JPS5932788A - Cooling device of particulate material - Google Patents

Cooling device of particulate material

Info

Publication number
JPS5932788A
JPS5932788A JP14300382A JP14300382A JPS5932788A JP S5932788 A JPS5932788 A JP S5932788A JP 14300382 A JP14300382 A JP 14300382A JP 14300382 A JP14300382 A JP 14300382A JP S5932788 A JPS5932788 A JP S5932788A
Authority
JP
Japan
Prior art keywords
clinker
cooling
lattice
bed
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14300382A
Other languages
Japanese (ja)
Inventor
Takeshi Suzuki
武司 鈴木
Mikio Murao
村尾 三樹雄
Chikanori Kumagai
親徳 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Kawasaki Motors Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd, Kawasaki Jukogyo KK filed Critical Kawasaki Heavy Industries Ltd
Priority to JP14300382A priority Critical patent/JPS5932788A/en
Publication of JPS5932788A publication Critical patent/JPS5932788A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28CHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
    • F28C3/00Other direct-contact heat-exchange apparatus
    • F28C3/10Other direct-contact heat-exchange apparatus one heat-exchange medium at least being a fluent solid, e.g. a particulate material
    • F28C3/12Other direct-contact heat-exchange apparatus one heat-exchange medium at least being a fluent solid, e.g. a particulate material the heat-exchange medium being a particulate material and a gas, vapour, or liquid
    • F28C3/16Other direct-contact heat-exchange apparatus one heat-exchange medium at least being a fluent solid, e.g. a particulate material the heat-exchange medium being a particulate material and a gas, vapour, or liquid the particulate material forming a bed, e.g. fluidised, on vibratory sieves

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PURPOSE:To efficiently cool clinker by a structure wherein a stepped part is formed in a grating bed in its low temperature zone and splinkling of water is applied at the stepped part. CONSTITUTION:Cooling water is sprayed through spray nozzles 39 against the clinker falling down from an upper step grating bed part 20 to a low step grating bed part 21, while cooling air is blasted through vent holes 41. The cooling water is mixed with the cooling air and, after that, blasted against the clinker in the form of mist in order to cool the clinker. Because the cooling water turns into mist and no local spraying of the cooling water occurs, no water drips from the clinker. Because the cooling water is sprayed against the falling clinker at the stepped part 19, the cooling water is also sprayed over the clinker, which was located at the uppermost part of the clinker layer in the upper step grating bed part 20 and has high temperature.

Description

【発明の詳細な説明】 本発明は粉粒体の冷却装置たとえばセメントクリンカの
冷却装置に関し、%に格子床上の粉粒体層に格子床の下
方から冷却空気を流通させて粉粒体を冷却するようにし
た粉粒体の冷却装置に閃する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cooling device for powder and granular material, for example, a cooling device for cement clinker. A cooling device for powder and granular materials is developed.

格子床の粉粒体層に下方から冷却空気を流通さぜるよう
にした冷却装置では、冷却空気か上方に向う程高温度と
なると共に、粉粒体層でもその上J韓部に向う程高湿度
となる温度分布を有しているので、冷却すべき粉粒体と
冷却空気との間に大きな温度差を保つことはできず、し
たがって冷却効果か劣る。そのため従来では、格子床の
面積を大きく設定するか、あるいは比較的低湿度となっ
た粉粒体層に冷Jl水4敗水している。このように格子
床の面積を犬とすると、冷却装置°が犬ノ15化し、冷
却水を粉粒体層の上方から散水すると排出される冷、1
41空気のl:ia度を不必要に低下させるので、その
排出空気の顕熱を回ルYする場合には特に不都合を生じ
る。また粉粒体層の下方から冷却水を散水した場合には
、比較的低温度である粉粒体層の下t31;に散水され
ることになるので、冷却効果の向上をltl待すること
ができない上に、散水された冷却水が格子床からしたた
り落ちるおそれがある。
In a cooling device in which cooling air is circulated from below through the powder layer of a grid bed, the temperature of the cooling air increases as it goes upward, and the temperature increases as it moves upward in the powder layer. Since it has a temperature distribution that results in high humidity, it is not possible to maintain a large temperature difference between the granular material to be cooled and the cooling air, and therefore the cooling effect is poor. Therefore, conventionally, the area of the grid floor is set large, or cold Jl water is poured into the powder layer where the humidity is relatively low. In this way, if the area of the grid floor is 15 degrees, the cooling device will be 15 degrees, and when cooling water is sprinkled from above the powder layer, the amount of cold discharged will be 15 degrees.
41, which unnecessarily lowers the l:ia degree of the air, which is particularly inconvenient when the sensible heat of the discharged air is recycled. In addition, when cooling water is sprinkled from below the powder layer, the water is sprayed below the powder layer where the temperature is relatively low, so it is difficult to wait for the improvement of the cooling effect. In addition, there is a risk that the sprayed cooling water may drip from the grate floor.

本発明は上述の技術的課題を解決し、冷却効果を向上さ
せた粉粒体の冷却装置を提供することをLI的とする。
The object of the present invention is to solve the above-mentioned technical problems and provide a cooling device for powder and granular material with improved cooling effect.

以下、図面によって本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail with reference to the drawings.

第1図は本発明の一実施例の簡略化した縦断面図である
。冷j3J装置1のケーシング2は横方向に延びる矩形
状に構成され、前記横力向に沿う一端部には」一方に延
びるi!ド結導入部3か設4Jられる。この連結導入部
3にはロータリキ/l/ン4の1:Ili lli r
−]力く回転自在に連結される。Iコークリキルン4内
”Cノく−す5の燃焼熱によって焼成されたセメントり
1ノン力は、前低排出[−1から冷却装置1内Gこ]り
人さA1゜る、ケーシング2内には、可動格子と固定、
+h子とが交互に配置r1′されて成る格子床6が全1
lli11(、二わたって設けられており、格子床6の
下方には送風室7か)V成される。七メントタリンカは
格子床(ロニ6ピ矢符で示ず移送方向8に移送されなか
ら、送r*(’;t7から格子床6を上方に流過する冷
却空気によって冷却される。冷却後のセメントタリン力
はグ1ノズリ11で選別され、粗粒セメントクリンカは
、破砕機10で破砕された後、排出+19から排出され
る。
FIG. 1 is a simplified longitudinal cross-sectional view of one embodiment of the invention. The casing 2 of the cold j3J device 1 is configured in a rectangular shape extending in the lateral direction, and has an i! A connection introduction section 3 or 4J is installed. This connection introduction part 3 has a rotary key / l / n 4 no. 1: Ili lli r
-] Forcefully and rotatably connected. The cement fired by the combustion heat of the C gas 5 in the I coke kiln 4 is discharged into the casing 2, where there is a low discharge [-1 to the G in the cooling device 1]. Has movable grating and fixed,
There is a total of 1 lattice floor 6 made up of alternately arranged r1'
lli11 (provided over two sides, and below the lattice floor 6 is a ventilation chamber 7). Since the seven-ment tarinka is not transferred in the transport direction 8 from the grid bed (not shown by the arrow), it is cooled by the cooling air flowing upward through the grid bed 6 from the transport r*(';t7. Cement clinker is sorted by a grinder nozzle 11, and coarse cement clinker is crushed by a crusher 10 and then discharged from a discharge outlet 19.

一方、ケーシング2内においてクリンカ層]2の上方空
間は、移送方向8に沿う途中で天井壁13から垂下され
た仕切壁14で2つに分′lμ」される。
On the other hand, in the casing 2, the space above the clinker layer 2 is divided into two by a partition wall 14 hanging down from the ceiling wall 13 along the transport direction 8.

この仕切壁14よりも移送方向8に沿う土bIE側の高
温度領域15においては、クリンカ層12を流過した冷
却空気の温度が比較的高く、その一部はバーナ5の燃焼
用空気として用いられ、残余の空気は抽気1」16から
抽気されて、仮焼炉などの燃焼用空気として用いられる
。仕切壁14よりも移送力向8に沿う下流側の低温度領
域】7では、タリン力+・ri 12を流過した冷却空
気の温度が比較的低く、排気[A18から排出される。
In the high temperature region 15 on the soil bIE side along the transfer direction 8 with respect to the partition wall 14, the temperature of the cooling air that has passed through the clinker layer 12 is relatively high, and a part of it is used as combustion air for the burner 5. The remaining air is extracted from the bleed air 1'16 and used as combustion air for a calciner or the like. In the low temperature region 7 on the downstream side of the partition wall 14 along the transfer force direction 8, the temperature of the cooling air that has passed through the Tallinn force +·ri 12 is relatively low and is discharged from the exhaust air [A18].

なお排気口18に連結されるダクト(図示せず)の途中
に熱交換器を設りて、比較的低IAIX度の排出空気か
ら顕熱を回収することができる。
Note that a heat exchanger may be provided in the middle of a duct (not shown) connected to the exhaust port 18 to recover sensible heat from the discharge air having a relatively low IAIX degree.

2ト発明に従えば、低温度領域17において格子床6に
は段差部19か形成され、この段差部19において散水
することにより、タリンカが効率良く冷却される。
According to the second invention, a stepped portion 19 is formed in the lattice bed 6 in the low temperature region 17, and by sprinkling water on this stepped portion 19, the tarinka is efficiently cooled.

第2図は段差部19イ]近の拡大断面図である。FIG. 2 is an enlarged cross-sectional view of the stepped portion 19a].

段差部19は、上段の格子床部分20と下段の格子床部
分21とを上下に延びるオ・h子22で連設して構成さ
れる。上段の格子床部分20は、固定位置に固定された
格子受梁23上に固定される内定格子24と、台車25
上に固定された格子受梁26上に固定された可動格子2
7とを、移送力向8に沿って交互に配置k、’r シて
構成される。なお台中25は駆動手段(図jJべせず)
によってか動され、それに応じて[11動格子27が美
行28で/J(ず方向に化1−リ移動する。また固定格
子24および可動格子27には、送風室7からの冷却空
気をクリンカ層12に流通さぜるための複数の孔29.
30かそれぞれ穿設されている。
The stepped portion 19 is constructed by connecting an upper lattice floor portion 20 and a lower lattice floor portion 21 with vertically extending vertically extending holes 22. The upper lattice floor portion 20 has an inner grid 24 fixed on a lattice support beam 23 fixed at a fixed position, and a trolley 25.
A movable grid 2 fixed on a grid support beam 26 fixed above.
7 are arranged alternately along the transfer force direction 8. In addition, Taichung 25 is the drive means (Figure jJ not shown)
Accordingly, the movable grating 27 moves in the direction of /J(z).Furthermore, the fixed grating 24 and the movable grating 27 are supplied with cooling air from the ventilation chamber 7. A plurality of holes 29 for flowing through the clinker layer 12.
There are 30 holes in each.

下段の格子床部分21は、」二段の格子床部分20.1
!;同様に、格子受梁・31に固定された1、!il定
格子32と、台車33土の格子受梁34に固定された回
軸格子35とが、移送方向8に沿って夕1互に配tMさ
れて成る。
The lower lattice floor portion 21 is a two-tier lattice floor portion 20.1.
! ;Similarly, 1 fixed to the lattice support beam 31,! The il rating elements 32 and the rotational gratings 35 fixed to the grating support beams 34 of the truck 33 are arranged alternately along the transfer direction 8.

」二段の格子床部分20において、4×送方向8に沿う
下流端には、下段の格子床部分21との間に空間36を
形成ずべく、搬送方向8に沿う下流側に張出した固定格
子37が設けられる。この固定格子37の搬送方向8に
沿うF、流側で隣接する格子を、空間36を比較的大と
するために図示のごとく固定格子24とした場合には、
両固定格子37,24け共冊の格子受梁:38に固定さ
れる。なお、搬送方間8に沿う下流側に張出した固定格
子37にも孔29か穿設されている。
” In the two-stage lattice floor portion 20, at the downstream end along the 4× feeding direction 8, there is a fixed portion extending downstream along the conveying direction 8 so as not to form a space 36 between the lower tier lattice floor portion 21 and the lower tier lattice floor portion 21. A grid 37 is provided. If the grid adjacent to the fixed grid 37 on the flow side F along the transport direction 8 is the fixed grid 24 as shown in the figure in order to make the space 36 relatively large, then
Both fixed grids 37 and 24 are fixed to the grid support beam: 38. Note that holes 29 are also formed in the fixed grid 37 extending downstream along the transport direction 8.

前記空間36には、ケーシング2の幅方向(第2図の組
曲に1lj)直な方向)に沿って間1i?、’:をあけ
て複数の噴霧ノズル:39が設りられる。これらの噴パ
ノズル39は、給水管40に共J1nに設けられており
、給水’i’i’ 40は給水源(図示セず)に接続さ
れる。
The space 36 has a space 1i? along the width direction of the casing 2 (direction perpendicular to the suite in FIG. 2). , ': A plurality of spray nozzles: 39 are provided with spaces between them. These spray pan nozzles 39 are provided at both J1n in a water supply pipe 40, and the water supply 'i'i' 40 is connected to a water supply source (not shown).

格子22は、下段の格子床部分21から」一方に延び、
固定格子37に沿って屈曲して固定格子37の移送力向
8に沿う下流端に当接する。この格子22は格子受梁3
8にドj定されており、送風室7がら空間36に向けて
冷却空気を噴出するだめの複数の・IM気几41が穿設
される。
The lattice 22 extends in one direction from the lower lattice floor portion 21,
It is bent along the fixed grid 37 and comes into contact with the downstream end of the fixed grid 37 along the transfer force direction 8 . This lattice 22 is the lattice support beam 3
8, and a plurality of IM air boxes 41 for blowing out cooling air from the ventilation chamber 7 toward the space 36 are bored.

このように(11¥成された冷却装置1では、段差部1
9において、1一段の格子床部分20から下段の格子1
4<部分2Jに落下するクリンカに向けて噴霧ノズル3
9から冷却水が噴霧される。しかも空間36には通気孔
41から冷却空気が噴出されているので\前記冷却水は
冷却空気と混合し、ミスト状となってクリンカに炊き付
けられる。−1ぞれによってクリンカが冷却されるが、
冷却水かミスト状となっているので、クリンカに向げて
冷却水が局部的に噴霧されることかなく、クリンカから
水ηXiがしたたり落ちることがない。このようにし゛
C1クリンカに到達した冷却水は完全に蒸発し、したか
つてクリンカが効率良く冷Jlされる。
In the cooling device 1 constructed in this way (11
At 9, from the 1st level grid floor portion 20 to the lower grid 1
4<Spray nozzle 3 toward the clinker falling in part 2J
Cooling water is sprayed from 9. Moreover, since cooling air is blown into the space 36 from the ventilation holes 41, the cooling water mixes with the cooling air, becomes a mist, and is cooked into the clinker. -1, the clinker is cooled by each
Since the cooling water is in the form of a mist, the cooling water is not locally sprayed toward the clinker, and the water ηXi does not drip from the clinker. In this way, the cooling water that has reached the C1 clinker is completely evaporated, and the previously cooled clinker is efficiently cooled.

また段差部19で落下するクリンカに向けて冷却水を噴
Di覆ることにより、」一段の4’i’r子床部分21
におけるクリンカJ・〜の最上部にあり高jlilj度
であったクリンカにも冷jJ水が”M 95されるよう
にろ゛る。
In addition, by spraying cooling water toward the clinker falling at the stepped portion 19, it is possible to
Cold water was also applied to the clinker which was at the top of the clinker J and was at a high temperature.

たとえ、高温度であったクリンカに1rj−接噴瓦され
なかったとしても、下段の格子床部分21ではクリンカ
が混合されることになるので、クリンカ間の熱伝導によ
って冷却水が完全に蒸発し、したがってクリンカが効率
良く冷却される。
Even if the high-temperature clinker is not in contact with the clinker, the clinker will be mixed in the lower lattice floor section 21, so the cooling water will not completely evaporate due to heat conduction between the clinkers. , so the clinker is efficiently cooled.

なお、通気孔41から噴出される冷却空気は、噴霧ノズ
ル39からの冷却水が格子22に沿ってしたたり落ちる
ことを防止する作用をも果す。
Note that the cooling air jetted out from the vent hole 41 also serves to prevent the cooling water from the spray nozzle 39 from dripping along the grid 22.

本発明の他の実施例としてケーシング2の幅方向に沿っ
てMi個設けられた噴霧ノズル39の各”it 霧水量
をケーシング2の幅方向のクリンカ冷却Lグに応じて水
fli調整バルブ(図ホせず)等を介してr、1.x 
g:%ずれば、クリンカが更に効率良く冷却される。
As another embodiment of the present invention, the mist water amount of each of Mi spray nozzles 39 provided along the width direction of the casing 2 is adjusted according to the clinker cooling Lg in the width direction of the casing 2 using a water adjustment valve (see Fig. r, 1.x via
g: If the difference is %, the clinker will be cooled more efficiently.

ここで、第3図を8照して従来の冷却装置との比較を行
なう。第3図における曲線は従来の冷却装置6のクリン
カ温度分布を示す。クリンカ1kg当り80gの水をす
■りすると、水の蒸発によってクリンカl kg から
約53 kcalの熱をτ5(うことかでき、タリンヵ
渇Jすを約255°Cだけ低下さぜることが可能である
。したがって、クリンカを約85°Cまで冷却するのに
従来では約38mを要した冷却装置において、本件冷却
装置によればミスト冷却によって破線で示すように約1
/3だり長さを短編することが可能となる。さらに風量
の原単位は第1表で示すように減少する。
Here, a comparison with a conventional cooling device will be made with reference to FIG. The curve in FIG. 3 shows the clinker temperature distribution of the conventional cooling device 6. If 80 g of water is sipped per 1 kg of clinker, the evaporation of the water will remove approximately 53 kcal of heat from 1 kg of clinker, reducing the temperature of the clinker by approximately 255°C. Therefore, in a conventional cooling system that required approximately 38 m to cool clinker to approximately 85°C, the present cooling system uses mist cooling to cool clinker to approximately 85°C, as shown by the broken line.
/3 or the length can be shortened. Furthermore, the air volume per unit decreases as shown in Table 1.

第   1   表 第4図は本発明の他の実施例の段差部19付近の拡大断
面図であり、第1図、および第2に4の実施例に対1i
i;:する部分には同一の参1!it ’t:’Jをイ
・」ず。この実施例では」一段の格子床部分2()にお
いて、段;;′一部19伺近の可動格子27には、移送
方向8に沿う下流側の端部で−[−力に隆起した突部4
2が形成される。その他の(1−r成については、第1
L−4およびug 2 Iffの実施例と同様である。
Table 1. FIG. 4 is an enlarged sectional view of the vicinity of the stepped portion 19 of another embodiment of the present invention.
i;: Same reference 1 for the part that does! it't: 'J o i'zu. In this embodiment, in the one-stage grid floor portion 2 (), the movable grid 27 near the stage 19 has a raised protrusion at the downstream end along the transport direction 8. Part 4
2 is formed. For other (1-r configurations, the first
Similar to the L-4 and ug2Iff examples.

なお、上段の格子床部分20の上流側において前記下流
側の端部で上方に隆起した突部42を0111えた可動
格子をさらにidk設げても良い。
Note that on the upstream side of the upper lattice floor portion 20, a movable lattice having an upwardly raised protrusion 42 at the downstream end may be further provided.

この実施例によれば、可動格子27の突部42によって
、クリンカ層12の上部と下t16とが反転、混合され
る。そのため段差部19でタリン力が落下する際に、比
較的高温度のタリンカに、ミスト状の冷却水が噴霧され
るようになり、冷却効率がさらに向上する。
According to this embodiment, the upper part and the lower part t16 of the clinker layer 12 are reversed and mixed by the protrusion 42 of the movable lattice 27. Therefore, when the talin force falls at the stepped portion 19, mist-like cooling water is sprayed onto the relatively high-temperature talin, and the cooling efficiency is further improved.

n:I述の各実施例では、下段の格子床部分21にお(
)る移送方向8に沿う上流端を固定格子32としている
。そのため、空間36の下方に堆積したタリンカが静止
状態となり、この堆積した部分に噴霧された冷却水が充
分に蒸発せずに固定格子32から下方にしたたり落ちる
おそれがある。そこで、第5図に示すように、下段の格
子床部分21の搬送方向8に沿う上流端の格子を可動格
子35としてもよい。そうずれば、空間36の下方でタ
リンカが静止することがなくなるので、冷却水がしたた
り落ちることが防止される。
n: In each of the embodiments described above, (
) The upstream end along the transfer direction 8 is a fixed grid 32. Therefore, the tarinka deposited below the space 36 becomes stationary, and there is a risk that the cooling water sprayed on the deposited portion may not evaporate sufficiently and may drip downward from the fixed grid 32. Therefore, as shown in FIG. 5, the movable grating 35 may be used as the grating at the upstream end along the conveyance direction 8 of the lower grating floor portion 21. If this is done, the tarinka will no longer be stationary below the space 36, and the cooling water will be prevented from dripping.

なお、本発明はタリン力の冷却装置だけでなく、粉粒体
の冷却装置i¥とじて広〈実施されうる。
Note that the present invention can be widely implemented not only as a cooling device for Tallinn force but also as a cooling device for powder and granular materials.

上述のごとく不発11Jによれば、冷却水を段差部で落
下する粉粒体に向けて噴霧するので、粉粒体を効率良く
冷却することができ、しかも冷却水の格子床からの滴下
が防止される。また水の蒸発潜熱を利用するので、本件
冷却装置の小形化が可能であるとともに、冷却風垣原単
位が減少し、冷却ファンの消費動力が低減される。また
冷却装置からの排出空気量が半減するので、排出空気用
除νに装置が小型化し、排出空気用ファンの消費動力も
低減する。さらに、粉粒体に均一に水を噴霧することが
できるので、粉粒体中に水が残存することを防止するこ
とができ、品質が向上する。
As mentioned above, according to Misfire 11J, since the cooling water is sprayed toward the powder and granules falling at the step, the powder and granules can be efficiently cooled, and furthermore, the cooling water is prevented from dripping from the grid floor. be done. Furthermore, since the latent heat of evaporation of water is utilized, the cooling device of the present invention can be downsized, the cooling wind wall unit consumption is reduced, and the power consumption of the cooling fan is reduced. Furthermore, since the amount of air discharged from the cooling device is halved, the device becomes smaller compared to the exhaust air fan, and the power consumption of the exhaust air fan is also reduced. Furthermore, since water can be uniformly sprayed onto the powder or granule, it is possible to prevent water from remaining in the powder or granule, resulting in improved quality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実Wi例の簡11塔化した縦111
i面図、第2図は段差部19(J近の拡大IQ−i而図
、面図図は本件冷却装置jTが従来よりも小形化される
ことを説明するためのグラフ、第4図は本発明の他の実
施例の段差部19付近の拡大断面N1第5図は本発明の
さらに他の実施例の段差部19 (Qj近の拡大1Il
i面図である。 8・・・移送方向、14・・・仕切壁、15・・・高温
度領域、17・・・低湿度領域、19・・・段差部、2
0・・・上段の格子床部分、21・・・下段の格子床部
分、22・・・格子、24 、 :32 、37・・・
固定格子、27,35・・・可動格子、36・・・空間
、39・・・噴%ノズル、41・・・通気孔、42・・
・突部 代理人   弁理士 西教圭一部 〔
Figure 1 shows a vertical 111 which is a simple 11-tower version of an example of the present invention.
The i-side view, FIG. 2 is an enlarged IQ-i view of the stepped portion 19 (J), the top view is a graph to explain that the cooling device jT is smaller than the conventional one, and FIG. FIG. 5 shows an enlarged cross section N1 near the stepped portion 19 of another embodiment of the present invention.
It is an i-side view. 8... Transfer direction, 14... Partition wall, 15... High temperature area, 17... Low humidity area, 19... Step portion, 2
0... Upper lattice floor part, 21... Lower lattice floor part, 22... Lattice, 24, :32, 37...
Fixed grid, 27, 35... Movable grid, 36... Space, 39... Spray percentage nozzle, 41... Ventilation hole, 42...
・Tsube's agent Patent attorney Kei Nishi

Claims (3)

【特許請求の範囲】[Claims] (1)移送方向に往復動しかつ幅方向に複数列設けられ
たiJ動格子と、前記幅方向に複数列設けられた固定格
子とが、前記移送方向に沿って交互に配置nされて格子
床をイ1稈成し、その格子床の下方から冷却空気を−に
方に流通させて格子床」−の粉粒体を冷JJするように
するとともに、粉粒体との熱交換によって比較的高温度
となった冷ノJ蛛を回収すべく前記格子床の」一方空間
が仕切壁で仕切られた粉粒体の冷ノ3+装置へにおいて
、 前記比較的高温度の冷却空気を回収する領域よりも移送
方向下流側において、前記格子床の途中には上下に段差
を成す段差部が形成され、上段の格子床部分のi′Ji
J記移送方向下流端には、下段の格子床部分とのI++
」に空間を形成すべく移送方向下流側に張出した固定格
子が配置され、前記空間には冷却水の噴霧ノズルか設け
られることを特徴とする粉粒体の冷却装置。
(1) IJ movable gratings that reciprocate in the transfer direction and are provided in multiple rows in the width direction and fixed gratings that are provided in multiple rows in the width direction are alternately arranged along the transfer direction. The bed is formed into a culm, and cooling air is circulated in the direction from below the lattice bed to cool the powder and granules on the lattice bed, and the comparison is made by heat exchange with the granules. In order to collect the cold air that has reached a high temperature, the cooling air at a relatively high temperature is collected in a granular cold air 3+ device in which one side of the lattice floor is partitioned by a partition wall. On the downstream side of the region in the transport direction, a stepped portion is formed in the middle of the grid bed, and the i′Ji of the upper grid bed portion is
At the downstream end in the transfer direction of J, there is an I++ connection with the lower lattice floor part.
A cooling device for powder or granular material, characterized in that a fixed grid extending downstream in the transport direction is arranged to form a space, and a cooling water spray nozzle is provided in the space.
(2)前記段差部付近において、上段の格子床部分にお
ける可動格子には、移送方向下流側において上方に随起
した突部が形成されることを特徴とする特許81’j求
の範囲第1項記載の粉粒体の冷却装置i(i。
(2) In the vicinity of the stepped portion, the movable grating in the upper grating floor portion is formed with a protrusion that rises upward on the downstream side in the transfer direction. Cooling device for powder and granular material i (i.
(3)前記上段の格子床部分と下段の414子床部分と
を連設する格子には、前記空間に向けて冷却空気を噴/
Jjするだめの通気孔が穿設されることを特徴とする特
許i〃求の範囲第1項または第2項記載の粉粒体の冷却
装置。
(3) The lattice that connects the upper lattice floor portion and the lower 414 child floor portion is provided with cooling air that is injected into the space.
A cooling device for powder or granular material as set forth in claim 1 or 2 of the scope of Patent I, characterized in that a ventilation hole is provided.
JP14300382A 1982-08-17 1982-08-17 Cooling device of particulate material Pending JPS5932788A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14300382A JPS5932788A (en) 1982-08-17 1982-08-17 Cooling device of particulate material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14300382A JPS5932788A (en) 1982-08-17 1982-08-17 Cooling device of particulate material

Publications (1)

Publication Number Publication Date
JPS5932788A true JPS5932788A (en) 1984-02-22

Family

ID=15328684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14300382A Pending JPS5932788A (en) 1982-08-17 1982-08-17 Cooling device of particulate material

Country Status (1)

Country Link
JP (1) JPS5932788A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62272272A (en) * 1986-05-21 1987-11-26 Dainippon Ink & Chem Inc Electrophotographic sensitive body
US5104758A (en) * 1989-05-16 1992-04-14 Fuji Xerox Co, Ltd. Electrophotographic photoreceptor comprising a squarylium compound and selenium or a selenium alloy
US5338632A (en) * 1989-10-02 1994-08-16 Canon Kabushiki Kaisha Electrophotographic photosensitive member and electrophotographic device using the same
CN104359330A (en) * 2014-10-29 2015-02-18 哈尔滨理工大学 Multistage stepped type air water united differential fluidized bed cooler
CN107521073A (en) * 2017-09-28 2017-12-29 广州科苑新型材料有限公司 Plastic extruder cooling body and extrusion device
CN111868066A (en) * 2018-03-27 2020-10-30 日本化学工业株式会社 Silylphosphine compound, method for producing silylphosphine compound, and method for producing InP quantum dot

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62272272A (en) * 1986-05-21 1987-11-26 Dainippon Ink & Chem Inc Electrophotographic sensitive body
JPH0466507B2 (en) * 1986-05-21 1992-10-23 Dainippon Ink & Chemicals
US5104758A (en) * 1989-05-16 1992-04-14 Fuji Xerox Co, Ltd. Electrophotographic photoreceptor comprising a squarylium compound and selenium or a selenium alloy
US5338632A (en) * 1989-10-02 1994-08-16 Canon Kabushiki Kaisha Electrophotographic photosensitive member and electrophotographic device using the same
CN104359330A (en) * 2014-10-29 2015-02-18 哈尔滨理工大学 Multistage stepped type air water united differential fluidized bed cooler
CN107521073A (en) * 2017-09-28 2017-12-29 广州科苑新型材料有限公司 Plastic extruder cooling body and extrusion device
CN111868066A (en) * 2018-03-27 2020-10-30 日本化学工业株式会社 Silylphosphine compound, method for producing silylphosphine compound, and method for producing InP quantum dot
CN111868066B (en) * 2018-03-27 2024-03-22 日本化学工业株式会社 Silylphosphine compound, method for producing silylphosphine compound, and method for producing InP quantum dot

Similar Documents

Publication Publication Date Title
US3290025A (en) Trough system for evaporative heat exchangers
US5283959A (en) System for drying moist sludge
CN103900396B (en) Reduce white cigarette generating means and utilize its used heat and use water recovery method
US20160169510A1 (en) Method and system for reheating flue gas using waste heat to maintain dry chimney stack operation
JPS5932788A (en) Cooling device of particulate material
WO2011162344A1 (en) Fuel treatment system, method for utilization of exhaust gas, and apparatus for utilization of exhaust gas
JP2019090547A (en) Air-conditioning system of clean room
KR102384141B1 (en) Drying method and drying system using horizontal rotary dryer
JPS6130158Y2 (en)
KR101270872B1 (en) Waste heat and water collecting method using reducing white smoke
US1966802A (en) Air and water cooling apparatus
JP7224996B2 (en) clean room air conditioning system
JPS5932789A (en) Cooling device of particulate material
JPH0838845A (en) Inlet cover with small pressure drop in wet-type scrubber
CN206555998U (en) A kind of desulfuration boiler
JP2017119587A (en) Extraction device and extraction method
KR200421548Y1 (en) Apparatus For Removing White Plume Using Ceramic Regenerator
KR102350169B1 (en) Hybrid multi cooling tower for preventing plume
KR101279653B1 (en) Apparatus for removing white plume of underground air ventilation duct
KR101357243B1 (en) Hybrid cooling tower
KR102099063B1 (en) White smoke removal device of cooling tower using Heated air transfer with air guide unit
KR100752331B1 (en) Apparatus for removing white plume using ceramic regenerator
JPH0429244Y2 (en)
KR102350168B1 (en) Energt saving type hybrid cooling tower
KR200315236Y1 (en) Hybrid cooling tower