JPH0479075B2 - - Google Patents

Info

Publication number
JPH0479075B2
JPH0479075B2 JP57165882A JP16588282A JPH0479075B2 JP H0479075 B2 JPH0479075 B2 JP H0479075B2 JP 57165882 A JP57165882 A JP 57165882A JP 16588282 A JP16588282 A JP 16588282A JP H0479075 B2 JPH0479075 B2 JP H0479075B2
Authority
JP
Japan
Prior art keywords
film
refractive index
rotation angle
kerr rotation
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57165882A
Other languages
Japanese (ja)
Other versions
JPS5954056A (en
Inventor
Akira Takahashi
Junji Hirokane
Hiroyuki Katayama
Kenji Oota
Hideyoshi Yamaoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP16588282A priority Critical patent/JPS5954056A/en
Publication of JPS5954056A publication Critical patent/JPS5954056A/en
Publication of JPH0479075B2 publication Critical patent/JPH0479075B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10582Record carriers characterised by the selection of the material or by the structure or form
    • G11B11/10586Record carriers characterised by the selection of the material or by the structure or form characterised by the selection of the material

Description

【発明の詳細な説明】 <技術分野> 本発明は情報の記録・再生・消去が可能なメモ
リ素子として期待される磁気光学記憶素子に関す
る。
DETAILED DESCRIPTION OF THE INVENTION <Technical Field> The present invention relates to a magneto-optical memory element which is expected to be used as a memory element capable of recording, reproducing and erasing information.

<従来技術> 従来、磁気光学記憶素子をメモリ素子として用
いた場合の難点の一つは再生信号レベルが低いこ
とであつた。特に磁気光学記憶素子にレーザ光を
照射しその反射光によつて情報の再生を行なう所
謂カー効果再生方式では、一般的にカー回転角が
小さいので信号雑音比(S/N)を高める事が困
難であつた。その為従来では記録媒体である磁性
材料の改良を行なつたり、記録媒体上にSiOや
SiO2の誘電体膜を形成してカー回転角を高める
工夫をしていた。
<Prior Art> Conventionally, one of the difficulties when using a magneto-optical storage element as a memory element was that the reproduction signal level was low. In particular, in the so-called Kerr effect reproduction method, in which a magneto-optical memory element is irradiated with a laser beam and information is reproduced using the reflected light, the Kerr rotation angle is generally small, so it is difficult to increase the signal-to-noise ratio (S/N). It was difficult. For this reason, in the past, it was necessary to improve the magnetic material used as the recording medium, or to add SiO or other materials to the recording medium.
They tried to increase the Kerr rotation angle by forming a SiO 2 dielectric film.

又この手法とは別にカー効果再生方式の磁気光
学記憶素子において、記録媒体の背後に反射膜を
形成することによつて見かけのカー回転角を向上
させる手法を出願人は提案(特願昭55−85695)
している。この構造を反射膜構造という。
In addition to this method, the applicant has proposed a method for improving the apparent Kerr rotation angle by forming a reflective film behind the recording medium in a magneto-optical storage element using the Kerr effect reproduction method (Patent Application No. 1983). −85695)
are doing. This structure is called a reflective film structure.

この構造の特徴は記録媒体面で反射されたレー
ザ光と記録媒体を透過し次に反射膜にて反射され
たレーザ光が合成される為に上記反射膜が存在し
ない構造体に比べて見かけのカー回転角が大きく
向上することである。この場合カー回転角の増大
率は使用するレーザ光の波長、磁性体膜の種類及
び膜厚、反射膜の膜厚等によつて変化することが
確認されている。
The feature of this structure is that the laser beam reflected on the surface of the recording medium and the laser beam transmitted through the recording medium and then reflected on the reflective film are combined, so the apparent appearance is lower than that of a structure without the reflective film. This means that the Kerr rotation angle is greatly improved. In this case, it has been confirmed that the increase rate of the Kerr rotation angle varies depending on the wavelength of the laser beam used, the type and thickness of the magnetic film, the thickness of the reflective film, etc.

第1図に示すものは出願人が既に提案している
反射膜構造の磁気光学記憶素子の一例である。1
はガラス等の基板、2はGdTbFe非晶質薄膜、3
はSiO2透明膜、4はCu金属膜である。この構造
体においてSiO2透明膜3の膜厚を変化させると
カー回転角が大きく変化することを確認してい
る。第2図はレーザ光の波長を632.8nmとし、上
記SiO2透明膜3の膜厚を変化した時のカー回転
角の変化する様子を示したグラフ図である。同図
のカー回転角とSiO2透明膜3及びCu金属膜4が
無い時のカー回転角0.27゜とを比較すればCu金属
膜4及びSiO2透明膜3の存在の重要性が判る。
又、SiO2透明膜3が無い場合のカー回転角は他
の条件(磁性体膜厚、反射膜膜厚等)を変えても
最大で0.5゜であるからSiO2透明膜3の膜厚を適度
に調整すればカー回転角を大きく増加させること
ができるということも同図からよく判る。
What is shown in FIG. 1 is an example of a magneto-optical memory element having a reflective film structure that has already been proposed by the applicant. 1
is a substrate such as glass, 2 is a GdTbFe amorphous thin film, 3 is
4 is a SiO 2 transparent film, and 4 is a Cu metal film. It has been confirmed that in this structure, when the thickness of the SiO 2 transparent film 3 is changed, the Kerr rotation angle changes greatly. FIG. 2 is a graph showing how the Kerr rotation angle changes when the wavelength of the laser beam is 632.8 nm and the thickness of the SiO 2 transparent film 3 is changed. Comparing the Kerr rotation angle shown in the figure with the Kerr rotation angle of 0.27° in the absence of the SiO 2 transparent film 3 and the Cu metal film 4, the importance of the existence of the Cu metal film 4 and the SiO 2 transparent film 3 can be seen.
In addition, the Kerr rotation angle without the SiO 2 transparent film 3 is at most 0.5° even if other conditions (magnetic material film thickness, reflective film thickness, etc.) are changed, so the film thickness of the SiO 2 transparent film 3 is It is also clear from the figure that the Kerr rotation angle can be greatly increased by making appropriate adjustments.

<目的> 本発明は、透明誘電体膜と金属反射膜との組み
合わせによつて最適なカー回転角を得ることので
きる磁気光学記憶素子の構成を提供することを目
的とする。
<Objective> An object of the present invention is to provide a structure of a magneto-optical memory element that can obtain an optimum Kerr rotation angle by a combination of a transparent dielectric film and a metal reflective film.

<実施例> 第3図は本発明に係る磁気光学記憶素子の一実
施例の構成説明図である。同図で5は空気であり
この部分にガラス基板が配されてもよい。6は
GdTbFe、GdTbDyFe、TbDyFe、TbFe、
DyFeCoSn等の希土類−遷移金属系非晶質薄膜で
ありこの薄膜6は30nm以下の膜厚、例えば15nm
の膜厚を備える。この程度の膜厚であれば入射レ
ーザ光が薄膜6を通過でき、上述したカー回転角
の増大の効果を得ることができる。7は金属膜か
らなる反射膜若しくはSiO、SiO2、MgF2
Si3N4、Ta2O5、TiO2、CeO2、ZrO2、Al2O3等の
透明膜とその下面にCu、Ag、Au、Al等の金属
膜とが層設されてなる反射膜であつて、この反射
膜7の屈折率(上述した様に透明膜と金属膜とが
層設される場合は仮想屈折率)の実数部Aは0<
A≦0.5、虚数部Bは0≧B≧−1.5の値を有す
る。
<Example> FIG. 3 is an explanatory diagram of the configuration of an example of the magneto-optical memory element according to the present invention. In the figure, 5 is air, and a glass substrate may be placed in this portion. 6 is
GdTbFe, GdTbDyFe, TbDyFe, TbFe,
It is a rare earth-transition metal based amorphous thin film such as DyFeCoSn, and this thin film 6 has a thickness of 30 nm or less, for example 15 nm.
It has a film thickness of With a film thickness of this level, the incident laser beam can pass through the thin film 6, and the above-mentioned effect of increasing the Kerr rotation angle can be obtained. 7 is a reflective film made of a metal film or SiO, SiO 2 , MgF 2 ,
Reflection made by layering a transparent film such as Si 3 N 4 , Ta 2 O 5 , TiO 2 , CeO 2 , ZrO 2 , Al 2 O 3 etc. and a metal film such as Cu, Ag, Au, Al etc. on the lower surface of the transparent film. The real part A of the refractive index (virtual refractive index when a transparent film and a metal film are layered as described above) of this reflective film 7 is 0<
A≦0.5, and the imaginary part B has a value of 0≧B≧−1.5.

次に上記反射膜7の屈折率の適切な値が如何程
かを理論的に解明する。空気5の屈折率をn0、希
土類−遷移金属薄膜6の屈折率をn1、反射膜7の
屈折率をn2とする。ここで希土類−遷移金属薄膜
6の屈折率n1はその膜の磁化の状態によつて右ま
わりの円偏光と左まわりの円偏光とで屈折率が相
違する。上記一方の屈折率をn1 +、他方の屈折率
をn1 -とする。この時空気5と希土類−遷移金属
薄膜6との界面Aでの左右の両円偏光の反射率を
r1 +、r1 -とすると、r1 +=n0−n1 +/n0+n1 +、r1 -= n0−n1 -/n0+n1 -である。又希土類−遷移金属薄膜6と
反 射膜7との界面Bでの左右の両円偏光の反射率を
r2 +、r2 -とすると、r2 +=n1 +−n2/n1 ++n2、r2 -= n1 -−n2/n1 -+n2である。これより希土類−遷移金属薄
膜 6内部で干渉しその後界面Aから表出する左右の
両円偏光をR+、R-とすれば、R+
r1 ++r2 +e-i+/1+r1 +r2 +e-i〓、R-=r1 -+r2 +e-i
-/1+r1 -r2 -e-i-で表わさ れる。但しδ+=4πn1 +d/λ、δ-=4πn1 -d/λ、
d:磁性膜の膜厚、λ:光の波長である。
Next, the appropriate value of the refractive index of the reflective film 7 will be theoretically clarified. The refractive index of the air 5 is n0 , the refractive index of the rare earth-transition metal thin film 6 is n1 , and the refractive index of the reflective film 7 is n2 . Here, the refractive index n 1 of the rare earth-transition metal thin film 6 differs between clockwise circularly polarized light and counterclockwise circularly polarized light depending on the state of magnetization of the film. Let the refractive index of one of the above be n 1 + and the refractive index of the other be n 1 - . At this time, the reflectance of both left and right circularly polarized light at the interface A between the air 5 and the rare earth-transition metal thin film 6 is
If r 1 + and r 1 - , then r 1 + = n 0 − n 1 + /n 0 + n 1 + , r 1 - = n 0 − n 1 - /n 0 + n 1 - . Also, the reflectance of both left and right circularly polarized light at the interface B between the rare earth-transition metal thin film 6 and the reflective film 7 is
If r 2 + and r 2 - , then r 2 + = n 1 + −n 2 /n 1 + +n 2 and r 2 - = n 1 - −n 2 /n 1 - +n 2 . From this, if the left and right circularly polarized lights that interfere inside the rare earth-transition metal thin film 6 and then emerge from the interface A are R + and R - , then R + =
r 1 + +r 2 + e -i+ /1+r 1 + r 2 + e -i 〓, R - = r 1 - +r 2 + e -i
It is expressed as - /1+r 1 - r 2 - e -i- . However, δ + =4πn 1 + d/λ, δ - =4πn 1 - d/λ,
d: thickness of magnetic film, λ: wavelength of light.

膜面に垂直に直線偏光が入射した場合光の進行
方向をZ軸、振動面をX−Z平面にとると界面A
から表出する左右の両円偏光のx,y方向成分
Rx,RyはRx=1/2(R++R-)、Ry=i/2(R-− R+)である。ここでθx=arg(Rx)、θy=arg
(Ry)と置けばカー回転角αは次の式にて表わさ
れる。
When linearly polarized light is incident perpendicularly to the film surface, if the traveling direction of the light is the Z axis and the vibration plane is the X-Z plane, the interface A
x and y direction components of left and right circularly polarized light emerging from
Rx and Ry are Rx=1/2( R ++ R- ) and Ry=i/2(R -- R + ). Here θx=arg(Rx), θy=arg
(Ry), the Kerr rotation angle α is expressed by the following formula.

α=1/2tan-12|Rx||Ry|/|Ry|2−|Rx|2cos
(θx−θy) このカー回転角αの数式に次の各数値を代入す
る事によつて反射膜の屈折率に対するカー回転角
の変化の状態を調べた。希土類−遷移金属膜6は
GdTbFe磁性体膜としてその屈折率n1 ±は入射レ
ーザ光の波長が6328Åの時、n1 ±=n1±δn{n1
2.3−3.0i、δn=1/2(0.05−0.02i)}とした。上
記 n1は磁性体膜の左右の円偏光に対する屈折率平均
値、δnは左右の円偏光に対する上記屈折率平均
値からのずれを示す。そして上記希土類−遷移金
属膜6の膜厚dを30nmと15nmとして夫々の膜厚
dについて調べた。以上の各数値を用いて上記カ
ー回転角αの数式より第4図に示すグラフを得
た。同図aは希土類−遷移金属膜6の膜厚dが
30nmの時のグラフであり同図bは希土類−遷移
金属膜6の膜厚dが15nmの時のグラフである。
同図に示すものは言わば反射膜の屈折率に関する
カー回転角の等高線である。横軸が屈折率の実数
部、縦軸が屈折率の虚数部である。同図から希土
類−遷移金属膜6の膜厚dが30nmの時は反射膜
7の屈折率n2の実数部Aが0<A≦0.5、虚数部
Bが0≧B≧−3の時にカー回転角が最も大き
く、希土類−遷移金属膜6の膜厚dが15nmの時
は反射膜7の屈折率n2の実数部Aが0<A≦0.3、
虚数部Bが0.2≧B≧−0.8の時にカー回転角が最
も大きい事が判る。これらの第4図に図示した結
果及び他の図示しない結果から希土類−遷移金属
膜6の膜厚が略30nm以下の時においては上記反
射膜の屈折率は実数部Aが0<A≦0.5、虚数部
Bが0≧B≧−1.5の時に実用上満足し得るカー
回転角が得られる事が判明した。
α=1/2tan -1 2|Rx||Ry| /|Ry| 2 −|Rx| 2 cos
(θx−θy) By substituting the following numerical values into the formula for the Kerr rotation angle α, the state of change in the Kerr rotation angle with respect to the refractive index of the reflective film was investigated. The rare earth-transition metal film 6 is
As a GdTbFe magnetic film, its refractive index n 1 ± is n 1 ± = n 1 ±δn {n 1 = when the wavelength of the incident laser beam is 6328 Å.
2.3−3.0i, δn=1/2(0.05−0.02i)}. The above n 1 indicates the average value of the refractive index of the magnetic film for left and right circularly polarized light, and Δn indicates the deviation from the above average refractive index for left and right circularly polarized light. Then, the film thickness d of the rare earth-transition metal film 6 was set to 30 nm and 15 nm, and the respective film thicknesses d were investigated. Using the above numerical values, the graph shown in FIG. 4 was obtained from the mathematical formula for the Kerr rotation angle α. In the figure a, the thickness d of the rare earth-transition metal film 6 is
This is a graph when the film thickness is 30 nm, and the graph b is a graph when the film thickness d of the rare earth-transition metal film 6 is 15 nm.
What is shown in the figure is, so to speak, contour lines of the Kerr rotation angle with respect to the refractive index of the reflective film. The horizontal axis is the real part of the refractive index, and the vertical axis is the imaginary part of the refractive index. From the same figure, when the thickness d of the rare earth-transition metal film 6 is 30 nm, the refractive index n2 of the reflective film 7 has a curve when the real part A is 0<A≦0.5 and the imaginary part B is 0≧B≧−3. When the rotation angle is the largest and the thickness d of the rare earth-transition metal film 6 is 15 nm, the real part A of the refractive index n2 of the reflective film 7 is 0<A≦0.3.
It can be seen that the Kerr rotation angle is the largest when the imaginary part B is 0.2≧B≧−0.8. From these results shown in FIG. 4 and other results not shown, when the thickness of the rare earth-transition metal film 6 is approximately 30 nm or less, the refractive index of the reflective film has a real part A of 0<A≦0.5. It has been found that a practically satisfactory Kerr rotation angle can be obtained when the imaginary part B is 0≧B≧−1.5.

さて一般的な金属膜、例えばスパツタリングに
よつて形成されたCu膜の屈折率は大体0.25−3.1i
であつて、その値は上記結論として得られた反射
膜の好ましい屈折率の範囲内に存在しない場合が
多い。この様な場合は次の手法によつて反射膜の
屈折率を制御する事ができる。即ち金属膜の代わ
りにSiO2等の透明誘電体膜と金属膜とを層設し
てなる2層膜を反射膜とする事によつて上記金属
膜の屈折率を見かけ上大きく変化させる事ができ
る。この見かけ上の屈折率をここでは仮想屈折率
と呼称する。例えば希土類−遷移金属膜6の裏面
にSiO2透明誘電体膜とCu膜とをこの順にて層設
した構造体の素子において、上記SiO2透明誘電
体膜の膜厚を変化させた時の屈折率の変化(仮想
屈折率の変化)を第5図に示す。第5図aはその
一部拡大図である。第5図に示す様にSiO2透明
誘電体膜の膜厚が0nm、50nm、100nm、150nm、
200nmと増加していくにつれ屈折率の値は複素平
面上で円を描く。又第5図aによればSiO2透明
誘電体膜の膜厚が30乃至60nm程度で屈折率の値
が0.1−1.2i乃至0.05−0.3i程度の値を占めており、
SiO2透明誘電体膜の存在しない時即ちその膜厚
が0nmの時の屈折率の値0.25−3.1iから大きく変
化している。そして反射膜の屈折率が上記した好
ましい屈折率の範囲内に移行している事が判る。
Now, the refractive index of a general metal film, such as a Cu film formed by sputtering, is approximately 0.25-3.1i.
However, the value thereof is often not within the range of the preferable refractive index of the reflective film obtained as the above conclusion. In such a case, the refractive index of the reflective film can be controlled by the following method. That is, by using a two-layer film consisting of a transparent dielectric film such as SiO 2 and a metal film as a reflective film instead of a metal film, it is possible to change the refractive index of the metal film to a large extent in appearance. can. This apparent refractive index is referred to herein as a virtual refractive index. For example, in an element having a structure in which a SiO 2 transparent dielectric film and a Cu film are layered in this order on the back surface of a rare earth-transition metal film 6, the refraction when the thickness of the SiO 2 transparent dielectric film is changed is FIG. 5 shows the change in index (change in virtual refractive index). FIG. 5a is a partially enlarged view. As shown in Figure 5, the film thickness of the SiO 2 transparent dielectric film is 0nm, 50nm, 100nm, 150nm,
As the refractive index increases to 200 nm, the value of the refractive index draws a circle on the complex plane. Also, according to FIG. 5a, when the thickness of the SiO 2 transparent dielectric film is about 30 to 60 nm, the refractive index value is about 0.1-1.2i to 0.05-0.3i,
The refractive index value is significantly changed from 0.25-3.1i when the SiO 2 transparent dielectric film is not present, that is, when the film thickness is 0 nm. It can be seen that the refractive index of the reflective film is within the above-mentioned preferred refractive index range.

因に原理上、屈折率n′の膜上に屈折率n″の透明
膜を層設した時その2層膜の仮想屈折率は複素平
面上においてn″(1−r2)/1+r2を中心とした半径n
″・ |2r|/|1−r2|の円を描くものである。但し|r| =n″−n′/n″+n′。従つて上記したSiO2透明誘電体
膜と Cu金属膜との2層膜に限らず、反射膜の仮想屈
折率を制御する為の透明誘電体膜としてはMgF2
膜、Si3N4膜、Ta2O5膜、TiO2膜、CeO2膜、
ZrO2膜、Al2O3膜等が使用できる。
In principle, when a transparent film with a refractive index n'' is layered on a film with a refractive index n', the virtual refractive index of the two-layer film is n''(1-r 2 )/1+r 2 on the complex plane. center radius n
″・|2r|/|1−r 2 |. However, |r| = n″−n′/n″+n′. Therefore, the above-mentioned SiO 2 transparent dielectric film and Cu metal film Not only the two-layer film with MgF 2 but also the transparent dielectric film for controlling the virtual refractive index of the reflective film.
membrane, Si 3 N 4 membrane, Ta 2 O 5 membrane, TiO 2 membrane, CeO 2 membrane,
ZrO 2 film, Al 2 O 3 film, etc. can be used.

以上の様にして反射膜の構造を変化させる事で
その屈折率を制御し得、その制御によつて実用上
満足し得るカー回転角を得る事が判明した。
It has been found that by changing the structure of the reflective film as described above, it is possible to control its refractive index, and through this control, a practically satisfactory Kerr rotation angle can be obtained.

磁気光学記憶素子を用いた場合読出信号の大き
さの目安となるものは反射率をR、カー回転角を
αとしてRα2である。従つて上記読出信号の大き
さは殆どカー回転角αの大きさによつて左右され
る。実験によれば上記反射率Rの値はカー回転角
αの大きくなる領域で逆に小さくなるものである
が、上記読出信号の大きさはカー回転角αの値に
よる影響が強いので上記読出信号の大なる範囲は
カー回転角の大なる範囲と略一致する。
When a magneto-optical memory element is used, a measure of the magnitude of the read signal is Rα 2 where R is the reflectance and α is the Kerr rotation angle. Therefore, the magnitude of the readout signal is mostly determined by the magnitude of the Kerr rotation angle α. According to experiments, the value of the reflectance R becomes smaller in the region where the Kerr rotation angle α increases, but since the magnitude of the readout signal is strongly influenced by the value of the Kerr rotation angle α, the readout signal The large range of is approximately the same as the large range of the Kerr rotation angle.

例えば希土類−遷移金属膜の膜厚dが15nm、
反射膜の屈折率n2が0.2−0.4iの時反射率Rは
0.22、カー回転角αは0.62゜でありRα2は約0.085で
ある。一方希土類−遷移金属膜の膜厚dが100nm
と比較的に厚く反射膜効果がない時の反射率Rは
0.54、カー回転角αは0.21゜でありRα2は約0.024で
ある。以上の様に反射膜の効果がある場合は読出
信号が非常に大きいことが判る。そしてその結果
カー回転角が大きい程よい事が判る。
For example, if the thickness d of the rare earth-transition metal film is 15 nm,
When the refractive index n2 of the reflective film is 0.2−0.4i, the reflectance R is
0.22, Kerr rotation angle α is 0.62°, and Rα 2 is approximately 0.085. On the other hand, the thickness d of the rare earth-transition metal film is 100 nm.
The reflectance R when the film is relatively thick and has no effect is
0.54, Kerr rotation angle α is 0.21°, and Rα 2 is approximately 0.024. As described above, it can be seen that when the reflective film has an effect, the readout signal is very large. The results show that the larger the Kerr rotation angle, the better.

又、磁気光学記憶素子を用いた場合記録感度は
希土類−遷移金属膜の吸収率によつて左右され
る。そしてこの吸収率の観点からすれば希土類−
遷移金属膜の膜厚を薄く且つ反射膜構造とした方
が吸収率が大きい。例えば希土類−遷移金属膜の
膜厚dが15nm、反射膜の屈折率n2が0.2−0.4iの
時は希土類−遷移金属膜には入射光の72%が吸収
される。一方希土類−遷移金属膜の膜厚dが
100nmと比較的に厚く反射膜効果がない時は希土
類−遷移金属膜には入射光の46%だけが吸収され
るのみである。以上の様に記録感度の点において
も反射膜構造の素子が優れている事が判る。
Furthermore, when a magneto-optical memory element is used, the recording sensitivity is influenced by the absorption rate of the rare earth-transition metal film. And from the perspective of this absorption rate, rare earths -
The absorption rate is higher when the transition metal film is thinner and has a reflective film structure. For example, when the thickness d of the rare earth-transition metal film is 15 nm and the refractive index n 2 of the reflective film is 0.2-0.4i, 72% of the incident light is absorbed by the rare earth-transition metal film. On the other hand, the film thickness d of the rare earth-transition metal film is
When the rare earth-transition metal film is relatively thick at 100 nm and has no reflective film effect, only 46% of the incident light is absorbed by the rare earth-transition metal film. As described above, it can be seen that the element with the reflective film structure is superior in terms of recording sensitivity as well.

<効果> 以上説明したように本発明によれば、透明誘電
体膜と金属反射膜との組み合わせによつて仮想屈
折率の実数部Aを0<A≦0.5、虚数部Bを0≧
B≧−1.5としたので、吸収率が大きいので記録
感度が優れているとともに、カー回転角を大きく
することができ、読出信号を大きくすることがで
きるので、優れた特性を有する磁気光学記憶素子
を提供することができる。
<Effect> As explained above, according to the present invention, the combination of the transparent dielectric film and the metal reflective film makes the real part A of the virtual refractive index 0<A≦0.5 and the imaginary part B 0≧
Since B≧−1.5, the absorption rate is large, so the recording sensitivity is excellent, and the Kerr rotation angle can be increased, and the read signal can be increased, so the magneto-optical storage element has excellent characteristics. can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は反射膜構造の磁気光学記憶素子の構成
説明図、第2図はそのカー回転角の特性のグラフ
図、第3図は本発明に係る磁気光学記憶素子の構
成説明図、第4図はその反射膜の屈折率に対する
カー回転角の特性のグラフ図、第5図はSiO2
明誘電体膜の膜厚を変化させた時の仮想屈折率の
変化を示すグラフ図である。 図中、1:基板、2:GdTbFe非晶質薄膜、
3:SiO2透明膜、4:Cu金属膜、5:空気、
6:希土類−遷移金属系非晶薄膜、7:反射膜。
FIG. 1 is an explanatory diagram of the structure of a magneto-optic memory element having a reflective film structure, FIG. 2 is a graph diagram of its Kerr rotation angle characteristics, FIG. 3 is an explanatory diagram of the structure of the magneto-optic memory element according to the present invention, and FIG. The figure is a graph showing the characteristics of the Kerr rotation angle with respect to the refractive index of the reflective film, and FIG. 5 is a graph showing the change in virtual refractive index when the film thickness of the SiO 2 transparent dielectric film is changed. In the figure, 1: substrate, 2: GdTbFe amorphous thin film,
3: SiO 2 transparent film, 4: Cu metal film, 5: air,
6: Rare earth-transition metal amorphous thin film, 7: Reflective film.

Claims (1)

【特許請求の範囲】 1 基板と、 膜厚が30nm程度以下の、膜面に垂直な方向に
磁化容易軸を有する希土類−遷移金属系非晶質磁
性体薄膜と、 透明誘電体膜と、 金属反射膜とを備え、 前記透明誘電体膜と前記金属反射膜との組み合
わせによつて仮想屈折率の実数部Aを0<A≦
0.5、虚数部Bを0≧B≧−1.5とすることを特徴
とする磁気光学記憶素子。
[Scope of Claims] 1. A substrate, a rare earth-transition metal based amorphous magnetic thin film having a film thickness of about 30 nm or less and having an axis of easy magnetization perpendicular to the film surface, a transparent dielectric film, and a metal. a reflective film, and the real part A of the virtual refractive index is set to 0<A≦ by the combination of the transparent dielectric film and the metal reflective film.
0.5, and the imaginary part B satisfies 0≧B≧−1.5.
JP16588282A 1982-09-21 1982-09-21 Magnetooptic storage element Granted JPS5954056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16588282A JPS5954056A (en) 1982-09-21 1982-09-21 Magnetooptic storage element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16588282A JPS5954056A (en) 1982-09-21 1982-09-21 Magnetooptic storage element

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP3211841A Division JP2908911B2 (en) 1991-08-23 1991-08-23 Magneto-optical storage element

Publications (2)

Publication Number Publication Date
JPS5954056A JPS5954056A (en) 1984-03-28
JPH0479075B2 true JPH0479075B2 (en) 1992-12-14

Family

ID=15820764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16588282A Granted JPS5954056A (en) 1982-09-21 1982-09-21 Magnetooptic storage element

Country Status (1)

Country Link
JP (1) JPS5954056A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3677078D1 (en) * 1985-07-10 1991-02-28 Mitsubishi Chem Ind MAGNETOOPTIC CARRIER.
JPH0789414B2 (en) * 1986-01-31 1995-09-27 シャープ株式会社 Optical storage element
JPH01116942A (en) * 1987-10-28 1989-05-09 Agency Of Ind Science & Technol Method for increasing magnetic angle of kerr rotation angle and magnetic kerr effect material
JP2908911B2 (en) * 1991-08-23 1999-06-23 シャープ株式会社 Magneto-optical storage element
JPH06139637A (en) * 1992-10-29 1994-05-20 Canon Inc Magneto-optical recording medium
EP0598377B1 (en) * 1992-11-17 1999-09-22 Mitsubishi Chemical Corporation Magneto-optical recording medium and optical information recording and reading-out method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5712428A (en) * 1980-06-23 1982-01-22 Sharp Corp Magnetooptic storage element
JPS5727494A (en) * 1980-07-23 1982-02-13 Sharp Corp Magneto-optical storage element
JPS57120253A (en) * 1981-01-14 1982-07-27 Sharp Corp Magnetooptical storage elemen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5712428A (en) * 1980-06-23 1982-01-22 Sharp Corp Magnetooptic storage element
JPS5727494A (en) * 1980-07-23 1982-02-13 Sharp Corp Magneto-optical storage element
JPS57120253A (en) * 1981-01-14 1982-07-27 Sharp Corp Magnetooptical storage elemen

Also Published As

Publication number Publication date
JPS5954056A (en) 1984-03-28

Similar Documents

Publication Publication Date Title
US4649451A (en) Magneto-optical recording medium having alternately-layered high and low refractive index layers
JPH0479075B2 (en)
JPH0430098B2 (en)
JP2722723B2 (en) Optical recording medium
JP2908911B2 (en) Magneto-optical storage element
JPS5960746A (en) Photomagnetic recording medium
JP2622206B2 (en) Magneto-optical recording medium
JP2528570B2 (en) Magneto-optical disk
JPS6126954A (en) Photomagnetic recording medium
JPS5938950A (en) Magneto-optic storage element
JPH06349137A (en) Amorphous or quasi-amorphous film structure for optical or magneto-optical data storage medium, optical data storage device and its manufacture
JPH09106572A (en) Optical recording medium
JPS61242356A (en) Photomagnetic disk
JPH05325280A (en) Magneto-optical recording medium
JP2562219B2 (en) Magneto-optical disk
JP2960767B2 (en) Magneto-optical recording medium
JP2801984B2 (en) Magneto-optical storage element
JPH0462140B2 (en)
JPH046642A (en) Magneto-optical disk
JPH06101155B2 (en) Magneto-optical recording / reproducing method
JPS5952442A (en) Photomagnetic recording medium
JPS62139155A (en) Optical magnetic memory medium
JPH06111368A (en) Optical recording medium
JPS60209946A (en) Optomagnetic recording medium
JPS62285255A (en) Magneto-optical recording medium