JPH0466507B2 - - Google Patents

Info

Publication number
JPH0466507B2
JPH0466507B2 JP61114651A JP11465186A JPH0466507B2 JP H0466507 B2 JPH0466507 B2 JP H0466507B2 JP 61114651 A JP61114651 A JP 61114651A JP 11465186 A JP11465186 A JP 11465186A JP H0466507 B2 JPH0466507 B2 JP H0466507B2
Authority
JP
Japan
Prior art keywords
titanyl phthalocyanine
photoreceptor
charge
type titanyl
compounds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61114651A
Other languages
Japanese (ja)
Other versions
JPS62272272A (en
Inventor
Kenichi Ooaku
Hiroshi Nakano
Masao Aizawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP11465186A priority Critical patent/JPS62272272A/en
Publication of JPS62272272A publication Critical patent/JPS62272272A/en
Publication of JPH0466507B2 publication Critical patent/JPH0466507B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0664Dyes
    • G03G5/0696Phthalocyanines

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は電子写真用感光体に関し、さらに詳し
くは、半導体レーザを用いたレーザビームプリン
タ等に使用される電子写真用感光体に関する。 〔従来の技術〕 フタロシアニン化合物が光導電性を示すことが
1968年に発見されて以来、光電変換材料として非
常に多くの研究が成されてきた。近年、ノンイン
パクトプリンテイングテクノロジーの発展に伴つ
て半導体レーザを書き込み用ヘツドとするレーザ
ビームプリンターの開発研究が盛んに行なわれて
いる。電子写真方式で用いるレーザビームプリン
ターでは先ず、一様にコロナ帯電された感光体に
インプツト信号に基づく変調されたレーザビーム
を照射しトナー現象により画像形成が行なわれ
る。このようなレーザ記録方式により画質の向上
が計られ、特に半導体レーザを用いることより装
置の単純化、小型化、また低価格化が可能となる
などの利点が生ずる。 現在、安定に動作する半導体レーザの発振波長
はほとんどが近赤外領域(λ>780nm)にある。
すなわちそれに用いる記録用感光体は780nm以上
の長波長領域において高感度を有する必要があ
る。この場合実用感度として要求される単色赤外
光照射の半減露光量E1/2は10erg/cm2以下であ
る。このような長波長域で高感度を示す光導電性
物質の中でフタロシアニン化合物は特に注目され
ている。 従来、電子写真用感光体にはセレン、テルル、
硫化カドミウム、酸化亜鉛のような無機化合物、
あるいはポリN−ビニルカルバゾール、ビスアゾ
顔料のような有機化合物が用いられている。しか
しこれらは780nm〜900nmの長波長域において十
分な光感度を有するとはいえず、また近年、セレ
ン、テルル、ヒ素の合金を用いる感光体または色
素増感された硫化カドミウムを用いる感光体が
800nm近辺の長波長領域において高感度を有する
ことが報告されているが、それらはいずれも強い
毒性を有し社会問題としての環境安全性が再検討
されている。またアモルフアスシリコンを用いる
感光体は特定のドーピング法および作成法により
その感光領域を長波長域にのばす可能性があると
考えられるが、現段階では成膜速度が遅く量産性
に問題があり低価格の感光体とはいい難い。これ
まで検討が行なわれていたフタロシアニン化合物
の中で780nm以上の長波長域において高感度を示
す化合物としては、χ型無金属フタロシアニン、
ε型銅フタロシアニン、バナジルフタロシアニン
等を挙げることが出来る。 一方、高感度化のために、フタロシアニンの蒸
着膜を電荷発生層とする積層型感光体が検討さ
れ、周期律表a族及び族の金属を中心金属と
するフタロシアニンの中で、比較的高い感度を有
するものが幾つか得られている。このような金属
フタロシアニンに関する文献として、例えば特願
昭56−96040、同56−33977、同57−146538、同57
−153982、同57−141581、同57−142458、同57−
146538、同58−40789などがある。 〔発明が解決しようとする問題点〕 しかしながら、蒸着膜の作成には高真空排気装
置を必要とし、設備費が高くなることから上記の
如き有機感光体は高価格のものとならざるを得な
い。 これに対し、フタロシアニンを蒸着膜としてで
はなく、樹脂分散層とし、これを電荷発生層とし
て用いて、その上に電荷輸送層を塗布して成る積
層型感光体も検討され、このような積層型感光体
としては無金属フタロシアニン(特願昭57−
66963号)やインジウムフタロシアニン(特願昭
58−220493号)を用いるものでありこれらは比較
的高感度な感光体であるが、前者は800nm以上の
長波長領域において急激に感度が低下する等の欠
点を有し、又、後者は電荷発生層を樹脂分散系で
作成する場合には実用化に対して感度が不充分で
ある等の欠点を有している。更にこれらのフタロ
シアニン誘導体を電荷発生材料に用いた感光体
は、一般にこれを半導体レーザ等を光源とするプ
リンターに用いた場合、レーザ光の干渉によりプ
リント画像に濃淡(いわゆる干渉縞、モアレ現
象)が生じ、均一な濃度の画像が形成できない等
の欠点を有する。 本発明はこれらの欠点を改良し、500〜900nm
の広い波長範囲、特に800nm以上の長波長領域で
高い光感度を示し、干渉縞が画像に生じない電子
写真用感光体を提供することにある。 〔問題点を解決するための手段〕 本発明はα形チタニルフタロシアニン及びβ形
チタニルフタロシアニンを結着剤中に分散させて
なる感光層を有することを特徴とする電子写真用
感光体により前記問題点を解決したものである。 本発明で用いられるα形及びβ形チタニルフタ
ロシアニンは、いずれも 一般式(以下一般式()という。) (式中、X1,X2,X3,X4は各々独立的にC
又はBrを表わし、k,,m,nは各々独立的
に0〜4の数字を表わす。)で表わされる構造を
有する化合物である。 一般式()の化合物のうち、ハロゲン無置換
体及びモノハロゲン置換体が特に好適である。 本発明で使用するα形のチタニルフタロシアニ
ンは、例えば四塩化チタン(又は四ブロモチタ
ン)とフタロジニトリルをα−クロロナフタレン
(又はα−ブロモナフタレン)溶媒中で反応させ
て得られるジクロロチタニウムフタロシアニン
(TiC2Pc)〔又はジブロモチタニウムフタロシ
アニン(TiBr2Pc)〕をアンモニア水等で加水分
解することにより得られる生成物を、2−エトキ
シエタノール、ジグライム、ジオキサン、テトラ
ヒドロフラン、N,N−ジメチルホルムアミド、
N−メチルピロリドン、ピリジン、モルホリン等
の電子供与性の溶媒で処理することにより製造す
ることができる。 このようにして得られるα形チタニルフタロシ
アニン(前記一般式()においてk=0,=
0,m=0,n=0の化合物)のCu−Ka線を用
いたX線回折図を第1図に示した。このα形チタ
ニルフタロシアニンは、X線回折図において7.6,
10.2,12.6,13.2,15.1,16.2,17.2,18.3,22.5,
24.2,25.3,28.6,29.3,31.5の各ブラツグ角2θ
(但し、±0.2の誤差範囲を含むものとする。)で特
性ピークを有するものである。 本発明で使用する他のα形チタニルフタロシア
ニンは、ハロゲン原子又はその置換位置又はその
置換数の相違にも拘らず、それらのX線回折図に
は共通の前記特定ピークが認められる。 本発明で使用するβ形チタニルフタロシアニン
は前記α形チタニルフタロシアニンをα−クロロ
ナフタレン又はα−ブロモナフタレンから再結晶
することにより製造できる。このようにして製造
されたβ形チタニルフタロシアニンのX線回折図
を第2図に示した。このβ形チタニルフタロシア
ニンは7.4,9.2,10.3,13.0,14.9,15.3,15.9,
18.6,20.6,23.2,25.5,26.2,27.0,32.7の各ブ
ラツグ角2θで特性ピークを有するものである。本
発明で使用する他のβ形チタニルフタロシアニン
もまた、ハロゲン原子又はその置換位置又はその
置換数の相違にも拘らず、それらのX線回折図に
は共通の前記特定ピークが認められる。 α形チタニルフタロシアニンとβ形チタニルフ
タロシアニンの混合系は前記のような純粋なα形
チタニルフタロシアニンとβ形チタニルフタロシ
アニンを単に機械的に混合して調製することがで
きるが、他の方法の一例として、α形チタニルフ
タロシアニンは機械的歪力を加えることによりβ
形チタニルフタロシアニンに結晶転移することが
知られており、この現象を利用して、α形チタニ
ルフタロシアニンを、例えば、ボールミル等によ
り一定時間処理することにより、一定割合のα形
チタニルフタロシアニンとβ形チタニルフタロシ
アニンが混合したチタニルフタロシアニンを調製
することもできる。 α形チタニルフタロシアニンとβ形チタニルフ
タロシアニンとの混合割合はα形対β形の重量比
で20:80〜99:1が好適であり、50:50〜99:1
が一層好適である。 本発明で使用するチタニルフタロシアニンはボ
ールミル、サンドミル、アトライター等の摩砕装
置で微細な粒子になるまで充分に摩砕したものが
好ましい。その際、摩砕剤として、通常用いられ
るガラスビーズ、スチールビーズ、アルミナビー
ズが使用でき、必要に応じて、食塩、重炭酸ソー
ダ等の摩砕助剤を用いることもできる。また、摩
砕時に分散媒を必要とするときは摩砕時の温度で
液状のものが好ましく、例えば、2−エトキシエ
タノール、ジグライム、ジオキサン、テトラヒド
ロフラン、N,N−ジメチルホルムアミド、N−
メチルピロリドン、ピリジン、モルホリン或いは
ポリエチレングリコール等の如き溶媒が使用でき
る。 本発明で結着剤として使用する樹脂は、一般に
電子写真用感光体の結着剤として用いられている
樹脂が使用でき、好適なものとして、フエノー
ル、樹脂、ユリア樹脂、メラミン樹脂、エポキシ
樹脂、ケイ素樹脂、塩化ビニル−酢酸ビニル共重
合体、ブチラール樹脂、キシレン樹脂、ウレタン
樹脂、アクリル樹脂、ポリカーボネート樹脂、ポ
リアクリレート樹脂、飽和ポリエステル樹脂、フ
エノキシ樹脂等を使用できる。 本発明の電子写真用感光体は種々の構造をとる
ことができる。その例を第4〜7図に示した。第
4図の感光体は導電性支持体1上にα形チタニル
フタロシアニン3とβ形チタニルフタロシアニン
4を結着剤5中に分散させて成る感光層2aを設
けたものである。第5図の感光体は導電性支持体
1上にα形チタニルフタロシアニン3とβ形チタ
ニルフタロシアニン4を電荷輸送物質及び結着剤
からなる電荷輸送媒体6に分散させて成る感光層
2bを設けたものである。第6及び第7図の感光
体はα形チタニルフタロシアニン3とβ形チタニ
ルフタロシアニン4を結着剤5中に分散させて成
る電荷担体発生層7と、電荷輸送物質と結着剤か
ら成る電荷輸送層8からなる感光層2c又は2d
を夫々設けたものである。 第4図の感光体の場合には、α形チタニルフタ
ロシアニン3とβ形チタニルフタロシアニン4
は、光減衰に必要な電荷担体の発生及び輸送の両
作用を行なつている。第5図の感光体の場合に
は、電荷輸送物質は結着剤と共に電荷輸送媒体6
を形成しており、α形チタニルフタロシアニン3
とβ形チタニルフタロシアニン4は電荷担体発生
物質として作用する。この電荷輸送媒体6はチタ
ニルフタロシアニンから発生した電荷担体を受け
入れ、これを輸送する能力を持つている。即ち、
第5図の感光体では光減衰に必要な電荷担体の生
成はチタニルフタロシアニンによつて行なわれ、
一方、電荷担体の輸送は主として電荷輸送媒体6
により行なわれる。第6図及び第7図の感光体の
場合には、電荷担体発生層7に含まれるα形チタ
ニルフタロシアニン3とβ形チタニルフタロシア
ニン4が電荷担体を発生し、一方、電荷輸送層8
は電荷担体の注入を受けてその輸送を行なう。 第4図の感光体はチタニルフタロシアニンを結
着剤溶液中に分散させ、この分散液を導電性支持
体上に塗布、乾燥することによつて作製できる。
第5図の感光体はチタニルフタロシアニンを電荷
輸送物質及び結着剤を溶解した溶液中に分散せし
め、この分散液を導電性支持体上に塗布、乾燥す
ることによつて作製できる。また、第6図の感光
体は導電性支持体上に、チタニルフタロシアニン
を結着剤溶液中に分散させて得た分散液を塗布、
乾燥し、その上に電荷輸送物質及び結着剤を溶剤
に溶解した溶液を塗布、乾燥することにより作製
できる。第7図の感光体は電荷輸送物質及び結着
剤を溶剤に溶解した溶液を導電性支持体上に塗
布、乾燥し、その上にチタニルフタロシアニンを
結着剤溶液中に分散させて得た分散液を塗布、乾
燥することにより作製できる。塗布は、通常浸漬
法又はロールコーター、ワイヤーバー、ドクター
ブレードなどを用いて行なう。 感光層の厚さは、第4図および第5図の感光体
の場合、3〜50μ、好ましくは5〜20μである。
また第6図および第7図の感光体の場合には、電
荷担体発生層の厚さは5μ以下、好ましくは0.01〜
2μであり、電荷輸送層の厚さは3〜50μ、好まし
くは5〜20μである。 本発明の電子写真用感光体の感光層中のフタロ
シアニン化合物の割合は、感光層に対して0.05〜
90重量%、好ましくは15〜50重量%であり、電荷
輸送物質の割合は10〜90重量%、好ましくは10〜
60重量%であり、電荷発生物質の割合は10〜70重
量%、好ましくは30〜50重量%である。なお、第
4〜7図のいずれの感光体の作製においても、結
着剤とともに可塑剤を用いることができる。 本発明に係る電子写真用感光体は、一層優れた
感度を得るために、必要に応じて、感光層中に電
荷輸送物質及び電荷発生物質をチタニルフタロシ
アニンと共に含有することができる。電荷輸送物
質は、正孔輸送物質と電子輸送物質とに分類さ
れ、正孔輸送物質としては、例えば、インドリン
化合物、キノリン化合物及びトリフエニルアミン
化合物等が挙げられ、電子輸送物質としては、例
えばビスアゾ化合物が挙げられ、使用する場合
は、少なくとも1種の正孔輸送物質と少なくとも
1種の電子輸送物質を併用することがより好まし
い。電荷発生物質としては、例えばペリレン化合
物及びビスアゾ化合物等が挙げられる。 インドリン化合物としては、例えば、 一般式 (式中、R1は置換基を有してもよいアルキル
基、アラルキル基またはアリール基を表わし、
R2及びR3は夫々独立的に水素原子、ハロゲン原
子又は置換基を有してもよいアルキル基、アラル
キル基もしくはアリール基を表わし、R4は水素
原子、ハロゲン原子または置換基を有してもよい
アルキル基もしくはアラルキル基を表わし、R5
及びR6は夫夫独立的に置換基を有してもよいア
ルキル基、アラルキル基又はアリール基を表わ
し、R5とR6は互に一体となつて環を形成しても
良い。)で表わされるインドリン化合物及び一般
(式中、Aは置換基を有してもよい芳香族炭化
水素基、又は芳香族ヘテロ環基を表わし、R′1
びR′2は各々独立的に水素原子、ハロゲン原子又
は置換基を有してもよいアルキル基、アラルキル
基又はアリール基を表わし、R′3は水素原子、ハ
ロゲン原子又は置換基を有してもよいアルキル基
もしくはアラルキル基を表わす。)で表わされる
インドリン化合物の好適例を第1表及び第2表に
まとめて掲げる。
[Industrial Field of Application] The present invention relates to an electrophotographic photoreceptor, and more particularly to an electrophotographic photoreceptor used in a laser beam printer using a semiconductor laser. [Prior art] Phthalocyanine compounds exhibit photoconductivity.
Since its discovery in 1968, a great deal of research has been conducted on it as a photoelectric conversion material. In recent years, with the development of non-impact printing technology, much research has been conducted to develop laser beam printers that use semiconductor lasers as writing heads. In a laser beam printer used in electrophotography, a uniformly corona-charged photoreceptor is first irradiated with a laser beam modulated based on an input signal, and an image is formed by a toner phenomenon. Such a laser recording method improves the image quality, and in particular, the use of a semiconductor laser has the advantage of simplifying the device, making it smaller, and making it possible to reduce the cost. Currently, most of the oscillation wavelengths of semiconductor lasers that operate stably are in the near-infrared region (λ>780nm).
That is, the recording photoreceptor used therein needs to have high sensitivity in a long wavelength region of 780 nm or more. In this case, the half-decrease exposure amount E1/2 of monochromatic infrared light irradiation required for practical sensitivity is 10 erg/cm 2 or less. Among photoconductive substances that exhibit high sensitivity in such long wavelength regions, phthalocyanine compounds are attracting particular attention. Conventionally, electrophotographic photoreceptors have been made of selenium, tellurium,
Inorganic compounds such as cadmium sulfide, zinc oxide,
Alternatively, organic compounds such as polyN-vinylcarbazole and bisazo pigments are used. However, these cannot be said to have sufficient photosensitivity in the long wavelength range of 780 nm to 900 nm, and in recent years, photoreceptors using an alloy of selenium, tellurium, and arsenic or photoreceptors using dye-sensitized cadmium sulfide have been developed.
Although it has been reported that they have high sensitivity in the long wavelength region around 800 nm, they are all highly toxic and their environmental safety is being reconsidered as a social issue. In addition, it is thought that it is possible to extend the photosensitive region of a photoreceptor using amorphous silicon to a long wavelength region by using a specific doping method and manufacturing method, but at present, the film formation rate is slow and there are problems with mass production, making it difficult to use. It's hard to say that it's a photoreceptor for the price. Among the phthalocyanine compounds that have been studied so far, compounds that exhibit high sensitivity in the long wavelength region of 780 nm or more include χ-type metal-free phthalocyanine,
Examples include ε-type copper phthalocyanine and vanadyl phthalocyanine. On the other hand, in order to increase sensitivity, a laminated photoreceptor using a vapor-deposited film of phthalocyanine as a charge generation layer has been studied. Some have been obtained. Documents related to such metal phthalocyanines include, for example, Japanese Patent Applications No. 56-96040, No. 56-33977, No. 57-146538, No. 57
-153982, 57-141581, 57-142458, 57-
146538, 58-40789, etc. [Problems to be solved by the invention] However, the production of the vapor deposited film requires a high vacuum exhaust device, which increases the equipment cost, making the organic photoreceptor as described above unavoidably expensive. . On the other hand, a laminated type photoreceptor has been studied in which the phthalocyanine is not deposited as a vapor-deposited film but as a resin dispersion layer, this is used as a charge generation layer, and a charge transport layer is coated on top of the layer. As a photoreceptor, metal-free phthalocyanine (patent application 1982-
No. 66963) and indium phthalocyanine (No. 66963) and indium phthalocyanine
No. 58-220493), and these are relatively highly sensitive photoreceptors, but the former has the disadvantage that sensitivity rapidly decreases in the long wavelength region of 800 nm or more, and the latter When the generating layer is made of a resin dispersion system, it has drawbacks such as insufficient sensitivity for practical use. Furthermore, when a photoreceptor using these phthalocyanine derivatives as a charge-generating material is used in a printer that uses a semiconductor laser as a light source, the interference of the laser light causes shading in the printed image (so-called interference fringes, moiré phenomenon). This has drawbacks such as the inability to form images with uniform density. The present invention improves these drawbacks and
An object of the present invention is to provide an electrophotographic photoreceptor that exhibits high photosensitivity in a wide wavelength range, particularly in a long wavelength region of 800 nm or more, and does not cause interference fringes in images. [Means for Solving the Problems] The present invention solves the above problems by providing an electrophotographic photoreceptor characterized by having a photosensitive layer in which α-type titanyl phthalocyanine and β-type titanyl phthalocyanine are dispersed in a binder. This is the solution. Both the α-type and β-type titanyl phthalocyanine used in the present invention have the general formula (hereinafter referred to as general formula ()). (In the formula, X 1 , X 2 , X 3 , and X 4 are each independently C
or Br, and k, , m, and n each independently represent a number from 0 to 4. ) is a compound having the structure represented by Among the compounds of general formula (), non-halogen-substituted compounds and monohalogen-substituted compounds are particularly preferred. The α-form titanyl phthalocyanine used in the present invention is, for example, dichlorotitanium phthalocyanine obtained by reacting titanium tetrachloride (or tetrabromo titanium) and phthalodinitrile in an α-chloronaphthalene (or α-bromonaphthalene) solvent. The product obtained by hydrolyzing TiC 2 Pc) [or dibromotitanium phthalocyanine (TiBr 2 Pc)] with aqueous ammonia, 2-ethoxyethanol, diglyme, dioxane, tetrahydrofuran, N,N-dimethylformamide,
It can be produced by treatment with an electron-donating solvent such as N-methylpyrrolidone, pyridine, or morpholine. α-type titanyl phthalocyanine thus obtained (k=0,= in the general formula ())
Fig. 1 shows an X-ray diffraction pattern using Cu-Ka rays of the compound with m = 0, m = 0, n = 0. This α-form titanyl phthalocyanine has an X-ray diffraction pattern of 7.6,
10.2, 12.6, 13.2, 15.1, 16.2, 17.2, 18.3, 22.5,
Bragg angle 2θ of 24.2, 25.3, 28.6, 29.3, 31.5
(However, this includes an error range of ±0.2.) It has a characteristic peak. In the other α-type titanyl phthalocyanines used in the present invention, the above specific peak is observed in common in their X-ray diffractograms, despite differences in the halogen atoms, their substitution positions, or the number of substitutions. The β-type titanyl phthalocyanine used in the present invention can be produced by recrystallizing the α-type titanyl phthalocyanine from α-chloronaphthalene or α-bromonaphthalene. The X-ray diffraction pattern of the β-type titanyl phthalocyanine thus produced is shown in FIG. This β-type titanyl phthalocyanine is 7.4, 9.2, 10.3, 13.0, 14.9, 15.3, 15.9,
It has a characteristic peak at each Bragg angle 2θ of 18.6, 20.6, 23.2, 25.5, 26.2, 27.0, and 32.7. Other β-type titanyl phthalocyanines used in the present invention also have the above-mentioned specific peak in common in their X-ray diffractograms, despite differences in the halogen atoms, their substitution positions, or the number of substitutions. A mixed system of α-type titanyl phthalocyanine and β-type titanyl phthalocyanine can be prepared by simply mechanically mixing the pure α-type titanyl phthalocyanine and β-type titanyl phthalocyanine as described above, but as an example of another method, α-form titanyl phthalocyanine can be transformed into β-form by applying mechanical strain force.
It is known that a crystal transition occurs to form titanyl phthalocyanine.Using this phenomenon, by processing α-form titanyl phthalocyanine for a certain period of time using a ball mill, etc., a certain proportion of α-form titanyl phthalocyanine and β-form titanyl can be obtained. Titanyl phthalocyanine mixed with phthalocyanine can also be prepared. The mixing ratio of α-type titanyl phthalocyanine and β-type titanyl phthalocyanine is preferably 20:80 to 99:1 in weight ratio of α-type to β-type, and 50:50-99:1.
is more suitable. The titanyl phthalocyanine used in the present invention is preferably one that has been sufficiently ground into fine particles using a grinding device such as a ball mill, sand mill, or attritor. At this time, commonly used glass beads, steel beads, and alumina beads can be used as a grinding agent, and if necessary, a grinding aid such as common salt or bicarbonate of soda can also be used. When a dispersion medium is required during grinding, it is preferable to use a dispersion medium that is liquid at the temperature during grinding, such as 2-ethoxyethanol, diglyme, dioxane, tetrahydrofuran, N,N-dimethylformamide, N-
Solvents such as methylpyrrolidone, pyridine, morpholine or polyethylene glycol can be used. As the resin used as a binder in the present invention, resins that are generally used as binders for electrophotographic photoreceptors can be used, and preferred examples include phenol, resin, urea resin, melamine resin, epoxy resin, Silicon resin, vinyl chloride-vinyl acetate copolymer, butyral resin, xylene resin, urethane resin, acrylic resin, polycarbonate resin, polyacrylate resin, saturated polyester resin, phenoxy resin, etc. can be used. The electrophotographic photoreceptor of the present invention can have various structures. Examples are shown in FIGS. 4-7. The photoreceptor shown in FIG. 4 has a photosensitive layer 2a formed by dispersing α-type titanyl phthalocyanine 3 and β-type titanyl phthalocyanine 4 in a binder 5 on a conductive support 1. The photoreceptor shown in FIG. 5 has a photosensitive layer 2b formed on a conductive support 1, in which α-type titanyl phthalocyanine 3 and β-type titanyl phthalocyanine 4 are dispersed in a charge transport medium 6 consisting of a charge transport substance and a binder. It is something. The photoreceptor shown in FIGS. 6 and 7 includes a charge carrier generation layer 7 made of an α-type titanyl phthalocyanine 3 and a β-type titanyl phthalocyanine 4 dispersed in a binder 5, and a charge carrier-generating layer 7 made of a charge transport substance and a binder. Photosensitive layer 2c or 2d consisting of layer 8
are set up respectively. In the case of the photoreceptor shown in Figure 4, α-type titanyl phthalocyanine 3 and β-type titanyl phthalocyanine 4
performs both the generation and transport of charge carriers necessary for optical attenuation. In the case of the photoreceptor shown in FIG.
is formed, α-form titanyl phthalocyanine 3
and β-type titanyl phthalocyanine 4 act as charge carrier generating substances. This charge transport medium 6 has the ability to accept and transport charge carriers generated from titanyl phthalocyanine. That is,
In the photoreceptor shown in FIG. 5, the generation of charge carriers necessary for light attenuation is performed by titanyl phthalocyanine,
On the other hand, the transport of charge carriers is mainly carried out by the charge transport medium 6.
This is done by In the case of the photoreceptor shown in FIGS. 6 and 7, the α-type titanyl phthalocyanine 3 and the β-type titanyl phthalocyanine 4 contained in the charge carrier generation layer 7 generate charge carriers, while the charge transport layer 8
receives injection of charge carriers and transports them. The photoreceptor shown in FIG. 4 can be produced by dispersing titanyl phthalocyanine in a binder solution, coating this dispersion on a conductive support, and drying it.
The photoreceptor shown in FIG. 5 can be produced by dispersing titanyl phthalocyanine in a solution containing a charge transporting substance and a binder, coating this dispersion on a conductive support, and drying it. The photoreceptor shown in FIG. 6 is made by coating a conductive support with a dispersion obtained by dispersing titanyl phthalocyanine in a binder solution.
It can be produced by drying, applying a solution of a charge transport substance and a binder dissolved in a solvent thereon, and drying. The photoreceptor shown in Figure 7 is a dispersion obtained by coating a solution of a charge transport substance and a binder dissolved in a solvent on a conductive support, drying it, and then dispersing titanyl phthalocyanine in the binder solution. It can be produced by applying a liquid and drying it. Coating is usually carried out by dipping or using a roll coater, wire bar, doctor blade, etc. The thickness of the photosensitive layer is 3 to 50 .mu.m, preferably 5 to 20 .mu.m for the photoreceptors of FIGS. 4 and 5.
In the case of the photoreceptor shown in FIGS. 6 and 7, the thickness of the charge carrier generation layer is 5 μm or less, preferably 0.01 μm or less.
2μ, and the thickness of the charge transport layer is 3 to 50μ, preferably 5 to 20μ. The ratio of the phthalocyanine compound in the photosensitive layer of the electrophotographic photoreceptor of the present invention is 0.05 to 0.05 to
90% by weight, preferably 15-50% by weight, and the proportion of charge transport material is 10-90% by weight, preferably 10-50% by weight.
60% by weight, and the proportion of charge generating material is 10-70% by weight, preferably 30-50% by weight. Incidentally, in producing any of the photoreceptors shown in FIGS. 4 to 7, a plasticizer can be used together with a binder. In order to obtain even better sensitivity, the electrophotographic photoreceptor according to the present invention may contain a charge transport substance and a charge generation substance in the photosensitive layer together with titanyl phthalocyanine, if necessary. Charge transport materials are classified into hole transport materials and electron transport materials. Examples of hole transport materials include indoline compounds, quinoline compounds, and triphenylamine compounds, and examples of electron transport materials include bisazo compounds. When used, it is more preferable to use at least one hole transport substance and at least one electron transport substance in combination. Examples of the charge generating substance include perylene compounds and bisazo compounds. As an indoline compound, for example, the general formula (In the formula, R 1 represents an alkyl group, an aralkyl group, or an aryl group that may have a substituent,
R 2 and R 3 each independently represent a hydrogen atom, a halogen atom, or an alkyl group, an aralkyl group, or an aryl group which may have a substituent, and R 4 represents a hydrogen atom, a halogen atom, or an alkyl group that may have a substituent. represents an alkyl group or an aralkyl group, and R 5
and R 6 represent an alkyl group, an aralkyl group, or an aryl group which may each independently have a substituent, and R 5 and R 6 may be combined with each other to form a ring. ) Indoline compounds and general formulas represented by (In the formula, A represents an aromatic hydrocarbon group or an aromatic heterocyclic group which may have a substituent, and R' 1 and R' 2 each independently represent a hydrogen atom, a halogen atom, or a substituent. R′3 represents a hydrogen atom, a halogen atom, or an alkyl group or an aralkyl group that may have a substituent. Examples are listed in Tables 1 and 2.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 キノリン化合物としては、例えば、一般式 (式中、Bは置換基を有してもよい芳香族炭化
水素基又は芳香族複素環基を示し、R1,R2、及
びR3は夫々独立的に、水素原子、ハロゲン原子
又は置換基を有してもよいアルキル基、アラルキ
ル基又はアリール基を表わし、R4は水素原子、
ハロゲン原子又は置換基を有しても良いアルキル
基もしくはアラルキル基を表わす。)で表わされ
るキノリン化合物を挙げることができる。キノリ
ン化合物の好適例を第3表にまとめて掲げる。
[Table] As a quinoline compound, for example, the general formula (In the formula, B represents an aromatic hydrocarbon group or an aromatic heterocyclic group which may have a substituent, and R 1 , R 2 , and R 3 are each independently a hydrogen atom, a halogen atom, or a substituted Represents an alkyl group, aralkyl group or aryl group which may have a group, R 4 is a hydrogen atom,
Represents an alkyl group or an aralkyl group that may have a halogen atom or a substituent. ) can be mentioned. Preferable examples of quinoline compounds are summarized in Table 3.

【表】【table】

【表】【table】

【表】 トリフエニルアミン化合物としては、一般式 (式中、Ar1,Ar2及びAr3は置換、未置換の芳
香族炭素環基及び置換、未置換の芳香族複素環基
を表わす。)で表わされるトリフエニルアミン化
合物を挙げることができ、その好適例を第4表に
挙げる。
[Table] As a triphenylamine compound, the general formula (In the formula, Ar 1 , Ar 2 and Ar 3 represent a substituted or unsubstituted aromatic carbocyclic group and a substituted or unsubstituted aromatic heterocyclic group.) , suitable examples are listed in Table 4.

【表】 また電荷輸送物質としては他の周知のものも使
用でき、例えばピラゾール、ピラゾリン、オキサ
ジアゾール、チアゾール、イミダゾール等の複素
環化合物の誘導体、ヒドラゾン誘導体、トリフエ
ニルメタン誘導体、ポリ−N−ビニルカルバゾー
ル及びその誘導体等などが挙げられる。 本発明で用いられるビスアゾ化合物としては、
一般に電子写真用感光体に使用されるものであれ
ばさしつかえなく、好適なビスアゾ化合物を第5
表にまとめて掲げる。
[Table] Other well-known charge transport substances can also be used, such as derivatives of heterocyclic compounds such as pyrazole, pyrazoline, oxadiazole, thiazole, and imidazole, hydrazone derivatives, triphenylmethane derivatives, poly-N- Examples include vinyl carbazole and its derivatives. As the bisazo compound used in the present invention,
Any suitable bisazo compound that is generally used in electrophotographic photoreceptors may be used as the fifth compound.
They are summarized in a table.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 本発明でチタニルフタロシアニンと共に電荷発
生物質としても併用できるペリレン化合物として
は、例えば、一般式 (式中、R1及びR2はそれぞれ独立的に水素原
子又は置換もしくは未置換のアルキル基、アリー
ル基、アルキルアリール基或はアミノ基を表わ
す。)で表わされるペリレン化合物を挙げること
ができる。 ペリレン化合物の好適例を第6表にまとめて掲
げる。
[Table] Perylene compounds that can be used in combination with titanyl phthalocyanine as a charge generating substance in the present invention include, for example, the general formula (In the formula, R 1 and R 2 each independently represent a hydrogen atom or a substituted or unsubstituted alkyl group, aryl group, alkylaryl group, or amino group.) Perylene compounds represented by the following can be mentioned. Preferable examples of perylene compounds are listed in Table 6.

【表】【table】

【表】【table】

【表】 本発明の感光体の導電性支持体には、例えばア
ルミニウムなどの金属板ドラムまたは金属箔、ア
ルミニウムなどの金属を蒸着したプラスチツクフ
イルム、あるいは導電処理を施した紙などが用い
られる。 本発明に係る電子写真用感光体には導電性支持
体と感光層の間に、必要に応じて接着層またはバ
リヤ層を設けることができる。これらの層の材料
としては、ポリアミド、ニトロセルロース、カゼ
イン、ポリビニルアルコールなどがあり、その膜
厚は1μ以下が望ましい。 以下、本発明を実施例により、具体的に説明す
るが、本発明はその要旨を越えない限り、以下の
実施例に限定されるものではない。 実施例中の電荷移動物質No.又は、電荷発生物質
No.は、明細書中の第1〜5表に記載した、インド
リン化合物、キノリン化合物、トリフエニルアミ
ノ化合物、ビスアゾ化合物、ペリレン化合物の具
体例のNo.を示す。 各例中の「部」はすべて、ことわりのない限り
「重量部」を示す。 〔実施例〕 α形チタニルフタロシアニンとβ形チタニル
フタロシアニンとの混合体の製造 前記一般式()において、k,,m,nが
いずれも0となるα形チタニルフタロシアニン88
重量%とβ形チタニルフタロシアニン12重量%と
の混合物を摩砕剤としてアルミナビーズを用いた
ボールミルで64時間摩砕した。この混合体のX線
回折図を第3図に示した。このX線回折図には、
7.6,9.2,10.3,12.4,13.2,15.0,16.2,18.3,
20.6,22.5,24.2,25.3,26.2,27.0,28.6,29.3
の各ブラツグ角2θで特性ピークを有する。 電子写真用感光体の製造 実施例 1 前記により微細化したα形チタニルフタロシ
アニンとβ形チタニルフタロシアニンの混合体3
部、飽和ポリエステル樹脂(「バイロン200」(株)東
洋紡製)1部、クロロホルム210部をアルミナビ
ーズを用いたボールミルで18時間混合し、得られ
た分散液をアルミニウム蒸着ポリエステルフイル
ム上にワイヤーバーで塗布し、乾燥膜厚0.3μの電
荷発生層を形成させた。この電荷発生層の上に、
電荷移動物質No.T−33(5部)、ポリカーボネート
樹脂(「パンライト−1250W」帝人化成(株)製)5
部をクロロホルム65部に溶かした溶液をワイヤー
バーで塗布し、乾燥膜厚10μの電荷移動層を形成
することにより電子写真用感光体を作成した。 この感光体の感度を「ペーパーアナライザー−
SP−428」(川口電機製作所社製)を用いて、ま
ず感光体を暗所で印加電圧−6kVのコロナ放電に
より帯電させ初期電位(V0)を測定し、次に10
秒間暗所に放置し10秒後の表面電位保持率
(V10/V0)を測定した。ついで、タングステン
ランプから、その表面照度5ルツクスで光照射を
行い、表面電位が1/2又は1/5に減少するまでの時
間を測定する方法で光感度E1/2及びE1/5を測定し
た。 また、同様にして露光開始後15秒後の表面電位
(V15)も測定した。 更に830nmに分光された光(光強度10mw/
m2)を入射して測定し、同様に光感度(E1/21/5
を測定した。 この感光体の分光感度は第8図に示すように
520〜900nmの広い範囲でレーザープリンター用
感光体の実用化感度E1/2=10erg/cm2(E1/2 -1=0.1
cm2/erg)を超えている。 一方、実施例1と同一の塗料を透明なPETフ
イルム上に塗布し、乾燥し、この塗膜の可視吸収
スペクトルを測定した。その吸収スペクトルを第
9図に示す。 このスペクトルから明らかなように、この塗膜
即ち本実施例の電荷発生層は650nmと800nmに極
大吸収を示す。 実施例 2 α形チタニルフタロシアニンとβ形チタニルフ
タロシアニンの混合割合をα形60重量%、β形40
重量%とする以外は実施例1と同様にして感光体
を作成し、実施例1と同様の方法で感光体特性を
測定した。 比較例 1 チタニルフタロシアニンとして実施例1で用い
たβ形チタニルフタロシアニンのみを用いて、実
施例1と同様の方法で電子写真用感光体を作成
し、先と同様の方法で感光体特性を測定した。 以上の実施例1〜2及び比較例1の感光体特性
を第7表にまとめて掲げる。
[Table] As the conductive support of the photoreceptor of the present invention, for example, a metal plate drum or metal foil made of aluminum or the like, a plastic film deposited with a metal such as aluminum, or paper subjected to conductive treatment is used. In the electrophotographic photoreceptor according to the present invention, an adhesive layer or a barrier layer can be provided between the conductive support and the photosensitive layer, if necessary. Materials for these layers include polyamide, nitrocellulose, casein, polyvinyl alcohol, etc., and the film thickness is preferably 1 μm or less. EXAMPLES Hereinafter, the present invention will be specifically explained with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist thereof. Charge transfer substance No. or charge generation substance in Examples
No. indicates the No. of specific examples of indoline compounds, quinoline compounds, triphenylamino compounds, bisazo compounds, and perylene compounds described in Tables 1 to 5 in the specification. All "parts" in each example indicate "parts by weight" unless otherwise specified. [Example] Production of a mixture of α-type titanyl phthalocyanine and β-type titanyl phthalocyanine α-type titanyl phthalocyanine 88 in which k, m, and n are all 0 in the general formula ()
% by weight and 12% by weight of β-type titanyl phthalocyanine was ground for 64 hours in a ball mill using alumina beads as a grinding agent. The X-ray diffraction pattern of this mixture is shown in FIG. In this X-ray diffraction diagram,
7.6, 9.2, 10.3, 12.4, 13.2, 15.0, 16.2, 18.3,
20.6, 22.5, 24.2, 25.3, 26.2, 27.0, 28.6, 29.3
It has a characteristic peak at each Bragg angle 2θ. Production Example of Electrophotographic Photoreceptor 1 Mixture of α-type titanyl phthalocyanine and β-type titanyl phthalocyanine refined as described above 3
1 part of saturated polyester resin ("Vylon 200" manufactured by Toyobo Co., Ltd.) and 210 parts of chloroform were mixed for 18 hours in a ball mill using alumina beads, and the resulting dispersion was placed on an aluminum-deposited polyester film using a wire bar. A charge generation layer having a dry film thickness of 0.3 μm was formed. On this charge generation layer,
Charge transfer substance No.T-33 (5 parts), polycarbonate resin (“Panlite-1250W” manufactured by Teijin Kasei Ltd.) 5
A photoreceptor for electrophotography was prepared by applying a solution of 65 parts of chloroform dissolved in 65 parts of chloroform using a wire bar to form a charge transfer layer with a dry film thickness of 10 μm. The sensitivity of this photoconductor is measured using a paper analyzer.
SP-428" (manufactured by Kawaguchi Electric Seisakusho Co., Ltd.), the photoreceptor was first charged by corona discharge at an applied voltage of -6 kV in a dark place, and the initial potential (V 0 ) was measured.
The sample was left in the dark for 10 seconds, and the surface potential retention rate (V 10 /V 0 ) was measured after 10 seconds. Next, the light sensitivities E 1/2 and E 1/5 were determined by irradiating light from a tungsten lamp at a surface illuminance of 5 lux and measuring the time until the surface potential decreased to 1/2 or 1/5. It was measured. In addition, the surface potential (V 15 ) 15 seconds after the start of exposure was also measured in the same manner. The light is further divided into 830nm (light intensity 10mw/
m 2 ), and similarly the light sensitivity (E 1/2 , 1/5 )
was measured. The spectral sensitivity of this photoreceptor is shown in Figure 8.
Practical sensitivity of photoreceptors for laser printers in a wide range of 520 to 900 nm E 1/2 = 10erg/cm 2 (E 1/2 -1 = 0.1
cm 2 /erg). On the other hand, the same paint as in Example 1 was applied onto a transparent PET film, dried, and the visible absorption spectrum of this paint film was measured. The absorption spectrum is shown in FIG. As is clear from this spectrum, this coating film, that is, the charge generation layer of this example, exhibits maximum absorption at 650 nm and 800 nm. Example 2 The mixing ratio of α-type titanyl phthalocyanine and β-type titanyl phthalocyanine was 60% by weight for α-type and 40% by weight for β-type.
A photoreceptor was prepared in the same manner as in Example 1, except for using weight %, and the characteristics of the photoreceptor were measured in the same manner as in Example 1. Comparative Example 1 An electrophotographic photoreceptor was prepared in the same manner as in Example 1 using only the β-type titanyl phthalocyanine used in Example 1 as the titanyl phthalocyanine, and the characteristics of the photoreceptor were measured in the same manner as before. . The photoreceptor characteristics of Examples 1 to 2 and Comparative Example 1 are summarized in Table 7.

【表】 実施例 3〜6 前記により微細化したα形チタニルフタロシ
アニンとβ形チタニルフタロシアニンの混合体3
部、飽和ポリエステル樹脂(「バイロン200」(株)東
洋紡製)1部と下記の第8表の各種溶媒210部を
アルミナビーズを用いたボールミルで18時間混合
し、得られた分散液をアルミニウム蒸着ポリエス
テルフイルム上にワイヤーバーで塗布乾燥し、乾
燥膜厚0.3μの電荷発生層を形成した。それ以外は
実施例1と同様にして、積層型電子写真用感光体
を作成し、830nmに分光された光(光強度
10mw/m2)を照射して、感光体の感度(E1/5
を測定し、第8表にまとめた。
[Table] Examples 3 to 6 Mixture 3 of α-type titanyl phthalocyanine and β-type titanyl phthalocyanine refined as described above
1 part of saturated polyester resin ("Vylon 200" manufactured by Toyobo Co., Ltd.) and 210 parts of various solvents shown in Table 8 below were mixed for 18 hours in a ball mill using alumina beads, and the resulting dispersion was aluminum-evaporated. It was applied onto a polyester film using a wire bar and dried to form a charge generation layer with a dry thickness of 0.3 μm. Other than that, a laminated electrophotographic photoreceptor was produced in the same manner as in Example 1, and light separated into 830 nm (light intensity
10mw/m 2 ), the sensitivity of the photoreceptor (E 1/5 )
were measured and summarized in Table 8.

【表】 実施例 7〜12 実施例1において、電荷輸送物質No.T−33の代
わりに第9表に示す他の電荷輸送物質を用い、
種々の感光体を作成した。この感光体に830nmに
分光された光(光強度10mw/m2)を入射して感
光体の感度(E1/5)を測定し、第9表にまとめ
た。
[Table] Examples 7 to 12 In Example 1, other charge transport substances shown in Table 9 were used instead of charge transport substance No. T-33,
Various photoreceptors were created. The sensitivity (E 1/5 ) of the photoreceptor was measured by inputting light separated into 830 nm (light intensity: 10 mw/m 2 ) into this photoreceptor, and the results are summarized in Table 9.

【表】 実施例 13〜18 実施例1の感光体において、電荷発生層中に第
10表に記載した電荷発生物質をα形チタニルフタ
ロシアニンとβ形チタニルフタロシアニンの混合
体に対して30重量%添加した種々の感光体を作成
した。各々の感光体の特性を第10表にまとめた。
[Table] Examples 13 to 18 In the photoreceptor of Example 1, the charge generation layer contains
Various photoreceptors were prepared in which 30% by weight of the charge generating substance listed in Table 10 was added to a mixture of α-type titanyl phthalocyanine and β-type titanyl phthalocyanine. Table 10 summarizes the characteristics of each photoreceptor.

〔発明の効果〕〔Effect of the invention〕

本発明の電子写真用感光体は、α形チタニルフ
タロシアニンとβ形チタニルフタロシアニンを結
着剤中に分散してなる感光層を有することによ
り、500〜900nmの広い波長領域で高い感度を有
するものであり、特に700〜900nm前後の光源を
用いたレーザビームプリンタや液晶プリンタ用の
感光体として優れている。 本発明の電子写真用感光体はレーザビームプリ
ンタのみでなく、半導体レーザー等の750〜
850nmの光源を使用したその他の各種光記録デバ
イスにも応用することができる。
The electrophotographic photoreceptor of the present invention has a photosensitive layer in which α-type titanyl phthalocyanine and β-type titanyl phthalocyanine are dispersed in a binder, and thus has high sensitivity in a wide wavelength range from 500 to 900 nm. It is especially excellent as a photoreceptor for laser beam printers and liquid crystal printers that use light sources of around 700 to 900 nm. The electrophotographic photoreceptor of the present invention can be used not only for laser beam printers but also for semiconductor lasers etc.
It can also be applied to various other optical recording devices using an 850 nm light source.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はα形チタニルフタロシアニンのX線回
折図である。第2図はβ形チタニルフタロシアニ
ンのX線回折図である。第3図はα形チタニルフ
タロシアニンとβ形チタニルフタロシアニンの混
合体のX線回折図である。第4図〜第7図は本発
明に係る電子写真用感光体の拡大部分断面図であ
る。 1……導電性支持体、2a,2b,2c,2d
……感光層、3……α形チタニルフタロシアニ
ン、4……β形チタニルフタロシアニン、5……
結着剤、6……電荷輸送媒体、7……電荷担体発
生層、8……電荷輸送層。 第8図は、実施例1の電子写真用感光体の分光
感度を示す図である。第9図は、実施例1の感光
体の電荷発生層の可視吸収スペクトルを表す図で
ある。
FIG. 1 is an X-ray diffraction diagram of α-type titanyl phthalocyanine. FIG. 2 is an X-ray diffraction diagram of β-type titanyl phthalocyanine. FIG. 3 is an X-ray diffraction diagram of a mixture of α-type titanyl phthalocyanine and β-type titanyl phthalocyanine. 4 to 7 are enlarged partial cross-sectional views of the electrophotographic photoreceptor according to the present invention. 1... Conductive support, 2a, 2b, 2c, 2d
...Photosensitive layer, 3...α-type titanyl phthalocyanine, 4...β-type titanyl phthalocyanine, 5...
Binder, 6... Charge transport medium, 7... Charge carrier generation layer, 8... Charge transport layer. FIG. 8 is a diagram showing the spectral sensitivity of the electrophotographic photoreceptor of Example 1. FIG. 9 is a diagram showing the visible absorption spectrum of the charge generation layer of the photoreceptor of Example 1.

Claims (1)

【特許請求の範囲】 1 α形チタニルフタロシアニン及びβ形チタニ
ルフタロシアニンを結着剤中に分散させて成る感
光層を有することを特徴とする電子写真用感光
体。 2 感光層が電荷輸送物質を含有するものである
特許請求の範囲第1項記載の電子写真用感光体。 3 感光層が電荷輸送物質及び電荷発生物質を含
有するものである特許請求の範囲第1項記載の電
子写真用感光体。 4 電荷輸送物質がインドリン化合物、キノリン
化合物、トリフエニルアミン化合物、及び、ビス
アゾ化合物から成る群から選ばれる少なくとも一
種の化合物である特許請求の範囲第2項又は第3
項記載の電子写真用感光体。 5 電荷発生物質がペリレン化合物又はビスアゾ
化合物である特許請求の範囲第3項記載の電子写
真用感光体。
[Scope of Claims] 1. An electrophotographic photoreceptor comprising a photosensitive layer comprising α-type titanyl phthalocyanine and β-type titanyl phthalocyanine dispersed in a binder. 2. The electrophotographic photoreceptor according to claim 1, wherein the photosensitive layer contains a charge transporting substance. 3. The electrophotographic photoreceptor according to claim 1, wherein the photosensitive layer contains a charge transporting substance and a charge generating substance. 4. Claim 2 or 3, wherein the charge transport substance is at least one compound selected from the group consisting of indoline compounds, quinoline compounds, triphenylamine compounds, and bisazo compounds.
The electrophotographic photoreceptor described in . 5. The electrophotographic photoreceptor according to claim 3, wherein the charge generating substance is a perylene compound or a bisazo compound.
JP11465186A 1986-05-21 1986-05-21 Electrophotographic sensitive body Granted JPS62272272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11465186A JPS62272272A (en) 1986-05-21 1986-05-21 Electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11465186A JPS62272272A (en) 1986-05-21 1986-05-21 Electrophotographic sensitive body

Publications (2)

Publication Number Publication Date
JPS62272272A JPS62272272A (en) 1987-11-26
JPH0466507B2 true JPH0466507B2 (en) 1992-10-23

Family

ID=14643139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11465186A Granted JPS62272272A (en) 1986-05-21 1986-05-21 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPS62272272A (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63116158A (en) * 1986-11-05 1988-05-20 Toyo Ink Mfg Co Ltd Photosemiconductor material and electrophotographic sensitive body prepared by using it
DE3813459A1 (en) * 1987-04-24 1988-11-10 Minolta Camera Kk FUNCTIONALLY DIVIDED PHOTO SENSITIVE ELEMENT
DE3814105C2 (en) * 1987-04-27 1999-02-04 Minolta Camera Kk Electrophotographic recording material
US4898799A (en) * 1987-07-10 1990-02-06 Konica Corporation Photoreceptor
US4886720A (en) * 1987-08-31 1989-12-12 Minolta Camera Kabushiki Kaisha Photosensitive medium having a styryl charge transport material
JP2748120B2 (en) * 1988-04-12 1998-05-06 コニカ株式会社 Electrophotographic photoreceptor
JPH01291256A (en) * 1988-05-18 1989-11-22 Takasago Internatl Corp Electrophotographic sensitive body
JPH0273360A (en) * 1988-09-09 1990-03-13 Takasago Internatl Corp Electrophotographic sensitive body
JPH02165157A (en) * 1988-12-20 1990-06-26 Konica Corp Electrophotographic sensitive body
JPH03116153A (en) * 1989-09-29 1991-05-17 Mita Ind Co Ltd Electrophotographic sensitive body
US5112711A (en) * 1990-06-05 1992-05-12 Eastman Kodak Company Electrophotographic recording elements containing a combination of titanyl phthalocyanine-type pigments
JP2934983B2 (en) * 1990-11-20 1999-08-16 コニカ株式会社 Coating liquid
JP2004123841A (en) 2002-09-30 2004-04-22 Fuji Xerox Co Ltd Photoconductive organic pigment, photoconductive organic pigment dispersion, electrophotographic photoconductor and electrophotogrtaphic apparatus using the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3825422A (en) * 1972-10-26 1974-07-23 Xerox Corp Imaging process
JPS57148745A (en) * 1981-03-11 1982-09-14 Nippon Telegr & Teleph Corp <Ntt> Lamination type electrophotographic receptor
JPS5932788A (en) * 1982-08-17 1984-02-22 Kawasaki Heavy Ind Ltd Cooling device of particulate material
JPS5949544A (en) * 1982-09-16 1984-03-22 Asahi Chem Ind Co Ltd Electrophtographic organic receptor
JPS59166959A (en) * 1983-03-14 1984-09-20 Nippon Telegr & Teleph Corp <Ntt> Laminated type electrophotographic sensitive body
JPS59204045A (en) * 1983-05-07 1984-11-19 Sumitomo Chem Co Ltd Electrophotographic sensitive body and its manufacture
JPS59214034A (en) * 1983-05-19 1984-12-03 Sumitomo Chem Co Ltd Manufacture of electrophotographic sensitive body
JPS6026947A (en) * 1983-07-25 1985-02-09 Asahi Chem Ind Co Ltd Organic photosensitive body for electrophotography
JPS6073541A (en) * 1983-09-29 1985-04-25 Toyo Ink Mfg Co Ltd Photoconductive material

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3825422A (en) * 1972-10-26 1974-07-23 Xerox Corp Imaging process
JPS57148745A (en) * 1981-03-11 1982-09-14 Nippon Telegr & Teleph Corp <Ntt> Lamination type electrophotographic receptor
JPS5932788A (en) * 1982-08-17 1984-02-22 Kawasaki Heavy Ind Ltd Cooling device of particulate material
JPS5949544A (en) * 1982-09-16 1984-03-22 Asahi Chem Ind Co Ltd Electrophtographic organic receptor
JPS59166959A (en) * 1983-03-14 1984-09-20 Nippon Telegr & Teleph Corp <Ntt> Laminated type electrophotographic sensitive body
JPS59204045A (en) * 1983-05-07 1984-11-19 Sumitomo Chem Co Ltd Electrophotographic sensitive body and its manufacture
JPS59214034A (en) * 1983-05-19 1984-12-03 Sumitomo Chem Co Ltd Manufacture of electrophotographic sensitive body
JPS6026947A (en) * 1983-07-25 1985-02-09 Asahi Chem Ind Co Ltd Organic photosensitive body for electrophotography
JPS6073541A (en) * 1983-09-29 1985-04-25 Toyo Ink Mfg Co Ltd Photoconductive material

Also Published As

Publication number Publication date
JPS62272272A (en) 1987-11-26

Similar Documents

Publication Publication Date Title
JPH0629975B2 (en) Multilayer type photoconductor for electrophotography
JP2561940B2 (en) Gallium phthalocyanine compound and electrophotographic photoreceptor using the same
JPH0629976B2 (en) Single layer type electrophotographic photoreceptor
JPS62103650A (en) Electrophotographic sensitive material
JPH0466507B2 (en)
US5153313A (en) Processes for the preparation of phthalocyanines
US5766810A (en) Methods for preparing cocrystals of titanyl fluorophthalocyannes and unsubstituted titanyl phthalocyanine, electrophotographic elements, and titanyl phthalocyanine compositions
JPH0530263B2 (en)
US5725984A (en) Omega-oxo-aluminum phthalocyanine dimer having novel polymorph and electrophotographic photoreceptor prepared by using the same
JP2861116B2 (en) Electrophotographic photoreceptor
JPS61188543A (en) Electrophotographic sensitive body
JPS61124951A (en) Electrophotographic sensitive body
JPS58178363A (en) Electrophotographic receptor
JP2599170B2 (en) Electrophotographic photoreceptor
JP2867045B2 (en) Electrophotographic photoreceptor
JPS63142356A (en) Electrophotographic sensitive body
JPS62134651A (en) Electrophotographic sensitive body
JP2805866B2 (en) Electrophotographic photoreceptor
JPS62121460A (en) Electrophotographic sensitive body
JP2805915B2 (en) Electrophotographic photoreceptor
JP2805896B2 (en) Electrophotographic photoreceptor
JPH0477906B2 (en)
JPH04182654A (en) Electrophotographic sensitive body, electrophotographic device fitted with same sensitive body and facsimile
CA2041936C (en) Photoconductive imaging members with titanium phthalocyanine
JP2990758B2 (en) Electrophotographic photoreceptor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term