算する脈拍演算手段とを少なくとも備え、前記
脈拍演算手段が演算した脈拍数にしたがつて、前
記脈波信号パルス幅評価手段の評価基準値が変化
するように構成されたことを特徴とする脈拍計。
1. In a photoplethysmogram type pulsometer, a pulse wave detection circuit that detects a pulse wave, a pulse wave signal pulse width evaluation means that evaluates the pulse width of a pulse wave signal output from the pulse wave detection circuit, and at least pulse calculation means for measuring the time interval of pulse wave signal pulses evaluated by the signal pulse width evaluation means and recognized as pulse wave signals, and calculating the number of pulses per minute; A pulse meter characterized in that the evaluation reference value of the pulse wave signal pulse width evaluation means changes according to the pulse rate calculated by.
JP1193499A 1989-07-25 1989-07-25 Pulsimeter Granted JPH0357428A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1193499A JPH0357428A (en) 1989-07-25 1989-07-25 Pulsimeter
DE69022662T DE69022662T2 (en) 1989-07-25 1990-07-23 Heart rate monitor.
EP90308020A EP0410658B1 (en) 1989-07-25 1990-07-23 Pulsimeter
US07/557,303 US5190047A (en) 1989-07-25 1990-07-23 Photoelectric pulsation type pulsimeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1193499A JPH0357428A (en) 1989-07-25 1989-07-25 Pulsimeter

Publications (2)

Publication Number Publication Date
JPH0357428A JPH0357428A (en) 1991-03-12
JPH0479250B2 true JPH0479250B2 (en) 1992-12-15

Family

ID=16309066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1193499A Granted JPH0357428A (en) 1989-07-25 1989-07-25 Pulsimeter

Country Status (1)

Country Link
JP (1) JPH0357428A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8655436B2 (en) 2005-09-27 2014-02-18 Citizen Holdings Co., Ltd. Heart rate meter and heart beat detecting method
US8897864B2 (en) 2005-09-15 2014-11-25 Citizen Holdings Co., Ltd. Heart rate meter and method for removing noise of heart beat waveform

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4716263B2 (en) * 2006-09-25 2011-07-06 東芝ホームテクノ株式会社 Iron

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8897864B2 (en) 2005-09-15 2014-11-25 Citizen Holdings Co., Ltd. Heart rate meter and method for removing noise of heart beat waveform
US8655436B2 (en) 2005-09-27 2014-02-18 Citizen Holdings Co., Ltd. Heart rate meter and heart beat detecting method

Also Published As

Publication number Publication date
JPH0357428A (en) 1991-03-12

Similar Documents

Publication Publication Date Title
US4119910A (en) Method and apparatus for detecting whether phase difference between two signals is constant
US5190047A (en) Photoelectric pulsation type pulsimeter
JPS63246136A (en) Method and apparatus for determining number of pulses
JPH0479250B2 (en)
Watson Optimal displacement in apparent motion and quadrature models of motion sensing
JPH03159634A (en) Method and apparatus for operational processing of pulse value in pulse monitor
JP2572249B2 (en) Laser doppler velocimeter
JP2584990Y2 (en) Pulse width measurement device
JP3077187B2 (en) Pulse repetition interval measurement circuit
JP3516778B2 (en) Frequency measurement method for semiconductor test equipment
JPS62131637A (en) Timing jitter measuring system
JP3755025B2 (en) SEARCH TYPE SIGNAL DETECTION DEVICE, SIGNAL DETECTION METHOD, SIGNAL DETECTION PROGRAM, AND RECORDING MEDIUM CONTAINING THE PROGRAM
JP3130803B2 (en) Remote control signal receiver
JPH0614525Y2 (en) Bit sync detection circuit
SU1319293A1 (en) Device for predicting state of digital communication channel
CN115886785A (en) Respiration rate measuring device, method, equipment and medium
JPS6238136A (en) Pulsimeter
JP3256356B2 (en) Time difference measurement method
JPH06154342A (en) Pace maker pulse detecting circuit
JPH055708Y2 (en)
US4538619A (en) Analyzer of impulse processes of heart activity
Clark et al. Autocorrelation techniques for measuring avian heart rates
SU945982A1 (en) Measuring converter of short time intervals into code
JP2776325B2 (en) Duty measurement circuit
JPS63168574A (en) Frequency detector

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees