JPH0477907B2 - - Google Patents

Info

Publication number
JPH0477907B2
JPH0477907B2 JP60028310A JP2831085A JPH0477907B2 JP H0477907 B2 JPH0477907 B2 JP H0477907B2 JP 60028310 A JP60028310 A JP 60028310A JP 2831085 A JP2831085 A JP 2831085A JP H0477907 B2 JPH0477907 B2 JP H0477907B2
Authority
JP
Japan
Prior art keywords
group
electrophotographic photoreceptor
photoreceptor
substituent
pigments
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60028310A
Other languages
Japanese (ja)
Other versions
JPS61188543A (en
Inventor
Chan Kee Guen
Midori Fukawatase
Tatsuro Kawahara
Masao Aizawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP2831085A priority Critical patent/JPS61188543A/en
Publication of JPS61188543A publication Critical patent/JPS61188543A/en
Publication of JPH0477907B2 publication Critical patent/JPH0477907B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0622Heterocyclic compounds
    • G03G5/0624Heterocyclic compounds containing one hetero ring
    • G03G5/0635Heterocyclic compounds containing one hetero ring being six-membered
    • G03G5/0637Heterocyclic compounds containing one hetero ring being six-membered containing one hetero atom
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0622Heterocyclic compounds
    • G03G5/0624Heterocyclic compounds containing one hetero ring
    • G03G5/0627Heterocyclic compounds containing one hetero ring being five-membered
    • G03G5/0629Heterocyclic compounds containing one hetero ring being five-membered containing one hetero atom
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0664Dyes

Description

【発明の詳现な説明】[Detailed description of the invention]

〔産業䞊の利甚分野〕 本発明は電子写真感光䜓に関し、さらに詳しく
は、半導䜓レヌザヌを甚いたレヌザヌビヌムプリ
ンタ等に奜適に䜿甚される電子写真感光䜓に関す
る。 〔埓来の技術〕 フタロシアニン化合物が光導電性を瀺すこずが
1968幎に発芋されお以来、光電倉換材料ずしお非
垞に倚くの研究が成されおきた。近幎、ノンむン
パクトプリンテむングテクノロゞヌの発展に䌎぀
お半導䜓レヌザヌを曞き蟌み甚ヘツドずするレヌ
ザヌビヌムプリンタヌの開発研究が盛んに行なわ
れおいる。電子写真方匏で甚いるレヌザヌビヌム
プリンタヌでは先ず、䞀様にコロナ垯電された感
光䜓にむンプツト信号に基づく倉調されたレヌザ
ヌビヌムを照射しトナヌ珟象により画像圢成が行
なわれる。このようなレヌザヌ蚘録方匏により画
質の向䞊が蚈られ、特に半導䜓レヌザヌを甚いる
こずより装眮の単玔化、小型化、たた䜎䟡栌化が
可胜ずなるなどの利点が生ずるものず考えられ
る。 珟圚、安定に動䜜する半導䜓レヌザヌの発振波
長はほずんどが近赀倖領域λ780nにあ
る。すなわちそれに甚いる蚘録甚感光䜓は780n
〜850nの波長領域においお高感床を有する
必芁がある。この堎合実甚感床ずしお芁求される
単色赀倖光照射の半枛露光量1/2は1ÎŒJcm2以
䞋である。このような長波長域で高感床を瀺す光
導電性物質の䞭でフタロシアニン化合物は特に泚
目されおいる。 埓来、電子写真甚感光䜓にはセレン、テルル、
硫化カドミりム、酞化亜鉛のような無機化合物、
あるいはポリ−ビニルカルバゟヌル、ビスアゟ
顔料のような有機化合物が甚いられおいる。しか
しこれらは780n〜900nの長波長域においお
十分な光感床を有するずはいえず、たた近幎、セ
レン、テルル、ヒ玠の合金を甚いる感光䜓たたは
色玠増感された硫化カドミりムを甚いる感光䜓が
800n近蟺の長波長領域においお高感床を有す
るこずが報告されおいるが、それらはいずれも匷
い毒性を有し瀟䌚問題ずしお環境安党性が再怜蚎
されおいる。たたアモルフアスシリコンを甚いる
感光䜓は特定のドヌピング法および䜜成法により
その感光領域を長波長域にのばす可胜性があるず
考えられるが、珟段階では成膜速床が遅く量産性
に問題があり䜎䟡栌の感光䜓ずはいい難い。これ
たで怜蚎が行なわれたフタロシアニン化合物の䞭
で780n以䞊の長波長域においお感床を有する
化合物ずしお、型無金属フタロシアニン化合物
が挙げられる。 しかし、型無金属フタロシアニン化合物を甚
いた顔料−暹脂分散系感光䜓は、780n付近に
は比范的高い感床を有するが800n以䞊の長波
長域では急激に感床が䜎䞋し、実甚䞍十分であ
る。 䞀方、顔料−暹脂分散系感光䜓の特城ずしお、
光照射の初期においお、Induction効果ずいわれ
る光応答の遅延ずいう珟象があるため、吞収の匱
い波長光では感床の䜎䞋が倧きくなり易い。 〔発明が解決しようずする問題点〕 本発明の目的は、780〜900nの波長範囲内で
比范的高い感床を瀺す電子写真感光䜓の提䟛にあ
る。 本発明のもう぀の目的は、ポリ−ビニルカ
ルバゟヌルのような電荷茞送胜媒質䞭にフタロシ
アニン顔料を分散させお電子写真感光䜓を䜜成す
る堎合に生じる暗枛衰ず残留電䜍が倧きいずいう
問題を解決した電子写真感光䜓の提䟛にある。 〔問題点を解決しようずするための手段〕 本発明は、型無金属フタロシアニン化合物を
結着剀䞭に分散させお成る感光局を有する電子写
真感光䜓においお、感光局䞭に、正孔茞送物質、
及び、電子茞送物質を含有するこずを特城ずする
電子写真感光䜓により前蚘目的を達成した。 本発明で結着剀ずしお䜿甚する暹脂は、䞀般に
電子写真甚感光䜓の結着剀ずしお甚いられおいる
暹脂が挙げられる。その奜適な䟋を第衚にたず
めお掲げる。
[Industrial Field of Application] The present invention relates to an electrophotographic photoreceptor, and more particularly to an electrophotographic photoreceptor suitably used in a laser beam printer using a semiconductor laser. [Prior art] Phthalocyanine compounds exhibit photoconductivity.
Since its discovery in 1968, a great deal of research has been conducted on it as a photoelectric conversion material. In recent years, with the development of non-impact printing technology, research has been actively conducted to develop laser beam printers that use semiconductor lasers as writing heads. In a laser beam printer used in electrophotography, a uniformly corona-charged photoreceptor is first irradiated with a laser beam modulated based on an input signal, and an image is formed by a toner phenomenon. It is believed that such a laser recording method improves the image quality, and in particular, the use of a semiconductor laser provides advantages such as simplifying the device, making it more compact, and making it possible to reduce the cost. Currently, most of the oscillation wavelengths of semiconductor lasers that operate stably are in the near-infrared region (λ>780nm). In other words, the recording photoreceptor used for it is 780n.
It is necessary to have high sensitivity in the wavelength range of m to 850 nm. In this case, the half-reduced exposure amount E1/2 of monochromatic infrared light irradiation required for practical sensitivity is 1 ÎŒJ/cm 2 or less. Among photoconductive substances that exhibit high sensitivity in such long wavelength regions, phthalocyanine compounds are attracting particular attention. Conventionally, electrophotographic photoreceptors have been made of selenium, tellurium,
Inorganic compounds such as cadmium sulfide, zinc oxide,
Alternatively, organic compounds such as polyN-vinylcarbazole and bisazo pigments are used. However, these cannot be said to have sufficient photosensitivity in the long wavelength range of 780 nm to 900 nm, and in recent years, photoreceptors using an alloy of selenium, tellurium, and arsenic or photoreceptors using dye-sensitized cadmium sulfide have been developed.
It has been reported that they have high sensitivity in the long wavelength region around 800 nm, but all of them are highly toxic and their environmental safety is being reconsidered as a social issue. In addition, it is thought that it is possible to extend the photosensitive region of a photoreceptor using amorphous silicon to a long wavelength region by using a specific doping method and manufacturing method, but at present, the film formation rate is slow and there are problems with mass production, making it difficult to use. It's hard to say that it's a photoreceptor for the price. Among the phthalocyanine compounds that have been studied so far, x-type metal-free phthalocyanine compounds can be cited as compounds that are sensitive in the long wavelength region of 780 nm or more. However, a pigment-resin dispersion photoreceptor using an x-type metal-free phthalocyanine compound has relatively high sensitivity near 780 nm, but the sensitivity rapidly decreases in the long wavelength range of 800 nm or more, making it insufficient for practical use. . On the other hand, the characteristics of the pigment-resin dispersion photoreceptor are as follows:
At the initial stage of light irradiation, there is a phenomenon called the induction effect in which the light response is delayed, so the sensitivity tends to decrease significantly with light of a wavelength that is weakly absorbed. [Problems to be Solved by the Invention] An object of the present invention is to provide an electrophotographic photoreceptor that exhibits relatively high sensitivity within the wavelength range of 780 to 900 nm. Another object of the present invention is to solve the problems of high dark decay and high residual potential that occur when electrophotographic photoreceptors are prepared by dispersing phthalocyanine pigments in a charge transporting medium such as poly-N-vinylcarbazole. The purpose of the present invention is to provide an electrophotographic photoreceptor. [Means for Solving the Problems] The present invention provides an electrophotographic photoreceptor having a photosensitive layer in which an x-type metal-free phthalocyanine compound is dispersed in a binder. material,
Furthermore, the above object has been achieved by an electrophotographic photoreceptor characterized by containing an electron transporting substance. Examples of the resin used as a binder in the present invention include resins generally used as binders for electrophotographic photoreceptors. Suitable examples are listed in Table 1.

【衚】【table】

【衚】【table】

【衚】【table】

【衚】【table】

【衚】 本発明においお䜿甚される正孔茞送物質ずしお
は、䟋えば䞀般匏に瀺すようなキノリン化
合物及びその誘導䜓、及び、䞀般匏に瀺す
むンドリン化合物及びその誘導䜓が奜適である。
その具䜓䟋を第衚にたずめお掲げる。
[Table] Suitable hole transport substances used in the present invention include, for example, quinoline compounds and derivatives thereof as shown in the general formula (), and indoline compounds and derivatives thereof as shown in the general formula ().
Specific examples are listed in Table 2.

【衚】【table】

【衚】【table】

【衚】【table】

【衚】【table】

【衚】【table】

【衚】 本発明で䜿甚される電子茞送物質ずしおは、䟋
えば、ゞスアゟ顔料、ペリレン顔料、アンザトロ
ン顔料、チアピリリりム塩誘導䜓、ピリリりム誘
導䜓、シアニン色玠誘導䜓等を挙げるこずができ
る。その具䜓䟋を第衚に瀺す。
[Table] Examples of the electron transport substance used in the present invention include disazo pigments, perylene pigments, anzatron pigments, thiapyrylium salt derivatives, pyrylium derivatives, cyanine dye derivatives, and the like. Specific examples are shown in Table 3.

【衚】【table】

【衚】【table】

【衚】【table】

〔実斜䟋〕〔Example〕

実斜䟋  正孔茞送剀No.−13 10.0 「ポリマヌ」ナニチカ(æ ª)瀟補 10.0 ゞオキサン 90.0 を完党に溶解させたのち、アルミ蒞着マむラヌフ
むルム䞊に塗垃也燥し、10Όの電荷茞送局ずし
た。次に、 型無金属フタロシアニン 2.0 ゞスアゟ顔料No.−13 0.5 正孔茞送物質No.−13 10.0 ピクリン酞 0.02 「ポリマヌ」ナニチカ(æ ª)瀟補 10.0 ゞオキサン 90.0 ガラスビヌス硬質 60.0 の混合物をペむントシ゚ヌカヌを甚い、1.5時間
均䞀に分散させた埌、前蚘の電荷茞送局䞊に感光
䜓の膜厚が玄15Όになるように塗垃也燥し、積
局型感光䜓を䜜成した。 感光䜓の電子写真特性の枬定には「ペヌパヌア
カラむザヌSP−428」川口電機補䜜所瀟補を
䜿甚した。 6kV及び−6kVの各電圧をそれぞれ
感光䜓衚面に印加した盎埌の感光䜓の衚面電䜍
V0、電圧印加䞭止埌10秒間経過時の感光䜓
の衚面電䜍V10を枬定し、感光䜓の電荷保
持胜をV10V0の倀で評䟡した。 垯電した感光䜓の衚面に癜色光光源のタングス
テンランプを甚いお露光するこずにより感光䜓の
感床を枬定した。 露光匷床を5luxずしお、露光埌の衚面電䜍が初
期衚面電䜍の1/2に枛少するのに芁する露光量
E1/2lux・secず、露光埌の衚面電䜍が初期衚
面電䜍の1/5に枛少するのに芁する露光量E1/5
lux・secず、露光開始埌15秒間経過時の衚面
電䜍V15枬定し、これらの物理量に基づい
お感光䜓の感床を評䟡した。 比范䟋  型無金属フタロシアニン 2.0 ポリ゚ステル「バむロン200」東掋玡瀟補
11.3 ゚ピクロルヒドリン 63.0 ガラスビヌス硬質 45.0 の混合物を前蚘の実斜䟋ず同様の方法により均
䞀に分散した埌、カれむンが蚭けられたアルミ蒞
着マむラヌフむルム䞊に膜厚が15Όずなるよう
に塗垃也燥し、電子写真感光䜓を䜜成した。 比范䟋  ゞスアゟ顔料−13を添加しないこず以倖は、
実斜䟋ずた぀たく同様な組成ず構造を瀺す感光
䜓を䜜成した。 図に、実斜䟋及び比范䟋の感光䜓の分光
感床を瀺す。図に、実斜䟋、比范䟋及び比
范䟋の感光䜓の光枛衰特性曲線を瀺す。 図からは、実斜䟋の感光䜓は、800n以
䞊の長波長域で感床䜎䞋が無いこずがわかる。 図からは、ゞスアゟ顔料を添加するこずによ
り、残留電䜍がかなり䜎䞋するこずがわかる。 実斜䟋  型無金属フタロシアニン 2.0 ゞスアゟ顔料No.−13 0.5 正孔茞送剀No.−13 5.0 ピクリン酞 0.01 「ポリマヌ」ナニチカ(æ ª)瀟補 5.0 ゞオキサン 90.0 の混合物を前蚘実斜䟋ず同様の方法により均䞀
に分散させた埌、カれむン塗垃されたアルミ蒞着
マむラヌフむルム䞊に膜厚が3Όずなるように
塗垃也燥し、電荷発生局を䜜成した。この䞊に正
孔茞送剀No.−13 5.0「ポリマヌ」ナニチ
カ(æ ª)瀟補5.0およびゞオキサン45.0の溶液
を膜厚が12Όずなるように塗垃也燥し、電荷茞
送局ずし、積局型感光䜓を䜜成した。 実斜䟋  型無金属フタロシアニン 2.0 ゞスアゟ顔料No.−13 0.5 ピクリン酞 0.01 プノキシ暹脂「PKHH」 ナニオンカヌバむド瀟補 0.83 クロロホルム 30.0 酢酞゚チル 30.0 の混合物を前蚘実斜䟋ず同様の方法により、均
䞀に分散させたのち、カれむンを蚭けたアルミ蒞
着マむラヌフむルム䞊に膜厚が0.5Όずなるよう
に塗垃也燥し電荷発生局ずした。この䞊に正孔茞
送物質No.−13 5.0「ポリマヌ」ナニチカ
(æ ª)瀟補5.0及びゞオキサン45.0の溶液を膜
厚が12Όずなるように塗垃也燥し、電荷茞送局
ずし、積局型感光䜓を䜜成した。 比范䟋  型無金属フタロシアニン 2.0 ピクリン酞 0.01 プノキシ暹脂「PKHH」 ナニオンカヌバむド瀟補 0.83 クロロホルム 30.0 酢酞゚チル 30.0 の混合物を前蚘の実斜䟋ず同様の方法により、
均䞀に分散させたのちに、カれむンを蚭けたアル
ミ蒞着マむラヌフむルム䞊に膜厚が0.5Όずなる
ように塗垃也燥し、電荷発生局ずした。この䞊に
実斜䟋ず同様の電荷茞送局を蚭け、積局型感光
䜓を䜜成した。 実斜䟋及び、比范䟋の感光䜓の電子写真
特性を衚にたずめる。
Example 1 Hole transport agent No.-13 10.0g "U Polymer" (manufactured by Unitika Co., Ltd.) 10.0g Dioxane 90.0g were completely dissolved, and then coated on an aluminum vapor-deposited mylar film and dried to form a 10 ÎŒm film. It was used as a charge transport layer. Next, x-type metal-free phthalocyanine 2.0g Disazo pigment No.P-13 0.5g Hole transport substance No.-13 10.0g Picric acid 0.02g "U polymer" (manufactured by Unitika Co., Ltd.) 10.0g Dioxane 90.0g A mixture of 60.0 g of glass beads (hard) was uniformly dispersed for 1.5 hours using a paint shaker, and then coated on the charge transport layer so that the film thickness of the photoreceptor was approximately 15 ÎŒm, dried, and a laminated type. A photoreceptor was created. "Paper Acalizer SP-428" (manufactured by Kawaguchi Electric Seisakusho Co., Ltd.) was used to measure the electrophotographic characteristics of the photoreceptor. The surface potential of the photoconductor immediately after each voltage of (+) 6kV and (-)6kV is applied to the surface of the photoconductor.
V 0 (V) and the surface potential V 10 (V) of the photoreceptor 10 seconds after stopping the voltage application were measured, and the charge retention ability of the photoreceptor was evaluated by the value of V 10 /V 0 . The sensitivity of the photoreceptor was measured by exposing the surface of the charged photoreceptor to light using a tungsten lamp as a white light source. The exposure amount required for the surface potential after exposure to decrease to 1/2 of the initial surface potential, assuming the exposure intensity is 5 lux.
E 1/2 (lux・sec) and the amount of exposure E 1/5 required for the surface potential after exposure to decrease to 1/5 of the initial surface potential.
(lux·sec) and the surface potential V 15 (V) 15 seconds after the start of exposure were measured, and the sensitivity of the photoreceptor was evaluated based on these physical quantities. Comparative example 1 x-type metal-free phthalocyanine 2.0g Polyester "Vylon 200" (manufactured by Toyobo Co., Ltd.)
A mixture of 11.3 g of epichlorohydrin, 63.0 g of glass beads (hard), and 45.0 g of the mixture was uniformly dispersed in the same manner as in Example 1, and then spread onto an aluminum vapor-deposited mylar film provided with casein so that the film thickness was 15 ÎŒm. The coating was applied and dried to produce an electrophotographic photoreceptor. Comparative Example 2 Except for not adding disazo pigment P-13,
A photoreceptor having the same composition and structure as in Example 1 was produced. FIG. 7 shows the spectral sensitivities of the photoreceptors of Example 1 and Comparative Example 1. FIG. 8 shows optical attenuation characteristic curves of the photoreceptors of Example 1, Comparative Example 1, and Comparative Example 2. From FIG. 7, it can be seen that the photoreceptor of Example 1 shows no decrease in sensitivity in the long wavelength region of 800 nm or more. From FIG. 8, it can be seen that the residual potential is considerably reduced by adding the disazo pigment. Example 2 x-type metal-free phthalocyanine 2.0g Disazo pigment No.P-13 0.5g Hole transport agent No.-13 5.0g Picric acid 0.01g "U polymer" (manufactured by Unitika Co., Ltd.) 5.0g Dioxane 90.0g The mixture was uniformly dispersed in the same manner as in Example 1, and then coated on a casein-coated aluminum vapor-deposited Mylar film to a thickness of 3 ÎŒm and dried to form a charge generation layer. A solution of 5.0 g of hole transport agent No.-13 "U Polymer" (manufactured by Unitika Co., Ltd.) 5.0 g and 45.0 g of dioxane was applied on top of this to a film thickness of 12 ÎŒm and dried to form a charge transport layer. , a laminated photoreceptor was created. Example 3 A mixture of 2.0 g of x-type metal-free phthalocyanine, 0.5 g of disazo pigment No. P-13, 0.01 g of picric acid, 0.83 g of phenoxy resin "PKHH" (manufactured by Union Carbide), 30.0 g of chloroform, and 30.0 g of ethyl acetate was prepared in Example 1 above. After uniformly dispersing the mixture in the same manner as above, the mixture was coated and dried to a thickness of 0.5 ÎŒm on an aluminum vapor-deposited mylar film provided with casein to form a charge generation layer. On top of this, hole transport material No.-13 5.0g "U polymer" (Unitika
Co., Ltd.) and 45.0 g of dioxane was applied and dried to a film thickness of 12 ÎŒm to form a charge transport layer, and a laminated photoreceptor was prepared. Comparative Example 3 A mixture of 2.0 g of x-type metal-free phthalocyanine, 0.01 g of picric acid, 0.83 g of phenoxy resin "PKHH" (manufactured by Union Carbide), 30.0 g of chloroform, and 30.0 g of ethyl acetate was prepared in the same manner as in Example 1 above.
After uniformly dispersing the mixture, it was coated and dried to a thickness of 0.5 ÎŒm on an aluminum vapor-deposited mylar film provided with casein to form a charge generation layer. A charge transport layer similar to that in Example 3 was provided thereon to produce a laminated photoreceptor. The electrophotographic properties of the photoreceptors of Examples 2 and 3 and Comparative Example 3 are summarized in Table 4.

【衚】 たた、実斜䟋、及び比范䟋の感光䜓の分
光感床を図に瀺す。 実斜䟋 〜11 実斜䟋の感光䜓においお、正孔茞送物質及び
電子茞送物質を皮々の組合わせで䜿甚し、皮々の
感光䜓を䜜成した。それぞれの特性を衚にたず
める。
[Table] Furthermore, the spectral sensitivities of the photoreceptors of Examples 2 and 3 and Comparative Example 3 are shown in FIG. Examples 4 to 11 In the photoreceptor of Example 1, various combinations of hole transport materials and electron transport materials were used to create various photoreceptors. The characteristics of each are summarized in Table 5.

〔発明の効果〕〔Effect of the invention〕

本発明の電子写真感光䜓は、型無金属フタロ
シアニン化合物を結着剀䞭に分散させおなる感光
局を有する電子写真感光䜓の感光局䞭に、正孔茞
送物質及び電子茞送物質を含有するこずにより、
780〜900nの長波長領域においお、十分な感床
を有するものであり、加えお、残留電䜍も小さい
ものである。 本発明の電子写真感光䜓は、750〜900n前埌
の光源を甚いたレヌザヌビヌムプリンタ甚の感光
䜓ずしお優れおいるばかりでなく、半導䜓レヌザ
ヌ等の750〜900nの光源を䜿甚したその他の各
皮蚘録デバむスにも応甚するこずができる。
The electrophotographic photoreceptor of the present invention has a photosensitive layer formed by dispersing an x-type metal-free phthalocyanine compound in a binder, and the photoreceptor contains a hole transporting substance and an electron transporting substance in the photosensitive layer. By this,
It has sufficient sensitivity in the long wavelength region of 780 to 900 nm, and also has a small residual potential. The electrophotographic photoreceptor of the present invention is not only excellent as a photoreceptor for laser beam printers that use a light source of about 750 to 900 nm, but also for various other recording devices that use a light source of 750 to 900 nm such as semiconductor lasers. It can also be applied to

【図面の簡単な説明】[Brief explanation of drawings]

図〜は本発明に係る電子写真感光䜓の拡倧
郚分断面図である。   型無金属フタロシアニン、  正孔
茞送物質、  電子茞送物質、  結着剀、
  電荷受容性物質、  導電性支持䜓、
  感光局、−  電荷茞送局、−  
電荷発生局。 図は実斜䟋の感光䜓ず比范䟋の感光䜓の
それぞれの盞察分光感床を瀺す図である。図は
実斜䟋の感光䜓、比范䟋の感光䜓ず比范䟋
の感光䜓の光枛衰特性曲線を瀺す図である。図
は実斜䟋の感光䜓、実斜䟋の感光䜓ず比范䟋
の感光䜓のそれぞれの盞察分光感床を瀺す図で
ある。
1 to 6 are enlarged partial cross-sectional views of an electrophotographic photoreceptor according to the present invention. 1... x-type metal-free phthalocyanine, 2... hole transport material, 3... electron transport material, 4... binder,
5... Charge-accepting substance, A... Conductive support, B
...Photosensitive layer, B-1...Charge transport layer, B-2...
Charge generation layer. FIG. 7 is a diagram showing the relative spectral sensitivities of the photoreceptor of Example 1 and the photoreceptor of Comparative Example 1. FIG. 8 shows the photoconductor of Example 1, the photoconductor of Comparative Example 1, and Comparative Example 2.
FIG. 3 is a diagram showing a light attenuation characteristic curve of a photoconductor. Figure 9
2 is a diagram showing the relative spectral sensitivities of the photoconductor of Example 2, the photoconductor of Example 3, and the photoconductor of Comparative Example 2. FIG.

Claims (1)

【特蚱請求の範囲】  型無金属フタロシアニン化合物を結着剀䞭
に分散させお成る感光局を有する電子写真感光䜓
においお、感光局䞭に、正孔茞送物質、及び電子
茞送物質を含有するこずを特城ずする電子写真感
光䜓。  正孔茞送物質が 䞀般匏 匏䞭、A1は眮換基を有しおもよい芳銙族炭
化氎玠基又は芳銙族耇玠環基を衚わし、R1、R2
及びR3はそれぞれ独立的に氎玠原子、ハロゲン
原子或いは眮換基を有しおもよいアルキル基、ア
ラルキル基、又はアリヌル基を衚わす。 である特蚱請求の範囲第項蚘茉の電子写真感光
䜓。  正孔茞送物質が 䞀般匏 匏䞭、A2は眮換基を有しおもよい芳銙族炭化
氎玠基又は芳銙族耇玠環基を衚わし、R4及びR5
はそれぞれ独立的に氎玠原子、ハロゲン原子或い
は眮換基を有しおもよいアルキル基、アラルキル
基又はアリヌル基を衚わす。 である特蚱請求の範囲第項蚘茉の電子写真感光
䜓。  電子茞送物質が、ゞスアゟ顔料、ペリレン顔
料、アンザントロン顔料、チアピリリりム塩誘導
䜓、ピリリりム塩誘導䜓、及びシアニン色玠誘導
䜓より成る矀より遞ばれる䞀皮又は二皮以䞊の化
合物である特蚱請求の範囲第項乃至第項蚘茉
の電子写真感光䜓。
[Scope of Claims] 1. An electrophotographic photoreceptor having a photosensitive layer formed by dispersing an x-type metal-free phthalocyanine compound in a binder, the photosensitive layer containing a hole transporting substance and an electron transporting substance. An electrophotographic photoreceptor characterized by: 2 Hole transport material has general formula (In the formula, A 1 represents an aromatic hydrocarbon group or an aromatic heterocyclic group which may have a substituent, and R 1 , R 2
and R 3 each independently represent a hydrogen atom, a halogen atom, or an alkyl group, an aralkyl group, or an aryl group which may have a substituent. ) The electrophotographic photoreceptor according to claim 1. 3 The hole transport material has the general formula (In the formula, A 2 represents an aromatic hydrocarbon group or an aromatic heterocyclic group which may have a substituent, and R 4 and R 5
each independently represents a hydrogen atom, a halogen atom, or an alkyl group, an aralkyl group, or an aryl group which may have a substituent. ) The electrophotographic photoreceptor according to claim 1. 4. Claim 1, wherein the electron transport substance is one or more compounds selected from the group consisting of disazo pigments, perylene pigments, anzanthrone pigments, thiapyrylium salt derivatives, pyrylium salt derivatives, and cyanine dye derivatives. 2. The electrophotographic photoreceptor according to item 2.
JP2831085A 1985-02-18 1985-02-18 Electrophotographic sensitive body Granted JPS61188543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2831085A JPS61188543A (en) 1985-02-18 1985-02-18 Electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2831085A JPS61188543A (en) 1985-02-18 1985-02-18 Electrophotographic sensitive body

Publications (2)

Publication Number Publication Date
JPS61188543A JPS61188543A (en) 1986-08-22
JPH0477907B2 true JPH0477907B2 (en) 1992-12-09

Family

ID=12245045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2831085A Granted JPS61188543A (en) 1985-02-18 1985-02-18 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPS61188543A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63149653A (en) * 1986-12-15 1988-06-22 Konica Corp Photosensitive body
JPS63148269A (en) * 1986-12-12 1988-06-21 Konica Corp Photosensitive body
JPH01172863A (en) * 1987-12-26 1989-07-07 Koichi Kinoshita Sensitizing method for photosensitive body for digital light input
JPH0659486A (en) * 1992-07-29 1994-03-04 Matsushita Electric Ind Co Ltd Electrophotographic sensitive body
US7045263B2 (en) * 2002-11-27 2006-05-16 Samsung Electronics Co. Ltd. Photoreceptor for electrophotography having a salt of an electron transport compound
JP7140101B2 (en) 2017-03-01 2022-09-21 䞉菱ケミカル株匏䌚瀟 Positive charging electrophotographic photoreceptor, electrophotographic cartridge and image forming apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58134642A (en) * 1982-02-05 1983-08-10 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS58166354A (en) * 1982-03-27 1983-10-01 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS5962861A (en) * 1982-07-08 1984-04-10 Dainippon Ink & Chem Inc Electrophotographic receptor
JPS6022823A (en) * 1983-07-18 1985-02-05 Matsushita Electric Ind Co Ltd Switching pulse generating circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58134642A (en) * 1982-02-05 1983-08-10 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS58166354A (en) * 1982-03-27 1983-10-01 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS5962861A (en) * 1982-07-08 1984-04-10 Dainippon Ink & Chem Inc Electrophotographic receptor
JPS6022823A (en) * 1983-07-18 1985-02-05 Matsushita Electric Ind Co Ltd Switching pulse generating circuit

Also Published As

Publication number Publication date
JPS61188543A (en) 1986-08-22

Similar Documents

Publication Publication Date Title
JPH0331255B2 (en)
JPS62103650A (en) Electrophotographic sensitive material
JPH0466507B2 (en)
JP2653080B2 (en) Photoconductor
JPH0477907B2 (en)
CA1112934A (en) Electrophotographic papers employing organic photoconductors sensitized with cellulose nitrate
US5134049A (en) Photoconductor for electrophotography
CA1110901A (en) P-deficient n-heteroaromatic chemical sensitizers for heterogeneous organic photoconductor compositions
JPH02210451A (en) Photosensitive body
US4082550A (en) Hexachlorocyclopentene chemical sensitizers for heterogeneous organic photoconductive compositions
US5272032A (en) Multiactive electrophotographic elements containing electron transport agents
JP3085077B2 (en) Electrophotographic photoreceptor
US5213925A (en) Photoconductor for electrophotography
JPS63142356A (en) Electrophotographic sensitive body
JPS62121460A (en) Electrophotographic sensitive body
JP3114394B2 (en) Electrophotographic photoreceptor
US5252416A (en) Photoconductor for electrophotography
JPS6137622B2 (en)
JPH03263051A (en) Electrophotographic sensitive body
JPH0453308B2 (en)
JP2990981B2 (en) Electrophotographic photoreceptor
JPH0139099B2 (en)
JP3125243B2 (en) Electrophotographic photoreceptor
JP2551495B2 (en) Electrophotographic photoreceptor
JPH0330133B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees