JPH0477597A - Pitch and production of carbon fiber using the same pitch - Google Patents

Pitch and production of carbon fiber using the same pitch

Info

Publication number
JPH0477597A
JPH0477597A JP18615890A JP18615890A JPH0477597A JP H0477597 A JPH0477597 A JP H0477597A JP 18615890 A JP18615890 A JP 18615890A JP 18615890 A JP18615890 A JP 18615890A JP H0477597 A JPH0477597 A JP H0477597A
Authority
JP
Japan
Prior art keywords
pitch
carbon fiber
weight
subjected
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18615890A
Other languages
Japanese (ja)
Inventor
Tadanori Sawada
貞憲 澤田
Masakatsu Ota
大田 正勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP18615890A priority Critical patent/JPH0477597A/en
Publication of JPH0477597A publication Critical patent/JPH0477597A/en
Pending legal-status Critical Current

Links

Landscapes

  • Working-Up Tar And Pitch (AREA)
  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To obtain a new pitch capable of providing a carbon fiber having specific properties, suitable as a raw material for airplane component, sport goods, etc., and having excellent high-strength, etc., by adding optical anisotropic phase to pitch at a specific amount. CONSTITUTION:Heavy oil [preferably having >=350 deg.C initial distillation point and <=2wt.% hetero element content e.g. S or O] such as petroleum-based heavy oil is heat-treated and a heat decomposed material is removed to provide the objective pitch containing >=90% (preferably >=95%) optical anisotropic phase, being <=20% in weight decrease at 800 deg.C by thermobalance, having exothermic peak existing between 250 deg.C and 520 deg.C by differential thermal analysis, but never existing in temperature region exceeding 520 deg.C. Furthermore, the resultant pitch 1 is subjected to melt spinning, preferably at <=360 deg.C, and subjected to infusibilization treatment, preferably in 0.5-15vol.% nitrogen dioxide and further subjected to carbonization treatment under an inert atmosphere to provide the carbon fiber.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、新規なピッチ及びそれを用いた炭素繊維の製
造方法に関するものであり、より詳しくはハンドリング
性を低下させることなく、450kg / mm 2以
上の引張強度を有する炭素繊維を与えうるピッチ、及び
このものを用いて前記高性能炭素繊維を製造する方法に
関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a new pitch and a method for manufacturing carbon fiber using the same, and more specifically, it relates to a new pitch and a method for manufacturing carbon fiber using the same. The present invention relates to a pitch capable of producing carbon fibers having a tensile strength of 2 or more, and a method for producing the high-performance carbon fibers using this pitch.

〔従来の技術及び発明か解決しようとする課題〕炭素繊
維は、高強度及び高弾性率を有し、かつ軽量であるなと
、優れた特徴を有することから、例えは航空機部品、自
動車部品、スポーツ用具なとの種々の分野における素材
や樹脂補強材などとして、近年、著しく需要か伸びてい
る。
[Prior art and problems to be solved by the invention] Carbon fiber has excellent characteristics such as high strength, high modulus of elasticity, and light weight, so it is used for example in aircraft parts, automobile parts, In recent years, demand has increased significantly for use as a material and resin reinforcing material in various fields such as sports equipment.

この炭素繊維は、PAN系炭素繊維とピッチ系炭素繊維
とに大別することかできる。
This carbon fiber can be roughly classified into PAN-based carbon fiber and pitch-based carbon fiber.

前者のPAN系炭素繊維は、ポリアクリロニトリルを原
料とするものであり、通常、高強度及び中程度の弾性率
を有しているか、製造コストが高くつくのを免れないと
いう欠点を有している。
The former PAN-based carbon fiber is made from polyacrylonitrile and usually has high strength and medium elastic modulus, or has the disadvantage of high manufacturing cost. .

一方、後者のピッチ系炭素繊維は、原料として炭素質ピ
ッチを用いるため、製造コストか低く、経済的に存利で
あるものの、PAN系炭素繊維に比べて引張強度などが
低いという欠点かあった。
On the other hand, the latter pitch-based carbon fiber uses carbonaceous pitch as a raw material, so its production cost is low and it is economically viable, but it has the disadvantage of lower tensile strength compared to PAN-based carbon fiber. .

ところで、近年の技術の改良により、ピッチ系炭素繊維
も引張強度か350 kg/mm2に達するものも現わ
れている。しかしなから、PAN系炭素繊維と競合する
ためには、さらに引張強度の高いピッチ系炭素繊維が求
められている。
By the way, due to recent improvements in technology, some pitch-based carbon fibers have appeared that have a tensile strength of up to 350 kg/mm2. However, in order to compete with PAN-based carbon fibers, pitch-based carbon fibers with even higher tensile strength are required.

そのような技術の1つとして、異形ノズルを用いて紡糸
する方法が提案されている(特開昭61−47826号
公報、同61−113828号公報)。
As one such technique, a method of spinning using a irregularly shaped nozzle has been proposed (Japanese Unexamined Patent Publication Nos. 61-47826 and 61-113828).

この方法によれば、引張強度が450 kg/mm2以
上のピッチ系炭素繊維が得られるものの、得られる炭素
繊維も異形になるため、巻き取りなとのハンドリング性
は極めて悪い。また、紡糸性もやや劣り、不融化条件の
設定も難しくなるなどの問題がある。
According to this method, pitch-based carbon fibers having a tensile strength of 450 kg/mm2 or more can be obtained, but the resulting carbon fibers also have irregular shapes, so that the handling properties during winding are extremely poor. Further, there are problems such as the spinnability is somewhat poor and it becomes difficult to set the infusibility conditions.

〔課題を解決するための手段〕[Means to solve the problem]

そこで、本発明者らは、このような従来の問題を解決す
べく鋭意研究を進めた結果、特定の性状を有する新規な
ピッチを見い出し、このピッチを用いて炭素繊維を製造
したところ、断面形状か真円を保ちなから、引張強度か
450 kg/mm2以上のピッチ系炭素繊維が得られ
ることを見い出し、二の知見に基ついて、本発明を完成
するに至った。
Therefore, as a result of intensive research to solve these conventional problems, the present inventors discovered a new pitch with specific properties. When carbon fiber was manufactured using this pitch, the cross-sectional shape It was discovered that a pitch-based carbon fiber having a tensile strength of 450 kg/mm2 or more can be obtained without maintaining a perfect circle, and based on the second finding, the present invention was completed.

すなわち、本発明は、光学的異方性相の含有量か90重
量%以上であり、かつ熱天秤(TG)による800℃の
温度における重量減少か20重量%以下であるとともに
、示差熱分析(DTA)による発熱ピークが250〜5
20℃の間にあり、520℃を超える温度領域には存在
しないことを特徴とするピッチを提供すると共に、この
ピッチを、溶融紡糸した後、不融化処理および炭化処理
を施すことを特徴とする炭素繊維の製造方法をも併せて
提供するものである。
That is, the present invention is characterized in that the content of the optically anisotropic phase is 90% by weight or more, the weight loss at a temperature of 800°C measured by thermobalance (TG) is 20% by weight or less, and differential thermal analysis ( DTA) exothermic peak is 250-5
Provided is a pitch that is between 20°C and does not exist in a temperature range exceeding 520°C, and is characterized by subjecting this pitch to infusibility treatment and carbonization treatment after melt spinning. A method for manufacturing carbon fiber is also provided.

本発明のピッチは前記した如く、光学的異方性相(メソ
相)を90重量%以上、好ましくは95重量%以上含む
メソフェーズピッチである。ここてメソ相か90重量%
未満のものであると、得られる炭素繊維の強度か低下す
るため、好ましくない。
As described above, the pitch of the present invention is a mesophase pitch containing 90% by weight or more, preferably 95% by weight or more of an optically anisotropic phase (mesophase). Here, the meso phase is 90% by weight.
If it is less than that, the strength of the obtained carbon fiber will decrease, which is not preferable.

また、本発明のピッチは前記した如く、熱天秤(TO)
による、800℃の温度における重量減少(不活性ガス
雰囲気下)か20重量%以下、より好ましくは19重量
%以下のものであるとともに、示差熱分析(DTA)に
よる発熱ピーク(不活性ガス雰囲気下)が250〜52
0’Cの間にあって、520℃を超える温度領域には存
在しないものである。
Furthermore, as mentioned above, the pitch of the present invention is determined by thermobalance (TO).
The weight loss at a temperature of 800°C (under an inert gas atmosphere) according to ) is 250-52
It exists between 0'C and does not exist in a temperature range exceeding 520C.

ここで熱天秤による800”Cの温度における重量減少
が20重量%を超えたものであると炭素繊維の強度が低
下する。
Here, if the weight loss at a temperature of 800''C on a thermobalance exceeds 20% by weight, the strength of the carbon fiber will decrease.

また、示差熱分析による発熱ピークが520″Cを超え
る温度領域に存在すると、得られる炭素繊維の強度が低
下するため、好ましくない。
Furthermore, if the exothermic peak determined by differential thermal analysis exists in a temperature range exceeding 520''C, the strength of the obtained carbon fiber will decrease, which is not preferable.

さらに本発明のピッチは、好ましくは以下に示す性状を
有するものである。すなわち、キノリンネ溶分が5〜5
0重量%、より好ましくは15〜40重量%であり、軟
化点が250〜380″C1より好ましくは265〜3
40”Cである。ここてキノリンネ溶分が5重量%未満
のものでは炭素繊維の強度が低下し、一方、50重量を
超えるものでは紡糸性か低下する。また、軟化点か25
0℃未満のものであると、炭素繊維の強度が低下し、一
方、380℃を超えたものであると紡糸性か低下する。
Furthermore, the pitch of the present invention preferably has the properties shown below. That is, the quinoline solubility is 5 to 5
0% by weight, more preferably 15-40% by weight, and a softening point of 250-380''C1, more preferably 265-3
40"C. If the quinolinated content is less than 5% by weight, the strength of the carbon fiber will decrease, while if it exceeds 50% by weight, the spinnability will decrease.
If the temperature is less than 0°C, the strength of the carbon fiber will decrease, while if it exceeds 380°C, the spinnability will decrease.

なお、メソ相である光学的異方性相は、その含有量を偏
光顕微鏡直交ニコル下で観察し、写真撮影して、光学的
異方性相又は光学的等方性相の占める割合から求めるこ
とができる。
In addition, the content of the optically anisotropic phase, which is a mesophase, is determined by observing the content under a polarizing microscope under crossed Nicols, taking a photograph, and determining the proportion occupied by the optically anisotropic phase or the optically isotropic phase. be able to.

上記のような特性を有する本発明のピッチは、例えば、
次のような方法により製造することかできる。
The pitch of the present invention having the above characteristics is, for example,
It can be manufactured by the following method.

まず、ピッチの原料となる重質油としては、石油系9石
炭系いずれの重質油も用いることかできるが、石炭系の
場合には公知条件により水素化を行なったものを用いる
必要かある。ピッチの原料となる重質油としては、この
他に、炭素繊維の強度低下の原因となるメソ相やキノリ
ンネ溶分を含有せず、さらに触媒なとの灰分を実質的に
含有せず、また、加熱処理での熱分解物除去を容易にす
るため、初留点300℃以上、好ましくは350℃以上
のものであって、しかも硫黄、窒素、酸素なとのへテロ
元素の含有量が5重量%以下、好ましくは2重量%以下
のものを用いる必要かある。
First, as the heavy oil that is the raw material for pitch, any of the petroleum and nine coal-based heavy oils can be used, but in the case of coal-based heavy oil, it is necessary to use one that has been hydrogenated under known conditions. . In addition to this, the heavy oil that is used as a raw material for pitch does not contain mesophase or quinoline-soluble components that cause a decrease in the strength of carbon fibers, and it also does not substantially contain catalyst ash. In order to facilitate the removal of thermal decomposition products during heat treatment, the initial boiling point is 300°C or higher, preferably 350°C or higher, and the content of hetero elements such as sulfur, nitrogen, and oxygen is 5. It is necessary to use less than 2% by weight, preferably less than 2% by weight.

次に、このような原料重質油に加熱処理を行なつ。Next, such raw material heavy oil is subjected to heat treatment.

加熱処理は、熱分解物の除去を効率的に行なうために、
2段階の減圧熱処理を行なうことか好ましい。
Heat treatment is used to efficiently remove thermal decomposition products.
It is preferable to perform a two-stage reduced pressure heat treatment.

まず第一段目は温度360〜450℃1圧力1〜20 
torrO熱処理条件で0.5〜5時間重質化処理を行
なう。ここで得られるピッチは全面等方性のものであっ
て、しかもトルエン不溶分(TI)か5〜30重量%、
キノリンネ溶分(QI)か、0〜5重量%のものである
First stage is temperature 360~450℃ 1 pressure 1~20℃
Heavy-duty treatment is performed for 0.5 to 5 hours under torrO heat treatment conditions. The pitch obtained here is isotropic on the entire surface, and has a toluene insoluble content (TI) of 5 to 30% by weight.
The quinoline soluble content (QI) is 0 to 5% by weight.

次に、第二段目は温度450〜550℃1圧力0.1〜
20 torrO熱処理条件で行なう。なお、この二段
目の熱処理における反応後期に、不活性ガス吹込みを併
用すると、熱分解物を効率的に除去てき好ましい。この
二段目の熱処理により、メソフェーズ含量か90重量%
以上のメソフェースピッチを得ることかできる。こ二で
メソフェーズ含量か90重量%未満であると、繊維とし
たときに等方性相か混入するため、引張り強度や結節強
さか充分なものが得られず、本発明の目的か充分に達せ
られない。
Next, the second stage is a temperature of 450 to 550℃, a pressure of 0.1 to
The heat treatment is performed under 20 torrO heat treatment conditions. In addition, it is preferable to use inert gas blowing together in the latter stage of the reaction in this second stage heat treatment, since thermal decomposition products can be efficiently removed. This second heat treatment reduces the mesophase content to 90% by weight.
It is possible to obtain mesoface pitches above. If the mesophase content is less than 90% by weight, the isotropic phase will be mixed in when it is made into fibers, making it impossible to obtain sufficient tensile strength and knot strength, making it impossible to fully achieve the purpose of the present invention. I can't.

このようにして、前記した性状を有する本発明のピッチ
(メソフェーズピッチ)を得ることかできる。なお、熱
天秤分析(TGA)、示差熱分析(DTA)における測
定値は、窒素やアルゴンなどの不活性ガス雰囲気下、l
O℃/分の昇温速度で、常温から800℃まて昇温して
求めた値である。
In this way, the pitch of the present invention (mesophase pitch) having the properties described above can be obtained. Note that the measured values in thermal balance analysis (TGA) and differential thermal analysis (DTA) are measured under an inert gas atmosphere such as nitrogen or argon.
This value was obtained by raising the temperature from room temperature to 800°C at a heating rate of 0°C/min.

二のような本発明のピッチは、高温下て揮散成分か少な
いため、高温下で安定である。しかもメソフェーズ含有
量が高いため、ピッチの均質性と配向特性かよく、得ら
れる炭素繊維は、高温度で焼成することにより、高い引
張強度を発現することか可能である。また、軽質分は少
ないか、キノリンネ溶分も少ないので、流動性がよく、
紡糸性か良好である。
The pitch of the present invention, such as No. 2, has few volatile components at high temperatures and is therefore stable at high temperatures. Furthermore, since the mesophase content is high, the pitch homogeneity and orientation properties are good, and the resulting carbon fibers can exhibit high tensile strength by firing at high temperatures. In addition, there is little light content or quinolinated content, so it has good fluidity.
Good spinnability.

次に、このようにして得られるピッチを、溶融紡糸した
後、不融化処理および炭化処理を施すことにより、目的
とする炭素繊維を製造することができる。
Next, the pitch obtained in this manner is melt-spun and then subjected to infusibility treatment and carbonization treatment, thereby producing the desired carbon fiber.

ここで溶融紡糸の方法は、公知の方法でよく、特に制限
されないが、紡糸温度は400’C以下とするのか好ま
しく、より好ましくは360″C以下とする。ここで紡
糸温度が400″Cを超えると、紡糸性が低下する。
Here, the melt spinning method may be a known method and is not particularly limited, but the spinning temperature is preferably 400'C or less, more preferably 360'C or less.Here, the spinning temperature is 400'C or less. If it exceeds this, spinnability will decrease.

通常は、直径0.1〜0.5肛のノズルを用いて溶融紡
糸することにより、ピッチ繊維を作成する。
Usually, pitch fibers are created by melt spinning using a nozzle with a diameter of 0.1 to 0.5 mm.

次に、上記のようにして作成されたピッチ繊維に、不融
化処理が施される。不融化処理は、空気中で行なっても
よいか、特に二酸化窒素を0.1〜30容量%、好まし
くは0.5〜15容量%の割合で含有する空気を用いて
行なうことが、引張強度の高い炭素繊維が得られる点が
ら好ましい。なお、この不融化処理は、150〜400
″C1好ましくは180〜320℃の温度範囲において
、10〜600分間程度行なえばよい。
Next, the pitch fibers created as described above are subjected to an infusible treatment. The infusibility treatment may be carried out in air, or in particular may be carried out using air containing nitrogen dioxide in a proportion of 0.1 to 30% by volume, preferably 0.5 to 15% by volume. This is preferable because carbon fibers with high carbon fibers can be obtained. In addition, this infusibility treatment is performed at a temperature of 150 to 400
``C1'' Preferably, the temperature range is from 180 to 320°C for about 10 to 600 minutes.

さらに、このようにして不融化処理された繊維に、炭化
処理が施されるか、必要に応じて窒素やアルゴンなとの
不活性ガス雰囲気下、350〜800℃の範囲の温度に
おいて、予備炭化処理を行なってもよい。
Furthermore, the fibers thus infusible are subjected to a carbonization treatment, or if necessary, are pre-carbonized at a temperature in the range of 350 to 800°C under an inert gas atmosphere such as nitrogen or argon. Processing may be performed.

炭化処理においては、前記の不融化処理繊維又は必要に
応じて予備炭化処理された繊維を、窒素やアルゴンなと
の不活性ガス雰囲気下、1000〜3000℃の範囲の
温度において、焼成する。
In the carbonization treatment, the infusible fibers or the fibers that have been pre-carbonized if necessary are fired at a temperature in the range of 1000 to 3000° C. in an atmosphere of an inert gas such as nitrogen or argon.

このようにして450kg/Iu12以上という高い引
張強度を有する炭素繊維を効率的に得ることができる。
In this way, carbon fibers having a high tensile strength of 450 kg/Iu12 or more can be efficiently obtained.

なお、本発明において、炭素繊維の引張強度が著しく向
上したのは、次の原因によるものと推定される。
In addition, in the present invention, the reason why the tensile strength of carbon fibers was significantly improved is presumed to be due to the following cause.

すなわち本発明のピッチにおいて、熱天秤による800
℃の温度における重量減少が20重量94以下と少ない
ことは、炭素繊維の製造時における炭化処理工程での重
量減少か少ないことを意味している。従って、炭化処理
工程で生ずるボイド量か、従来に比へ減少するため、炭
素繊維の強度か向上するものと考えられる。
That is, in the pitch of the present invention, 800
The fact that the weight loss at a temperature of 20.degree. C. or less is less than 20.degree. C. means that the weight loss during the carbonization process during the production of carbon fibers is small. Therefore, it is thought that the strength of the carbon fiber is improved because the amount of voids generated in the carbonization process is reduced compared to the conventional method.

また、本発明のピッチは示差熱分析による発熱ピークか
520℃を超える温度領域には存在していない。520
℃を超える温度領域で生ずる発熱ピークも250〜52
0℃の間での発熱ピークも共にピッチの熱分解に起因す
るものと考えられるか、520℃を超える温度領域て発
熱ピークを持つピッチは、これを持たないピッチに比へ
て、高温まで熱分解か起こっており、従って熱分解物も
多量に生ずるために、炭素繊維の強度か低下するものと
推定される。
Moreover, the pitch of the present invention does not exist in the temperature range exceeding 520° C., which is the exothermic peak determined by differential thermal analysis. 520
The exothermic peak that occurs in the temperature range exceeding ℃ is also 250 to 52℃.
It is possible that both the exothermic peak between 0℃ and 0℃ are due to thermal decomposition of the pitch, or pitches that have exothermic peaks in the temperature range above 520℃ are more likely to heat up to high temperatures than pitches that do not have this peak. It is presumed that the strength of the carbon fiber decreases because decomposition occurs and a large amount of thermal decomposition products are produced.

〔実施例〕〔Example〕

次に、本発明を実施例により詳しく説明する。 Next, the present invention will be explained in detail with reference to examples.

実施例1 (1)メソフェーズピッチの製造 原料の石油系重質油として、減圧軽油を接慰分解して得
た生成油の残渣油をさらに減圧蒸留し、軽質油分90%
をカットして得た残渣油2000gを、温度400℃1
圧力5 Torrて、60分間重質化処理を行ない、キ
ノリンネ溶分09(f+、ト);エン不溶分12.0重
量%、軟化点(高化式フローテスター法)202℃の等
方性ピッチ948gを得た。
Example 1 (1) As a petroleum-based heavy oil used as a raw material for producing mesophase pitch, the residual oil obtained by conjugated cracking of vacuum gas oil was further distilled under reduced pressure to obtain a light oil content of 90%.
2000g of the residual oil obtained by cutting the
A weighting treatment was performed for 60 minutes at a pressure of 5 Torr, and an isotropic pitch with a quinoline soluble content of 09 (f+, t); an ene insoluble content of 12.0% by weight, and a softening point (Koka flow tester method) of 202°C. 948g was obtained.

この等方性ピッチ20gを、460℃,I Tarrの
条件で6分間、次いて460℃、窒素ガス流通下で2分
間メソ化処理を行ない、キノリンネ溶分30.8重量%
、軟化点328℃,メソ相100%であるメソフェーズ
ピッチ9.8gを得た。
20 g of this isotropic pitch was meso-ized at 460°C and I Tarr for 6 minutes, then at 460°C and under nitrogen gas flow for 2 minutes, resulting in a quinoline solution of 30.8% by weight.
, 9.8 g of mesophase pitch having a softening point of 328° C. and 100% mesophase was obtained.

得られたピッチの熱天秤分析(TGA)結果および示差
熱分析(DTA)結果を第1図に示す。
The results of thermal balance analysis (TGA) and differential thermal analysis (DTA) of the obtained pitch are shown in FIG.

第1図によれは、熱天秤による800’Cての重量減少
は18.6重量%てあり、かつ示差熱分析による発熱ピ
ークか520℃を超える温度領域には存在しないことか
判る。なお、この測定は昇温速度10℃/分、窒素通気
量500m11分、試料重量4.51■、基準物質アル
ミナ11.220mgの条件で行なった。
From FIG. 1, it can be seen that the weight loss at 800°C measured by thermobalance was 18.6% by weight, and that no exothermic peak was found in the temperature range exceeding 520°C as determined by differential thermal analysis. This measurement was carried out under the conditions of a temperature increase rate of 10° C./min, a nitrogen aeration rate of 500 ml for 11 minutes, a sample weight of 4.51 cm, and a reference material of alumina of 11.220 mg.

(2)炭素繊維の製造 このようにして得られたメソフェーズピッチを紡糸温度
348℃にて、口金の直径か0.2闘φ。
(2) Manufacture of carbon fiber The mesophase pitch thus obtained was spun at a temperature of 348°C to a spinneret diameter of 0.2 mm.

L/D =3.5のノズルを用いて溶融紡糸して、糸径
11.8μmのピッチ糸を得た。
Melt spinning was performed using a nozzle with L/D = 3.5 to obtain a pitch yarn with a yarn diameter of 11.8 μm.

次に、このピッチ糸を二酸化窒素を2.5容量%含有す
る空気を用い、220℃にて3時間不融化処理した。
Next, this pitch yarn was subjected to infusibility treatment at 220° C. for 3 hours using air containing 2.5% by volume of nitrogen dioxide.

さらに、このようにして得られた不融化糸を、窒素ガス
雰囲気下において、1550 ’Cの温度て焼成し、繊
維径9.2μmの炭素繊維を得た。
Further, the thus obtained infusible yarn was fired at a temperature of 1550'C in a nitrogen gas atmosphere to obtain carbon fibers with a fiber diameter of 9.2 μm.

この炭素繊維の引張強度は477.6 kg/ mm 
2.引張弾性率は34. Ot /mm2.伸度は1.
41%であった。
The tensile strength of this carbon fiber is 477.6 kg/mm
2. The tensile modulus is 34. Ot/mm2. The elongation is 1.
It was 41%.

比較例1 (1)メソフェーズピッチの製造 実施例1(1)の第1段目の熱処理で得られた等方性ピ
ッチ20gを460″C,I Torrの条件下で8分
間メソ化処理し、キノリンネ溶分30.5重量%。
Comparative Example 1 (1) Production of mesophase pitch 20 g of isotropic pitch obtained in the first stage heat treatment of Example 1 (1) was subjected to mesophase treatment for 8 minutes at 460''C, I Torr, Quinoline solubility 30.5% by weight.

軟化点327℃,メソ相100%であるメソフェーズピ
ッチ9.9gを得た。
9.9 g of mesophase pitch having a softening point of 327° C. and 100% mesophase was obtained.

得られたピッチの熱天秤分析(TGA)結果および熱重
量分析(DTA)結果を第2図に示す。
The results of thermogravimetric analysis (TGA) and thermogravimetric analysis (DTA) of the obtained pitch are shown in FIG.

第2図によれば、熱天秤による800℃ての重量減少は
18.9重量%であるか、熱重量分析によ゛る発熱ピー
クか520℃を超える温度領域にも存在していることか
判る。なお、この測定は試料を4.55■とした他は、
実施例1 (第1図)の場合と同一の条件で行なった。
According to Figure 2, the weight loss at 800°C determined by thermobalance is 18.9% by weight, or the exothermic peak determined by thermogravimetric analysis exists in the temperature range exceeding 520°C. I understand. In addition, in this measurement, the sample was 4.55■, and
The test was carried out under the same conditions as in Example 1 (FIG. 1).

(2)炭素繊維の製造 上記(1)で得られたメソフェーズピッチを用いたこと
以外は、実施例1(2)と同様にして溶融紡糸、不融化
、焼成処理して炭素繊維を得た。
(2) Production of carbon fibers Carbon fibers were obtained by melt spinning, infusibility, and firing in the same manner as in Example 1 (2) except that the mesophase pitch obtained in (1) above was used.

この炭素繊維の引張強度は415.2 kg/ n+m
2引張弾性率は33.2t/伽2 伸度は1.25%て
あり、繊維径は9.2μmであった。
The tensile strength of this carbon fiber is 415.2 kg/n+m
The tensile modulus was 33.2t/2, the elongation was 1.25%, and the fiber diameter was 9.2 μm.

比較例2 (1)メソフェーズピッチの製造 実施例1(1)で用いたと同じ石油系重質油2000g
を、温度400℃2圧力10Torrて60分間重質化
処理を行ない、キノリンネ溶分0%、トルエン不溶分6
.5重量%、軟化点170℃の等方性ピッチ1218g
を得た。
Comparative Example 2 (1) Production of mesophase pitch 2000 g of the same petroleum heavy oil used in Example 1 (1)
was subjected to a heavy treatment at a temperature of 400°C and a pressure of 10 Torr for 60 minutes, resulting in a quinoline-soluble content of 0% and a toluene-insoluble content of 6%.
.. 5% by weight, 1218g of isotropic pitch with a softening point of 170°C
I got it.

この等方性ピッチ30gを、460℃,I Torrの
条件て10分間メソ化処理を行なって、キノリンネ溶分
29.8重量%、軟化点328℃,メソ相100%であ
るメソフェーズピッチ9.9gを得た。
30 g of this isotropic pitch was meso-ized for 10 minutes at 460° C. and I Torr to obtain 9.9 g of mesophase pitch, which has a quinoline soluble content of 29.8% by weight, a softening point of 328° C., and a meso phase of 100%. I got it.

得られたピッチの熱天秤分析(TGA)結果および熱重
量分析(DTA)結果を第3図に示す。
The results of thermogravimetric analysis (TGA) and thermogravimetric analysis (DTA) of the obtained pitch are shown in FIG.

第3図によれば、熱天秤による800℃ての重量減少は
22.4重量%であり、しかも熱重量分析による発熱ピ
ークが520℃を超える温度領域に存在していることが
判る。なお、この測定は試料を4.53■とした他は、
実施例1 (第1図)の場合と同一の条件で行なった。
According to FIG. 3, the weight loss at 800°C measured by thermobalance was 22.4% by weight, and furthermore, the exothermic peak by thermogravimetric analysis was found to exist in a temperature range exceeding 520°C. In addition, in this measurement, the sample was 4.53■, and
The test was carried out under the same conditions as in Example 1 (FIG. 1).

(2)炭素繊維の製造 上記(1)で得られたメソフェーズピッチを用いたこと
以外は、実施例1(2)と同様にして溶融紡糸、不融化
、焼成処理して炭素繊維を得た。
(2) Production of carbon fibers Carbon fibers were obtained by melt spinning, infusibility, and firing in the same manner as in Example 1 (2) except that the mesophase pitch obtained in (1) above was used.

この炭素繊維の引張強度は、383.0 kg/mm2
引張弾性率は31.1 t /mm2  伸度は1.2
39t;であり、繊維径は9.2μmであった。
The tensile strength of this carbon fiber is 383.0 kg/mm2
Tensile modulus is 31.1 t/mm2 Elongation is 1.2
39t; and the fiber diameter was 9.2 μm.

〔発明の効果〕〔Effect of the invention〕

本発明の新規ピッチによれは、450kg/ma2以上
という高い引張強度を有する炭素繊維を製造することか
できる。
By using the new pitch of the present invention, it is possible to produce carbon fibers having a high tensile strength of 450 kg/ma2 or more.

しかも本発明の新規ピッチによれは、゛炭素繊維の製造
に際して、異形ノズルなとを用いる必要かなく、断面形
状か真円の炭素繊維を製造することができ、従来の異形
ノズルを用いる場合に比し、著しくハンドリング性か改
良されたものである。
Furthermore, the novel pitch of the present invention allows carbon fibers with a cross-sectional shape or a perfect circle to be produced without the need to use irregularly shaped nozzles when producing carbon fibers, compared to when using conventional irregularly shaped nozzles. Compared to this, handling has been significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、実施例1て得られたピッチの熱天秤分析(T
GA)結果および示差熱分析(DTA)結果を示すチャ
ートである。 第2図は、比較例1て得られたピッチの熱天秤分析(T
GA)結果および示差熱分析(DTA)結果を示すチャ
ートである。 第3図は、比較例2て得られたピッチの熱天秤分析(T
GA)結果および示差熱分析(DTA)結果を示すチャ
ートである。
Figure 1 shows the thermobalance analysis (T) of the pitch obtained in Example 1.
2 is a chart showing the results of GA) and the results of differential thermal analysis (DTA). Figure 2 shows the thermobalance analysis (T) of the pitch obtained in Comparative Example 1.
2 is a chart showing the results of GA) and the results of differential thermal analysis (DTA). Figure 3 shows the thermobalance analysis (T) of the pitch obtained in Comparative Example 2.
2 is a chart showing the results of GA) and the results of differential thermal analysis (DTA).

Claims (2)

【特許請求の範囲】[Claims] (1)光学的異方性相の含有量が90重量%以上であり
、かつ熱天秤による800℃の温度における重量減少が
20重量%以下であるとともに、示差熱分析による発熱
ピークが250〜520℃の間にあり、520℃を超え
る温度領域には存在しないことを特徴とするピッチ。
(1) The content of the optically anisotropic phase is 90% by weight or more, the weight loss at a temperature of 800°C by thermobalance is 20% by weight or less, and the exothermic peak by differential thermal analysis is 250 to 520%. ℃, and does not exist in a temperature range exceeding 520℃.
(2)光学的異方性相の含有量が90重量%以上であり
、かつ熱天秤による800℃の温度における重量減少が
20重量%以下であるとともに、示差熱分析による発熱
ピークが250〜520℃の間にあり、520℃を超え
る温度領域には存在しないピッチを、溶融紡糸した後、
不融化処理および炭化処理を施すことを特徴とする炭素
繊維の製造方法。
(2) The content of the optically anisotropic phase is 90% by weight or more, the weight loss at a temperature of 800°C by thermobalance is 20% by weight or less, and the exothermic peak by differential thermal analysis is 250 to 520%. After melt spinning the pitch which is between 520°C and not present in the temperature range above 520°C,
A method for producing carbon fiber, characterized by subjecting it to infusible treatment and carbonization treatment.
JP18615890A 1990-07-13 1990-07-13 Pitch and production of carbon fiber using the same pitch Pending JPH0477597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18615890A JPH0477597A (en) 1990-07-13 1990-07-13 Pitch and production of carbon fiber using the same pitch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18615890A JPH0477597A (en) 1990-07-13 1990-07-13 Pitch and production of carbon fiber using the same pitch

Publications (1)

Publication Number Publication Date
JPH0477597A true JPH0477597A (en) 1992-03-11

Family

ID=16183398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18615890A Pending JPH0477597A (en) 1990-07-13 1990-07-13 Pitch and production of carbon fiber using the same pitch

Country Status (1)

Country Link
JP (1) JPH0477597A (en)

Similar Documents

Publication Publication Date Title
EP0402107A2 (en) Method for the preparation of carbon fibers
JPH0477597A (en) Pitch and production of carbon fiber using the same pitch
US6241923B1 (en) Process for the production of carbon fibers
JP2678384B2 (en) Pitch for carbon fiber and method of manufacturing carbon fiber using the same
JPH0532494B2 (en)
JP2780231B2 (en) Carbon fiber production method
EP0378187A2 (en) Pitch for carbon fibers, process for production of said pitch, and process for production of carbon fibers using said pitch
JPH0437167B2 (en)
JPS58101191A (en) Preparation of mesophase pitch and carbon fiber from said pitch
JPS60181313A (en) Manufacture of pitch fiber
JPS5936726A (en) Precursor pitch fiber for carbon fiber
JPS6278220A (en) Production of ribbon-like carbon fiber
JPS63156886A (en) Production of pitch
JPH03279422A (en) Production of hollow carbon fiber
JP3239490B2 (en) Optically anisotropic pitch for high compressive strength carbon fiber and method for producing carbon fiber
JPH02175921A (en) Production of mesophase pitch-based carbon fiber
JPS6183319A (en) Carbon fiber and its production
JPS63175122A (en) Production of carbon fiber tow
JPH04153326A (en) Production of pitch-based carbon fiber
JP2998396B2 (en) Pitch-based carbon fiber, production method thereof and pitch for spinning raw material
JP2000017526A (en) Production of carbon fiber
JP2982406B2 (en) Method for producing spinning pitch for carbon fiber
JPH06248520A (en) Production of carbon fiber
JPH06272117A (en) Production of active carbon fiber
JP2000034622A (en) Production of carbon fiber