JP2908911B2 - Magneto-optical storage element - Google Patents

Magneto-optical storage element

Info

Publication number
JP2908911B2
JP2908911B2 JP3211841A JP21184191A JP2908911B2 JP 2908911 B2 JP2908911 B2 JP 2908911B2 JP 3211841 A JP3211841 A JP 3211841A JP 21184191 A JP21184191 A JP 21184191A JP 2908911 B2 JP2908911 B2 JP 2908911B2
Authority
JP
Japan
Prior art keywords
film
refractive index
rotation angle
thickness
magneto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3211841A
Other languages
Japanese (ja)
Other versions
JPH056587A (en
Inventor
明 高橋
順司 広兼
博之 片山
賢司 太田
秀嘉 山岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Consejo Superior de Investigaciones Cientificas CSIC
Original Assignee
Consejo Superior de Investigaciones Cientificas CSIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior de Investigaciones Cientificas CSIC filed Critical Consejo Superior de Investigaciones Cientificas CSIC
Priority to JP3211841A priority Critical patent/JP2908911B2/en
Publication of JPH056587A publication Critical patent/JPH056587A/en
Application granted granted Critical
Publication of JP2908911B2 publication Critical patent/JP2908911B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は情報の記録・再生・消去
が可能な磁気光学記憶素子に関する。 【0002】 【従来の技術】従来、磁気光学記憶素子をメモリ素子と
して用いた場合の難点の一つは再生信号レベルが低いこ
とであった。特に、磁気光学記憶素子にレーザ光を照射
してその反射光によって情報の再生を行ういわゆるカー
効果再生方式では、一般的にカー回転角が小さいので信
号雑音比(S/N)を高める事が困難であった。その
為、従来では記録媒体である磁性材料の改良を行なった
り、記録媒体上にSiOやSiO2 の誘電体膜を形成し
てカー回転角を高める工夫をしていた。 【0003】又この手法とは別にカー効果再生方式の磁
気光学記憶素子において、記録媒体の背後に反射膜を形
成することによって見かけのカー回転角を向上させる手
法を出願人は提案(特願昭55−85695)してい
る。この構造を反射膜構造という。 【0004】この構造の特徴は記録媒体面で反射された
レーザ光と記録媒体を透過し次に反射膜にて反射された
レーザ光が合成される為に上記反射膜が存在しない構造
体に比べて見かけのカー回転角が大きく向上することで
ある。 【0005】 【発明が解決しようとする課題】ところが、上述の反射
膜構造ではカー回転角の増大率が使用するレーザ光の波
長,磁性体膜の種類及び膜厚、反射膜の膜厚等によって
変化する上に、この構造でもなお充分な大きさのカー回
転角が得られないという問題があった。 【0006】そこで本発明の目的は充分な大きさのカー
回転角を得ることのできる磁気光学記憶素子を提供する
ことにある。 【0007】 【課題を解決するための手段】上述の目的を達成するた
め、本発明は、基板と、15nm以下の膜厚を有する、
膜面に垂直な方向に磁化容易軸を有する希土類−遷移金
属系非晶質磁性体薄膜と、膜厚が60nm程度以下の透
明誘電体膜と、金,銀,銅,アルミニウムの内の少なく
とも1つを含む金属反射膜と、をこの順に形成したこと
を特徴としている。 【0008】 【作用】図1に本発明に係る反射膜構造の磁気光学記憶
素子の一実施例を示す。1はガラス等の基板、2はGd
TbFe非晶質薄膜、3はSiO2 透明膜、4はCu金
属膜である。この構造体においてSiO2 透明膜3の膜
厚を変化させるとカー回転角が大きく変化することを確
認している。図2はレーザ光の波長を6328nmと
し、上記SiO2 透明膜3の膜厚を変化した時のカー回
転角の変化する様子を示したグラフ図である。同図のカ
ー回転角とSiO2 透明膜3及びCu金属膜4が無い時
のカー回転角0.27°とを比較すればCu金属膜4及
びSiO2 透明膜3の存在の重要性が判る。又、SiO
2 透明膜3が無い場合のカー回転角は他の条件(磁性体
膜厚,反射膜膜厚等)を変えても最大で0.5°である
からSiO2 透明膜3の膜厚を適度に調整すればカー回
転角を大きく増加させることができるということも同図
からよく判る。 【0009】 【実施例】図3に本発明に係る磁気光学記憶素子の構成
説明図を示す。同図で5は空気でありこの部分にガラス
基板が配されてもよい。6はGdTbFe,GdTbD
yFe,TbDyFe,TdFe,DyFeCoSn等
の希土類−遷移金属系非晶質薄膜でありこの薄膜6は3
0nm以下の膜厚、例えば15nmの膜厚を備える。こ
の程度の膜厚であれば入射レーザ光が薄膜6を通過で
き、上述したカー回転角の増大の効果を得ることができ
る。7は金属膜からなる反射膜若しくはSiO,SiO
2 ,MgF2 ,Si34 ,Ta25 ,TiO2 ,CeO
2,ZrO2 ,Al23 等の透明膜とその下面にCu,
Ag,Au,Al等の金属膜とが層設されてなる反射膜
であって、この反射膜7の屈折率(上述した様に透明膜
と金属膜とが層設される場合は仮想屈折率)の実数部A
は0<A≦0.5、虚数部Bは0≧B≧−1.5の値を
有する。 【0010】次に上記反射膜7の屈折率の適切な値が如
何程かを理論的に解明する。空気5の屈折率をn0 、反
射膜7の屈折率をn2 とする。ここで希土類−遷移金属
薄膜6の屈折率n1 はその膜の磁化の状態によって右回
りの円偏光と左回りの円偏光とで屈折率が相違する。上
記一方の屈折率をn1 + ,他方の屈折率をn1 - とする。
この時空気5と希土類−遷移金属薄膜6との界面Aでの
左右の両円偏光の反射率r1 + ,r1 - は数1で表され
る。 【0011】 【数1】 【0012】又希土類−遷移金属薄膜6と反射膜7との
界面Bでの左右の両円偏光の反射率r2 + ,r2 - は数2
で表される。 【0013】 【数2】 【0014】これより希土類−遷移金属薄膜6内部で干
渉しその後界面Aから表出する左右の両円偏向R+ ,R
- は数3となる。 【0015】 【数3】【0016】但しδ+ =4πn1 +d/λ ,δ-=4πn
1 -d/λ ,d:磁性膜の膜厚、λ:光の波長である。 【0017】膜面に垂直に直線偏光が入射した場合光の
進行方向をZ軸、振動面をX−Z平面にとると界面Aか
ら表出する左右の両円偏光のx,y方向成分Rx,Ry
は数4である。 【0018】 【数4】 【0019】ここでθx=arg(Rx)、θy=ar
g(Ry)と置けばカー回転角αは数5にて表される。 【0020】 【数5】 【0021】このカー回転角α の数式に次の各数値を
代入する事によって反射膜の屈折率に対するカー回転角
の変化の状態を調べた。希土類−遷移金属膜6はGdT
bFe磁性体膜としてその屈折率n1 +、n1 -は入射レー
ザ光の波長が6328Åの時数6とした。 【0022】 【数6】 【0023】上記n1は磁性体膜の左右の円偏光に対す
る屈折率平均値、δnは左右の円偏光に対する上記屈折
率平均値からのずれを示す。そして上記希土類−遷移金
属膜6の膜厚dを30nmと15nmとして夫々の膜厚
dについて調べた。以上の各数値を用いて上記カー回転
角αの数式より図4に示すグラフを得た。同図(a)は
希土類−遷移金属膜6の膜厚dが30nmの時のグラフ
であり同図(b)は希土類−遷移金属膜6の膜厚dが1
5nmの時のグラフである。同図に示すものは言わば反
射膜の屈折率に関するカー回転角の等高線である。横軸
が屈折率の実数部、縦軸が屈折率偶数部である。同図か
ら希土類−遷移金属膜6の膜厚dが30nmの時は反射
膜7の屈折率n2 の実数部Aが0<Al≦0.5、虚数
部Bが0≧B≧−3の時にカー回転角が最も大きく、希
土類−遷移金属膜6の膜厚dが15nmの時は反射膜7
の屈折率n2 の実数部Aが0<A≦0.3、虚数部Bが
0.2≧B≧−8の時にカー回転角が最も大きいことが
判る。これらの図4に図示した結果及び他の図示しない
結果から希土類−遷移金属膜6の膜厚が略30nm以下
の時においては上記反射膜の屈折率は実数部Aが0<A
≦0.5、虚数部Bが0≧B≧−1.5の時に実用上満
足し得るカー回転角が得られる事が判明した。 さて一
般的な金属膜、例えばスパッテリングによって形成され
たCu膜の屈折率は大体0.25−3.1iであって、
その値は上記結論として得られた反射膜の好ましい屈折
率の範囲内に存在しない場合が多い。この様な場合は次
の手法によって反射膜の屈折率を制御する事ができる。
即ち金属膜の代わりにSiO2等の透明誘電体膜と金属
膜とを層設してなる2層膜を反射膜とする事によって上
記金属膜の屈折率を見かけ上大きく変化させる事ができ
る。この見かけ上の屈折率をここでは仮想屈折率と呼称
する。例えば、希土類−遷移金属膜6の裏面にSiO2
透明誘電体膜とCu膜とをこの順にて層設した構造体の
素子において、上記SiO2透明誘電体膜の膜厚を変化
させた時の屈折率の変化(仮想屈折率の変化)を図5に
示す。図5(a)はその一部拡大図である。図5に示す
様にS2 時誘電体膜の膜厚が0nm,50nm,100
nm,150nm,200nmと増加していくにつれ屈
折率の値は複素平面上で円を描く。又図5(a)によれ
ばSiO2透明誘電体膜の膜厚が30乃至60nm程度
で屈折率の値が0.1−1.2i乃至0.05−0.3
i程度の値を占めており、SiO2透明誘電体膜の存在
しない時即ちその膜厚が0nmの時の屈折率の値0.2
5−3.1iから大きく変化している。そして反射膜の
屈折率が上記した好ましい屈折率の範囲内に移行してい
る事が判る。 【0024】因に原理上、屈折率n′の膜上に屈折率
n″の透明膜を層設した時その2層膜の仮想屈折率は複
素平面上において数7を中心とした半径数8の円を描く
ものである。但し│r│は数9である。 【0025】 【数7】 【0026】 【数8】 【0027】 【数9】 【0028】従って上記したSiO2 透明誘電体膜とC
u膜との2層膜に限らず、反射膜の仮想屈折率を制御す
る為の透明誘電体膜としては,MgF2 膜、Si34
膜、Ta25 膜、TiO2 膜、CeO2 膜、ZrO2
膜、Al22 膜等が使用できる。 【0029】以上の様にして反射膜の構造を変化させる
事でその屈折率を制御し得、その制御によって実用上満
足し得るカー回転角を得る事が判明した。また、図4の
結果より、希土類−遷移金属膜の膜厚が30nmのもの
よりも15nmのものの方が、反射膜の屈折率が同一で
あるならば大きなカー回転角を得られる事が判る。 【0030】磁気光学記憶素子を用いた場合読出信号の
大きさの目安となるものは反射率をR,カー回転角をα
としてRα2 である。 従って上記読出信号の大きさは
殆どカー回転角α の大きさによって左右される。実験
によれば上記反射率Rの値はカー回転角α の大きくな
る領域で逆に小さくなるものであるが、上記読出信号の
大きさはカー回転角α の値による影響が強いので上記
読出信号の大なる範囲はカー回転角の大なる範囲と略一
致する。 【0031】例えば希土類−遷移金属膜の膜厚dが15
nm,反射膜の屈折率n2 が0.2−0.4iの時反射
率Rは0.22,カー回転角α は0.62°でありR
α2は約0.085である。一方希土類−遷移金属膜の
膜厚dが100nmと比較的に厚く反射膜効果がない時
の反射率Rは0.54,カー回転角α は0.21°で
ありRα2 は約0.024である。 以上の様に反射膜
の効果がある場合は読出信号が非常に大きいことが判
る。そしてその結果カー回転角が大きい程よい事が判
る。 【0032】又、磁気光学記憶素子を用いた場合記録感
度は希土類−遷移金属膜の吸収率によって左右される。
そしてこの吸収率の観点からすれは希土類−遷移金属膜
の膜厚を薄く且つ反射膜構造とした方が吸収率が大き
い。例えば希土類−遷移金属膜の膜厚dが15nm、反
射膜の屈折率n2が0.2−0.4iの時は希土類−遷
移金属膜には入射光の72%が吸収される。一方希土類
−遷移金属膜の膜厚dが100nmと比較的に厚く反射
膜効果がない時は希土類−遷移金属膜には入射光の46
%だけが吸収されるのみである。以上の様に記録感度の
点においても反射膜構造で希土類−遷移金属膜の膜厚が
15nm以下の素子が優れている事が判る。 【0033】 【発明の効果】以上詳細に説明した如く本発明の磁気光
学記憶素子はカー回転角を大きくする事ができその事に
よって読出信号を大きくする事ができる。更に本発明の
磁気光学記憶素子は吸収率についても大きいので記録感
度を優れたものとする事ができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magneto-optical storage element capable of recording, reproducing and erasing information. Conventionally, one of the drawbacks when using a magneto-optical storage element as a memory element is that the reproduction signal level is low. In particular, in a so-called Kerr effect reproducing system in which a magneto-optical storage element is irradiated with laser light and information is reproduced by reflected light, the signal-to-noise ratio (S / N) can be increased because the Kerr rotation angle is generally small. It was difficult. Therefore, conventionally, a magnetic material as a recording medium has been improved, or a dielectric film of SiO or SiO 2 has been formed on the recording medium to increase the Kerr rotation angle. In addition to this method, the applicant has proposed a method of improving the apparent Kerr rotation angle by forming a reflective film behind a recording medium in a magneto-optical storage element of the Kerr effect reproducing method (Japanese Patent Application No. 55-85695). This structure is called a reflection film structure. The feature of this structure is that the laser light reflected on the recording medium surface and the laser light transmitted through the recording medium and then reflected on the reflection film are combined, so that the structure is not compared with the structure without the reflection film. That is, the apparent car rotation angle is greatly improved. However, in the above-mentioned reflecting film structure, the increasing rate of the Kerr rotation angle depends on the wavelength of the laser beam used, the type and thickness of the magnetic film, the thickness of the reflecting film, and the like. In addition to this, there is a problem that a car rotation angle of a sufficient size cannot be obtained even with this structure. SUMMARY OF THE INVENTION An object of the present invention is to provide a magneto-optical storage element capable of obtaining a sufficiently large Kerr rotation angle. [0007] To achieve the above object,
Therefore, the present invention has a substrate and a thickness of 15 nm or less,
Rare earth-transition gold with easy axis of magnetization perpendicular to film surface
Metal-based amorphous magnetic thin film and a transparent film having a thickness of about 60 nm or less.
Light dielectric film and less of gold, silver, copper and aluminum
And a metal reflective film including at least one of these in that order.
It is characterized by . FIG. 1 shows an embodiment of a magneto-optical memory device having a reflective film structure according to the present invention. 1 is a substrate such as glass, 2 is Gd
A TbFe amorphous thin film, 3 is a SiO 2 transparent film, and 4 is a Cu metal film. It has been confirmed that changing the thickness of the SiO 2 transparent film 3 in this structure greatly changes the Kerr rotation angle. FIG. 2 is a graph showing how the Kerr rotation angle changes when the wavelength of the laser beam is 6328 nm and the thickness of the SiO 2 transparent film 3 changes. Comparing the Kerr rotation angle in the figure with the Kerr rotation angle of 0.27 ° when the SiO 2 transparent film 3 and the Cu metal film 4 are not present, the importance of the existence of the Cu metal film 4 and the SiO 2 transparent film 3 can be understood. . Also, SiO
The second transparent layer 3 is Kerr rotation angle when no other conditions (the magnetic film thickness, reflecting film thickness, etc.) appropriate to the thickness of the SiO 2 transparent film 3 from a 0.5 ° at maximum be changed It can also be seen from the figure that the car rotation angle can be greatly increased by adjusting the angle. FIG. 3 is a diagram illustrating the configuration of a magneto-optical memory device according to the present invention. In the figure, reference numeral 5 denotes air, and a glass substrate may be provided in this portion. 6 is GdTbFe, GdTbD
A rare earth-transition metal based amorphous thin film such as yFe, TbDyFe, TdFe, DyFeCoSn, etc.
It has a thickness of 0 nm or less, for example, a thickness of 15 nm. With such a thickness, the incident laser light can pass through the thin film 6, and the above-described effect of increasing the Kerr rotation angle can be obtained. 7 is a reflection film made of a metal film or SiO, SiO
2 , MgF 2 , Si 3 N 4 , Ta 2 O 5 , TiO 2 , CeO
2, ZrO 2, Al 2 transparent film of O 3, and Cu on the underside,
A reflective film on which a metal film of Ag, Au, Al, or the like is layered; and a refractive index of the reflective film 7 (a virtual refractive index when a transparent film and a metal film are layered as described above). ) Real part A
Has a value of 0 <A ≦ 0.5, and the imaginary part B has a value of 0 ≧ B ≧ −1.5. Next, the appropriate value of the refractive index of the reflection film 7 is theoretically clarified. The refractive index of the air 5 is n 0 and the refractive index of the reflection film 7 is n 2 . Here, the refractive index n 1 of the rare earth-transition metal thin film 6 differs between clockwise circularly polarized light and counterclockwise circularly polarized light depending on the magnetization state of the film. One of the refractive indexes is n 1 + , and the other is n 1 .
In this case the air 5 and the rare earth - transition metal reflectivity of both the circular polarization of the left and right at the interface A between the thin film 6 r 1 +, r 1 - is represented by the number 1. [0011] [0012] The rare earth - transition metal film 6 and the reflection film 7 reflectivity of both the circular polarization of the left and right at the interface B between r 2 +, r 2 - the number 2
It is represented by [0013] From this, the right and left circular deflections R + , R + , which interfere inside the rare earth-transition metal thin film 6 and then emerge from the interface A,
-Becomes Equation 3. [Equation 3] [0016] However δ + = 4πn 1 + d / λ, δ - = 4πn
1 - d / λ, d: film thickness of the magnetic film, λ: wavelength of light. When linearly polarized light is perpendicular to the film surface, the traveling direction of the light is defined as the Z axis, and the vibration plane is defined as the XZ plane. , Ry
Is Equation 4. [Equation 4] Here, θx = arg (Rx), θy = ar
If g (Ry) is set, the Kerr rotation angle α is expressed by Expression 5. (Equation 5) By substituting the following numerical values into the equation of the Kerr rotation angle α, the state of the change of the Kerr rotation angle with respect to the refractive index of the reflection film was examined. The rare earth-transition metal film 6 is made of GdT
The refractive indexes n 1 + and n 1 of the bFe magnetic film were set to 6 when the wavelength of the incident laser light was 6328 °. (Equation 6) The above-mentioned n 1 represents the average value of the refractive index of left and right circularly polarized light of the magnetic film, and δn represents the deviation from the above-mentioned average value of the refractive index of right and left circularly polarized light. Then, the film thickness d of the rare earth-transition metal film 6 was set to 30 nm and 15 nm, and each film thickness d was examined. Using the above numerical values, a graph shown in FIG. 4 was obtained from the mathematical expression of the Kerr rotation angle α. FIG. 3A is a graph when the film thickness d of the rare earth-transition metal film 6 is 30 nm, and FIG.
It is a graph at the time of 5 nm. What is shown in the figure are so-called contour lines of the Kerr rotation angle with respect to the refractive index of the reflection film. The horizontal axis is the real part of the refractive index, and the vertical axis is the even part of the refractive index. From FIG earth - real part A is 0 refractive index n 2 of the reflective film 7 when the film thickness d of 30nm transition metal film 6 <Al ≦ 0.5, the imaginary part B is 0 ≧ B ≧ -3 Sometimes the Kerr rotation angle is the largest, and when the film thickness d of the rare earth-transition metal film 6 is 15 nm, the reflection film 7
It can be seen that the Kerr rotation angle is the largest when the real part A of the refractive index n 2 satisfies 0 <A ≦ 0.3 and the imaginary part B satisfies 0.2 ≧ B ≧ −8. From the results shown in FIG. 4 and other results (not shown), when the thickness of the rare earth-transition metal film 6 is about 30 nm or less, the refractive index of the reflection film is such that the real part A is 0 <A.
It was found that a practically satisfactory Kerr rotation angle was obtained when ≦ 0.5 and the imaginary part B was 0 ≧ B ≧ −1.5. Now, the refractive index of a general metal film, for example, a Cu film formed by sputtering, is approximately 0.25-3.1i,
In many cases, the value does not exist within the preferable range of the refractive index of the reflection film obtained as the above conclusion. In such a case, the refractive index of the reflective film can be controlled by the following method.
That is, the refractive index of the metal film can be significantly changed by using a two-layer film formed by laminating a transparent dielectric film such as SiO 2 and a metal film instead of the metal film as the reflection film. This apparent refractive index is referred to herein as a virtual refractive index. For example, the rear surface of the rare earth-transition metal film 6 is made of SiO 2
In a device having a structure in which a transparent dielectric film and a Cu film are layered in this order, a change in refractive index (change in virtual refractive index) when the thickness of the SiO 2 transparent dielectric film is changed is shown. It is shown in FIG. FIG. 5A is a partially enlarged view of FIG. As shown in FIG. 5, the thickness of the dielectric film at S 2 is 0 nm, 50 nm, 100 nm.
The value of the refractive index draws a circle on the complex plane as it increases to nm, 150 nm, and 200 nm. According to FIG. 5 (a), the thickness of the SiO 2 transparent dielectric film is about 30 to 60 nm, and the value of the refractive index is 0.1-1.2i to 0.05-0.3.
i, and when the SiO 2 transparent dielectric film does not exist, that is, when the film thickness is 0 nm, the refractive index value is 0.2.
It changes greatly from 5-3.1i. Then, it can be seen that the refractive index of the reflective film has shifted within the above-mentioned preferred refractive index range. In principle, when a transparent film having a refractive index of n ″ is formed on a film having a refractive index of n ′, the virtual refractive index of the two-layered film is expressed by a radius of 8 with a center at Equation 7 on a complex plane. Where | r | is equation (9). [Equation 8] [Equation 9] Therefore, the above-mentioned SiO 2 transparent dielectric film and C
The transparent dielectric film for controlling the virtual refractive index of the reflection film is not limited to the two-layer film with the u film, but may be MgF 2 film, Si 3 N 4
Film, Ta 2 O 5 film, TiO 2 film, CeO 2 film, ZrO 2
A film, an Al 2 O 2 film or the like can be used. As described above, it has been found that the refractive index can be controlled by changing the structure of the reflection film, and a Kerr rotation angle that is practically satisfactory can be obtained by the control. Also, in FIG.
The results show that the rare earth-transition metal film has a thickness of 30 nm.
15 nm has the same refractive index of the reflective film
If there is, you can see that a large car rotation angle can be obtained . When a magneto-optical storage element is used, the standard of the magnitude of the read signal is that the reflectance is R and the Kerr rotation angle is α.
Is Rα 2 . Therefore, the magnitude of the readout signal is substantially influenced by the magnitude of the Kerr rotation angle α. According to an experiment, the value of the reflectance R is conversely reduced in a region where the Kerr rotation angle α is large. However, since the magnitude of the read signal is greatly affected by the value of the Kerr rotation angle α 1, Is approximately equal to the range of the Kerr rotation angle. For example, the film thickness d of the rare earth-transition metal film is 15
nm, when the refractive index n 2 of the reflective film is 0.2-0.4i, the reflectance R is 0.22, and the Kerr rotation angle α is 0.62 ° and R
α 2 is about 0.085. On the other hand, when the film thickness d of the rare-earth-transition metal film is relatively thick at 100 nm and there is no reflection film effect, the reflectance R is 0.54, the Kerr rotation angle α is 0.21 °, and Rα 2 is about 0.024. It is. As described above, it can be seen that the readout signal is very large when the effect of the reflection film is provided. As a result, it is understood that the larger the car rotation angle is, the better. When a magneto-optical storage element is used, the recording sensitivity depends on the absorption of the rare earth-transition metal film.
From the viewpoint of the absorptance, the absorptivity is higher when the film thickness of the rare earth-transition metal film is thinner and the reflection film structure is used. Such as rare earth - film thickness d of the transition metal film is 15 nm, the refractive index n 2 of the reflective film when 0.2-0.4i the rare earth - 72% of the incident light is absorbed in the transition metal film. On the other hand, when the film thickness d of the rare earth-transition metal film is relatively large, ie, 100 nm, and there is no reflective film effect, 46 of the incident light enters the rare earth-transition metal film.
Only% is absorbed. As described above, in terms of recording sensitivity, the film thickness of the rare earth-transition metal film in the reflective film structure is also small.
It turns out that the element of 15 nm or less is excellent. As described above in detail, the magneto-optical storage element of the present invention can increase the Kerr rotation angle, thereby increasing the read signal. Further, since the magneto-optical storage element of the present invention has a large absorptance, the recording sensitivity can be improved.

【図面の簡単な説明】 【図1】本発明の反射膜構造の磁気光学記憶素子の構成
図である。 【図2】磁気光学記憶素子のカー回転角の特性を示す図
である。 【図3】磁気光学記憶素子の構成説明図である。 【図4】反射膜の屈折率に対するカー回転角の特性を示
す図である。 【図5】仮想屈折率の変化を示す図である。 【符号の説明】 1 基板 2 GaTbFe非晶質薄膜 3 SiO2 透明膜 4 Cu金属膜 5 空気 6 希土類−遷移金属系非晶質薄膜 7 反射膜
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a configuration diagram of a magneto-optical storage element having a reflective film structure according to the present invention. FIG. 2 is a diagram showing characteristics of a Kerr rotation angle of a magneto-optical storage element. FIG. 3 is a diagram illustrating a configuration of a magneto-optical storage element. FIG. 4 is a diagram showing characteristics of a Kerr rotation angle with respect to a refractive index of a reflection film. FIG. 5 is a diagram showing a change in a virtual refractive index. [Description of Signs] 1 substrate 2 GaTbFe amorphous thin film 3 SiO 2 transparent film 4 Cu metal film 5 air 6 rare earth-transition metal based amorphous thin film 7 reflective film

フロントページの続き (72)発明者 太田 賢司 大阪市阿倍野区長池町22番22号 シャー プ株式会社内 (72)発明者 山岡 秀嘉 大阪市阿倍野区長池町22番22号 シャー プ株式会社内 (56)参考文献 特開 昭59−54056(JP,A) 特開 昭59−52442(JP,A) (58)調査した分野(Int.Cl.6,DB名) G11B 11/10 (72) Inventor Kenji Ota 22-22 Nagaike-cho, Abeno-ku, Osaka City Inside Sharpe Co., Ltd. (72) Inventor Hideka Yamaoka 22-22 Nagaike-cho, Abeno-ku, Osaka City Sharpe Co., Ltd. References JP-A-59-54056 (JP, A) JP-A-59-52442 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) G11B 11/10

Claims (1)

(57)【特許請求の範囲】 1.基板と15nm以下の膜厚を有する、膜面に垂直な方向に磁化
容易軸を有する希土類−遷移金属系非晶質磁性体薄膜
膜厚が60nm程度以下の透明誘電体膜と金,銀,銅,アルミニウムの内の少なくとも1つを含む
金属反射膜と、をこの順に形成したことを特徴とする磁
気光学記憶素子
(57) [Claims] Magnetization and the substrate has a thickness of less 15 nm, in a direction perpendicular to the film plane
Rare earth-transition metal based amorphous magnetic thin film with easy axis
And a transparent dielectric film having a thickness of about 60 nm or less, and at least one of gold, silver, copper, and aluminum.
And a metal reflection film formed in this order.
A magneto-optical storage element .
JP3211841A 1991-08-23 1991-08-23 Magneto-optical storage element Expired - Lifetime JP2908911B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3211841A JP2908911B2 (en) 1991-08-23 1991-08-23 Magneto-optical storage element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3211841A JP2908911B2 (en) 1991-08-23 1991-08-23 Magneto-optical storage element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP16588282A Division JPS5954056A (en) 1982-09-21 1982-09-21 Magnetooptic storage element

Publications (2)

Publication Number Publication Date
JPH056587A JPH056587A (en) 1993-01-14
JP2908911B2 true JP2908911B2 (en) 1999-06-23

Family

ID=16612475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3211841A Expired - Lifetime JP2908911B2 (en) 1991-08-23 1991-08-23 Magneto-optical storage element

Country Status (1)

Country Link
JP (1) JP2908911B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5954056A (en) * 1982-09-21 1984-03-28 Sharp Corp Magnetooptic storage element

Also Published As

Publication number Publication date
JPH056587A (en) 1993-01-14

Similar Documents

Publication Publication Date Title
US4610912A (en) Magneto-optic memory element
JPH0430098B2 (en)
JPH0479075B2 (en)
JP2908911B2 (en) Magneto-optical storage element
JPH0519213B2 (en)
JP2955112B2 (en) Magneto-optical storage media
JPS586541A (en) Magnetooptic storage element
JPH0264944A (en) Magneto-optical recording medium
JPS5938780A (en) Magnetooptic storage element
JP2622206B2 (en) Magneto-optical recording medium
JPH0479076B2 (en)
EP0475452A2 (en) Use of a quasi-amorphous or amorphous zirconia dielectric layer for optical or magneto-optic data storage media
JPS5938950A (en) Magneto-optic storage element
JPS6126954A (en) Photomagnetic recording medium
JP2801984B2 (en) Magneto-optical storage element
JP2662474B2 (en) Magneto-optical storage element
JPH0379779B2 (en)
JP2960767B2 (en) Magneto-optical recording medium
JP2566097B2 (en) Magneto-optical storage element
JP2562219B2 (en) Magneto-optical disk
JPH0458662B2 (en)
JPH0462140B2 (en)
JPH09106572A (en) Optical recording medium
JP2543075B2 (en) Multi-layered magneto-optical recording medium
JP2616120B2 (en) Magneto-optical recording medium and method of manufacturing the same