JPH0477555A - Polyimide resin composition - Google Patents

Polyimide resin composition

Info

Publication number
JPH0477555A
JPH0477555A JP18612890A JP18612890A JPH0477555A JP H0477555 A JPH0477555 A JP H0477555A JP 18612890 A JP18612890 A JP 18612890A JP 18612890 A JP18612890 A JP 18612890A JP H0477555 A JPH0477555 A JP H0477555A
Authority
JP
Japan
Prior art keywords
bis
polyimide resin
imide
weight
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18612890A
Other languages
Japanese (ja)
Inventor
Shingo Yoshioka
愼悟 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP18612890A priority Critical patent/JPH0477555A/en
Publication of JPH0477555A publication Critical patent/JPH0477555A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0346Organic insulating material consisting of one material containing N
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To obtain the title composition capable of lowering the dielectric constant of laminates therefrom and also reducing the thermal expansion coefficient in the width direction of said laminates, thus suitable for printed wiring boards etc. by incorporating a polyimide resin with a specified amount of inorganic microballoons. CONSTITUTION:The objective composition can be obtained by incorporating (A) a polyimide resin prepared by reaction between (1) a unsaturated bis-imide (e.g. maleic acid N,N'-ethylene-bis-imide) and (2) a diamine (e.g. 4,4'- diaminodicyclohexylmethane) with (B) 10 - 50pts.vol., based on 100pts.vol. of the component A, of inorganic microballoons, and pref. (C) 10 - 200pts.wt., based on 100pts.wt. of the component A, of a triallyl isocyanurate.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、プリント配線板などの製造に用いられるポリ
イミド樹脂組成物に間するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to polyimide resin compositions used for manufacturing printed wiring boards and the like.

[従来の技術] 従来よりポリイミド樹脂やエポキシ樹脂などはプリント
配線板を構成する積層板用の樹脂として多用されている
。なかでも、ポリイミド樹脂は特開昭59−20659
号公報や特開昭61−40322号に開示されているよ
うに、高密度実装用の高多層プリント配線板の積層板に
使用されている。
[Prior Art] Polyimide resins, epoxy resins, and the like have been widely used as resins for laminated boards constituting printed wiring boards. Among them, polyimide resin is disclosed in Japanese Patent Application Laid-Open No. 59-20659.
As disclosed in Japanese Patent Application Laid-open No. 61-40322, it is used in laminates of high-multilayer printed wiring boards for high-density packaging.

ポリイミド樹脂が高密度実装用の積層板に使用されるの
は、次の特徴があるからである。
Polyimide resin is used in laminates for high-density packaging because it has the following characteristics.

■高密度実装化のための配線導体の微細化、微細孔あけ
などの高精度加工が可能。
■High-precision processing such as miniaturization of wiring conductors and fine hole drilling for high-density packaging is possible.

■板の厚み方向の熱膨張率が小さく、スルーホールメツ
キの導通信頼性が高い。
■The coefficient of thermal expansion in the thickness direction of the plate is small, and the through-hole plating has high continuity reliability.

■ドリル加工工程でのスミア発生が少ない。■Less smear generation during the drilling process.

0高温時の導体密着力及び硬度が高く、実装性が良好。0 High conductor adhesion and hardness at high temperatures, and good mounting performance.

■高温(゛例えば200℃)での連続使用に耐える、等
々 [発明が解決しようとする課題] しかしながら近年、ポリイミド樹脂のプリント配線板に
あって、コンピューターをはじめ半導体装置を使った電
子機械装置の高速化に合わせた半導体の高速化に対応し
て、積層板の電気信号の伝播速度の高速化がさらに切望
されているのが現状である。また−層の高密度実装のた
めに多層化すると、例えば板厚が厚くなることに従って
板厚方向での熱膨張でスルーホールメツキが破断される
などの問題があり、多層化に伴って積層板の信頼性を向
上させることが切望されているのが現状である。
- Can withstand continuous use at high temperatures (e.g. 200°C), etc. [Problems to be solved by the invention] However, in recent years, printed wiring boards made of polyimide resin In response to the increasing speed of semiconductors, there is currently a strong desire to further increase the propagation speed of electrical signals in laminated plates. In addition, when creating multiple layers for high-density packaging, there are problems such as through-hole plating breaking due to thermal expansion in the thickness direction as the board becomes thicker. At present, there is a strong desire to improve the reliability of

本発明は、上記の点に鑑みて為されたものであり、電気
信号の伝播速度の高速化に適合するために積層板の誘電
率を低下させ、さらに多層化での信頼性を向上させるた
めに積層板の板厚方向での熱膨張率を低下させることが
できるポリイミド樹脂組成物を提供することを目的とす
る。
The present invention has been made in view of the above points, and is intended to reduce the dielectric constant of a laminate in order to adapt to the increase in the propagation speed of electric signals, and to further improve reliability in multilayering. An object of the present invention is to provide a polyimide resin composition that can reduce the coefficient of thermal expansion in the thickness direction of a laminate.

[問題点を解決するための手段] しかして本発明に係るポリイミド樹脂組成物は、ポリイ
ミド樹脂に無機質微小中空体を配合して成ることを特徴
とするものである。才な本発明にあってはポリイミド樹
脂100重量部にトリアリルイソシアヌレート類10〜
200重量部を配合するのが好ましい。
[Means for Solving the Problems] The polyimide resin composition according to the present invention is characterized by blending inorganic micro hollow bodies into a polyimide resin. In the present invention, 10 to 10 parts by weight of triallyl isocyanurates are added to 100 parts by weight of polyimide resin.
It is preferable to blend 200 parts by weight.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明で使用するポリイミド樹脂は不飽和ビスイミド類
とジアミン類とを反応させて得ることができる。ポリイ
ミド樹脂の誘電率を低下させるためにこのようにして得
られるポリイミド樹脂には、アルキル基又は、メチレン
基を除くアルキレン基の少なくとも一方11重量%以上
含有させるのが好ましい。
The polyimide resin used in the present invention can be obtained by reacting unsaturated bisimides and diamines. In order to lower the dielectric constant of the polyimide resin, the polyimide resin thus obtained preferably contains at least 11% by weight of at least one of an alkyl group and an alkylene group other than a methylene group.

前記不飽和ビス−イミド類は一般式が<r>co   
         c。
The general formula of the unsaturated bis-imides is <r>co
c.

で表される。[式(1)中りは炭素−炭素間の二重結合
を含む2価の基を表し、Aは少なくとも2個の炭素原子
を含む2価の基を表す、]またジアミン類は一般式が(
It) H2N−B−NH2、(If) で表される。[式(]I)中Bは30個以下の炭素原子
を有する2価の基を表す、」 また弐(■)(■)のA及びBは、同一かまたは異なる
ものいずれでもよく、また13個よりも少ない炭素原子
を持っている直鎖のもしくは分校したアルキレン基か、
環の中に5個もしくは6個の炭素原子を持っている環状
アルキレン基が、O,N及びS原子の少なくとも1個を
含む異種環状基か、またはフェニレンもしくは多環状芳
香族基とすることもできる。これらの種々の基は反応温
度70〜170℃、反応時間30〜350分の反応条件
のもとて不必要な副反応を与えない置換基を持っていて
もよい、また上記A及びBは、たくさんのフェニレン基
か、または直接に2価の原子又は次のような群で結合さ
れた脂環状の基とすることもできる0例えば、それらは
酸素もしくは硫黄か、炭素原子1個から3個のアルキレ
ンの群か、または次の群の内の1つである。
It is expressed as [The formula (1) represents a divalent group containing a carbon-carbon double bond, and A represents a divalent group containing at least two carbon atoms.] Diamines also have a general formula of (
It) H2N-B-NH2, (If). [In formula (]I), B represents a divalent group having 30 or less carbon atoms," and A and B in 2 (■) (■) may be the same or different, and 13 a straight-chain or branched alkylene group having fewer than 1 carbon atoms,
A cyclic alkylene group having 5 or 6 carbon atoms in the ring can also be a heterocyclic group containing at least one O, N and S atom, or a phenylene or polycyclic aromatic group. can. These various groups may have substituents that do not cause unnecessary side reactions under the reaction conditions of a reaction temperature of 70 to 170°C and a reaction time of 30 to 350 minutes. They can be a number of phenylene groups, or they can be directly divalent atoms or alicyclic groups bonded in groups such as, for example, they can be oxygen or sulfur, or groups with 1 to 3 carbon atoms. Alkylene group or one of the following groups:

N R4;P、 (0) R3−−N = N 、、N
=N−−CO−0−1−8O□ ↓ 5iR3R<−1−CONH −NY−Co−X−Co−NY o−co−x−co−o− 上記式中R2、R1及びYは各々炭素原子1個から4個
のアルキル基、環中に5個もしくは6個の炭素原子を持
つ環状アルキル基、もしくはフェニルまたは多環状芳香
族基を表し、Xは13個より少ない炭素原子を持ってい
る1[鎖もしくは分校したアルキレン基、環中に5個も
しくは6個の炭素原子を持っている環状アルキレン基、
または単環もしくは多環状アリレン基を表す。
N R4;P, (0) R3--N = N,,N
=N--CO-0-1-8O□ ↓ 5iR3R<-1-CONH -NY-Co-X-Co-NY o-co-x-co-o- In the above formula, R2, R1 and Y are each carbon represents an alkyl group with 1 to 4 atoms, a cyclic alkyl group with 5 or 6 carbon atoms in the ring, or a phenyl or polycyclic aromatic group, where X has fewer than 13 carbon atoms 1 [Chained or branched alkylene group, cyclic alkylene group having 5 or 6 carbon atoms in the ring,
Or represents a monocyclic or polycyclic arylene group.

前記式<1)中の基りは(I[[)式 CO のエチレン系無水物から誘導されるもので、例えばマレ
イン酸無水物、シトラコン酸無水物、テトラヒドロフタ
ル酸無水物、イタコン酸無水物、及びシクロジエンとこ
れ等の無水物の1つとの間に起こるディールス−アルダ
−反応の生成物を挙げることができる。
The group in the above formula <1) is derived from an ethylene anhydride of the formula (I[[)CO2, such as maleic anhydride, citraconic anhydride, tetrahydrophthalic anhydride, itaconic anhydride. , and the products of the Diels-Alder reaction between a cyclodiene and one of these anhydrides.

使用することのできる式(I)の好ましい不飽和ビス−
イミドとしては次のものを挙げることができる。マレイ
ン酸N−N−一エチレンービスーイミド、マレイン酸N
−N−−ヘキサメチレン−ビス−イミド、マレイン酸N
−N−−メタフェニレン−ビス−イミド、マレイン酸N
−N−−パラフェニレン−ビス−イミド、マレイン酸N
−N”4・4゛−ジフェニルメタン−ビス−イミド、[
N・N−−メチレンビス(N−フェニルマレイミド)と
も言う]、マレイン酸N−N−−4・4−−ジフェニル
エーテル−ビス−イミド、マレイン酸N・N−−4・4
″−ジフェニルスルホン−ビスイミド、マレイン酸N−
N−−4・4−〜ジシクロヘキシルメタンービスーイミ
ド、マレイン酸N・N−一α・α゛−4・4−−ジメチ
レンシクロヘキサン−ビス−イミド、マレイン酸N−N
−メタキシリレン−ビス−イミド、マレイン酸N・N−
一ジフェニルシクロヘキサンービスーイミドト3−ビス
(2−p−アニリノプロピリデン)ベンゼン−ビス−イ
ミド、1・4−ビス(2−P−アニリノプロピリデン)
ベンゼン−ビス−イミド、1・4−ビス(2−m−アニ
リノプロピリデン)ベンゼン−ビス−イミド、4・4−
メチレンジー2・6−キシリシン−ビス−イミド、4・
4゛−メチレンジー2・6−ジニチルアニリンービスー
イミド、4・4−−ジアミノ−3,3−一ジエチルー5
.5−−ジメチルジフェニルメタン−ビス−イミド、4
・4゛−メチレンジー2・6−ジイツプロビルアニリン
ービスーイミド、2・5−ジメチル−p−フェニレンジ
アミン−ビス−イミド、2・2−ビス〈4−アミノフェ
ニル)プロパン−ビス−イミド、2・4−ジアミノメシ
チレン−ビス−イミド、3・5−ジエチル−2・4−ト
リレンジアミン−ビス−イミドなどであるまた使用する
ことのできる式(It)の好ましいジアミンとしては次
のものを挙げることができる。
Preferred unsaturated bis- of formula (I) that can be used
The following can be mentioned as imide. Maleic acid N-N-monoethylene-bisimide, Maleic acid N
-N--hexamethylene-bis-imide, maleic acid N
-N--Metaphenylene-bis-imide, maleic acid N
-N--paraphenylene-bis-imide, maleic acid N
-N"4.4"-diphenylmethane-bis-imide, [
N.N--methylenebis (also called N-phenylmaleimide)], maleic acid N-N--4.4-diphenyl ether-bis-imide, maleic acid N.N--4.4
″-diphenylsulfone-bisimide, maleic acid N-
N--4.4--dicyclohexylmethane-bis-imide, maleic acid N.N-1α.α゛-4.4--dimethylenecyclohexane-bis-imide, maleic acid N-N
- metaxylylene-bis-imide, maleic acid N/N-
1-diphenylcyclohexane-bis-imide 3-bis(2-p-anilinopropylidene)benzene-bis-imide, 1,4-bis(2-P-anilinopropylidene)
Benzene-bis-imide, 1,4-bis(2-m-anilinopropylidene)benzene-bis-imide, 4,4-
methylene di-2,6-xylysine-bis-imide, 4.
4'-methylenedi-2,6-dinithylaniline-bis-imide, 4,4--diamino-3,3-1diethyl-5
.. 5-dimethyldiphenylmethane-bis-imide, 4
・4゛-methylenedi2,6-diituprobylaniline-bis-imide, 2,5-dimethyl-p-phenylenediamine-bis-imide, 2,2-bis<4-aminophenyl)propane-bis-imide, Preferred diamines of formula (It) which may also be used include 2,4-diaminomesitylene-bis-imide, 3,5-diethyl-2,4-tolylenediamine-bis-imide, etc. can be mentioned.

4・4゛−ジアミノジシクロヘキシルメタン、1・4゛
−ジアミノシクロヘキサン、2・6−ジアミツピリジン
、メタフェニレンジアミン、パラフェニレンジアミン、
4・4−−ジアミノ−ジフェニルメタン、2・2−ビス
−(4−アミノフェニル)プロパン、ベンジジン、4・
4゛−ジアミノジフェニルオキサイド、4・4−−ジア
ミノジフェニルサルファイド、4・4−−ジアミ′ノジ
フェニルスルフ゛オン、ビス−(4−アミノフェニル)
ジフェニルシラン、ビス−(4−7ミノフエニル)メチ
ルフォスフインオキサイド、ビス−(3−アミノフェニ
ル)メチルフォスフインオキサイド、ビス−<4−ナミ
ノフェニル)フェニルフォスフインオキサイド、ビス−
(4−アミノフェニル)フエニラミン、1・5−ジアミ
ノナフタレン、メタキシリレンジアミン、パラキシリレ
ンジアミン、1・1−ビス=(パラアミノフェニル)フ
タラン、ヘキサメチレンジアミン、1・3−ビス(2−
p−アニリノプロピリデン)ベンゼン、1・4−ビス(
2−p−アニリノプロピリデン)ベンゼン、1・4−ビ
ス(2−m−アニリノプロピリデン)ベンゼン、4・4
゛−メチレンジー2・6−キシリジン、4・4−一メチ
レンジ−2・6−ジニチルアニリン、4・4−−ジアミ
ノ−3・3゛−ジエチル−5・5−−ジメチルジフェニ
ルメタン、4・4”−メチレンジー2・6−ジイツプロ
ビルアニリン、2・5−ジメチル−p−フェニレンジア
ミン、2・2−ビス(4−アミノフェニル)プロパン、
2・4−ジアミノメシチレン、3・5−ジエチル−2・
4−トリレンジアミンなどである。
4,4゛-diaminodicyclohexylmethane, 1,4゛-diaminocyclohexane, 2,6-diamitupyridine, metaphenylenediamine, paraphenylenediamine,
4,4-diamino-diphenylmethane, 2,2-bis-(4-aminophenyl)propane, benzidine, 4.
4'-Diamino diphenyl oxide, 4,4-diaminodiphenyl sulfide, 4,4-diaminodiphenylsulfone, bis-(4-aminophenyl)
Diphenylsilane, bis-(4-7minophenyl)methylphosphine oxide, bis-(3-aminophenyl)methylphosphine oxide, bis-<4-naminophenyl)phenylphosphine oxide, bis-
(4-aminophenyl)pheniramine, 1,5-diaminonaphthalene, meta-xylylene diamine, para-xylylene diamine, 1,1-bis(para-aminophenyl)phthalane, hexamethylene diamine, 1,3-bis(2-
p-anilinopropylidene)benzene, 1,4-bis(
2-p-anilinopropylidene)benzene, 1,4-bis(2-m-anilinopropylidene)benzene, 4.4
"-Methylenedi-2,6-xylidine, 4,4-1methylenedi-2,6-dinitylaniline, 4,4-diamino-3,3"-diethyl-5,5-dimethyldiphenylmethane, 4,4" -methylenedi-2,6-diituprobylaniline, 2,5-dimethyl-p-phenylenediamine, 2,2-bis(4-aminophenyl)propane,
2,4-diaminomesitylene, 3,5-diethyl-2.
4-tolylene diamine and the like.

そして、上記不飽和とスーイミドとジアミンとを反応さ
せることによって、付加型のポリイミド樹脂を調製する
ことができる。ビス−イミドとジアミンとの配合比は、
モル比でジアミン1に対してビス−イミドが1.7〜2
.5の範囲が好ましい。1.7よりビス−イミドが少な
いと高分子菫の生成が多くなって硬化時間が短くなり取
り扱いに問題が生じる傾向があり、また2、5よりビス
−イミドが多いと未反応原料が多く残存し易くなる傾向
がある1反応はビス−イミドとジアミンとをN−メチル
ピロリドン(NMP>やN、Nジメチルアセトアミド(
DMAC>などの溶剤に溶解した状態でおこなうことが
できるものであり、反応の際の加熱温度は70〜170
℃程度の範囲でおこなうのが好ましく、反応時間は30
〜350分程度の範囲でおこなうのが好ましい。
Then, an addition type polyimide resin can be prepared by reacting the unsaturation, soimide, and diamine. The blending ratio of bis-imide and diamine is
The molar ratio is 1.7 to 2 bis-imides to 1 diamine.
.. A range of 5 is preferred. If the amount of bis-imide is less than 1.7, more polymer violet will be produced, shortening the curing time and causing problems in handling.If the amount of bis-imide is more than 2 or 5, a large amount of unreacted raw material will remain. One reaction that tends to be easier is to combine bis-imides and diamines with N-methylpyrrolidone (NMP) or N,N dimethylacetamide (
The reaction can be carried out in a state dissolved in a solvent such as DMAC>, and the heating temperature during the reaction is 70 to 170℃.
It is preferable to carry out the reaction at a temperature of about 30°C, and the reaction time is about 30°C.
It is preferable to carry out the process for about 350 minutes.

上記のように調製されるポリイミド樹脂に無機質微小中
空体を配合し、さらにトリアリルイソシアヌレート(以
下TAICと略称)類を配合すると共に必要に応じて、
促進剤として2−エチル−4−メチルイミダゾール(2
E4MZ)等のイミダゾール類や有機過酸化物など、希
釈溶媒としてジメチルホルムアミド(DMF> 、DM
Ac、ジオキサン、NMP、メチルエチルゲトン(ME
K)などを配合し、これらを混合することによって、本
発明に係るポリイミド樹脂組成物を得ることができる。
Inorganic micro hollow bodies are blended into the polyimide resin prepared as described above, triallyl isocyanurate (hereinafter abbreviated as TAIC) is further blended, and if necessary,
2-ethyl-4-methylimidazole (2
Dimethylformamide (DMF>, DM
Ac, dioxane, NMP, methyl ethyl getone (ME
K) and the like, and by mixing these, the polyimide resin composition according to the present invention can be obtained.

上記無機質微小中空体くセラミックマイクロバルーン等
と通称されている)としては、アルミノシリゲート系の
不活性安定な微小中空フィラーである「フィライト」 
(商品名二日本フィライト株式会社製、直径30〜30
0ミクロン、平均嵩比重0,7)や、硼珪酸ガラス組成
やシリカ組成の微小中空球状充填剤である「ニップセル
」 (商品名:日本シリカニ業株式会社製、平均粒径3
5〜55ミクロン、嵩密度0.14〜0.68)などを
用いることができる。この無機質微小中空体は中空であ
るために粒子誘電率が1.工程度と低く、積層板の誘電
率を低下させる効果を得ることができるものである。し
かも無機質(セラミック)であるために耐熱性が高いと
共に熱膨張率が10ppm程度と低く、積層板の厚み方
向での熱膨張率を低下させることができる効果も得るこ
とができる。またこれらの無機質微小中空体は粒径が非
常に小さいので積層板にスルーホールを加工等する際に
悪影響を及ぼすようなおそれはない。無機質微小中空体
の配合量は、ポリイミド樹脂に対する体積分率で10〜
50部の範囲が好ましいく重量分率では、ポリイミド樹
脂100部に対して3.6〜18部)。配合量がこの範
囲より少ないと、誘電率の低下の効果が不十分であると
共に、この範囲より多いと積層板として硬く脆いものと
なったりして好ましくない。
The above-mentioned inorganic micro-hollow bodies (commonly known as ceramic microballoons, etc.) are made of "phyllite," which is an inert and stable aluminosilicate-based micro-hollow filler.
(Product name Nippon Philite Co., Ltd., diameter 30-30
0 micron, average bulk specific gravity 0.7), "Nipcell" is a micro hollow spherical filler with borosilicate glass composition or silica composition (product name: Nippon Silikani Gyo Co., Ltd., average particle size 3)
5 to 55 microns, bulk density 0.14 to 0.68), etc. can be used. Since this inorganic minute hollow body is hollow, the particle dielectric constant is 1. The process rate is low and the effect of lowering the dielectric constant of the laminate can be obtained. In addition, since it is an inorganic material (ceramic), it has high heat resistance and a low coefficient of thermal expansion of about 10 ppm, so that it can also have the effect of lowering the coefficient of thermal expansion in the thickness direction of the laminate. In addition, since these inorganic minute hollow bodies have very small particle diameters, there is no fear that they will have an adverse effect when forming through holes in a laminate. The blending amount of the inorganic micro hollow bodies is 10 to 10% by volume relative to the polyimide resin.
The weight fraction is preferably in the range of 50 parts (3.6 to 18 parts per 100 parts of polyimide resin). If the amount is less than this range, the effect of lowering the dielectric constant will be insufficient, and if it is more than this range, the laminate will be hard and brittle, which is not preferable.

またTAIC類としては、TAICモノマーの外にTA
ICポリマーを用いることができるものであり、ポリイ
ミド樹脂100重量部に対してTAIC類を10〜20
0重量部配合す置部が好ましい、TAIC類を配合する
ことによって、積層板の誘電率を低下させることができ
るものであり、TAIC類の配合量が10重量部未満で
は誘電率の低下の効果が不十分であると共に、200重
量部を超えると誘電率は低下するが積層板として硬く脆
いものとなって好ましくない、このTAIC類としては
、TAICポリマー1重量部に対してTAICモノマー
0〜100重量部を配合したものを用いるのが好ましい
。TAICポリマーを添加していると、ブレプリグ製造
時の乾燥工程でのTAICモノマーの激しい揮発を抑制
することができるものであり、TA、ICポリマーのみ
を使用するようにしてもよい。TAICポリマーとして
は重量平均分子量が500〜10000のものが好まし
く、中でも500〜3000のものが好ましい。従って
本発明においてTAICポリマーにはTA I Cプレ
ポリマーも含まれるものである尚、電子機器装置の安全
化のために要求される難燃性を確保するために、難燃剤
として反応基を有する臭素化樹脂を前記ポリイミド樹脂
に配合するのが好ましい、この反応基を有する臭素化樹
脂は、ポリイミド樹脂の側鎖や末端の基と反応してポリ
イミド樹脂構造の骨格内に取り込まれることになるため
に、難燃性の外に層間接着性やスルーホール信頼性、耐
熱性なども向上させることが可能になる。従って臭素化
樹脂の反応基としては、エポキシ基、アリル基、ビニル
基などを有する炭素原子1個から4個のアルキル、環中
に5個もしくは6個の炭素原子を持つ環状アルキル、も
しくはフェニルあるいは多環状芳香族、または13個よ
りも少ない炭素原子を持っている直鎖もしくは分岐した
アルキレン、環の中に5個もしくは6個の炭素原子を持
っている環状アルキレン、または単環もしくは多環状ア
リレンなどが好ましく、特にエポキシ樹脂が好ましい。
In addition to TAIC monomers, TAICs include TAIC monomers.
IC polymer can be used, and 10 to 20 parts of TAIC is added to 100 parts by weight of polyimide resin.
It is preferable to mix 0 parts by weight of TAICs, which can reduce the dielectric constant of the laminate, and if the amount of TAICs is less than 10 parts by weight, the effect of lowering the dielectric constant will decrease. If it exceeds 200 parts by weight, the dielectric constant decreases, but the laminate becomes hard and brittle, which is not preferable. It is preferable to use a mixture containing parts by weight. Adding a TAIC polymer can suppress the intense volatilization of the TAIC monomer during the drying process during the production of Bleprig, and it is also possible to use only TA and IC polymers. The TAIC polymer preferably has a weight average molecular weight of 500 to 10,000, particularly preferably 500 to 3,000. Therefore, in the present invention, the TAIC polymer also includes the TAIC prepolymer.In order to ensure the flame retardancy required for the safety of electronic devices, bromine having a reactive group is used as a flame retardant. It is preferable to blend a brominated resin with the polyimide resin, because this brominated resin having a reactive group reacts with the side chains and terminal groups of the polyimide resin and is incorporated into the skeleton of the polyimide resin structure. In addition to flame retardancy, it is also possible to improve interlayer adhesion, through-hole reliability, heat resistance, etc. Therefore, as a reactive group of a brominated resin, an alkyl having 1 to 4 carbon atoms having an epoxy group, an allyl group, a vinyl group, etc., a cyclic alkyl having 5 or 6 carbon atoms in the ring, or a phenyl or polycyclic aromatic, or straight-chain or branched alkylene with less than 13 carbon atoms, cyclic alkylene with 5 or 6 carbon atoms in the ring, or monocyclic or polycyclic arylene etc. are preferred, and epoxy resin is particularly preferred.

この反応基を有する臭素化樹脂の配合量は、ポリイミド
樹脂100重量部に対して臭素含有量で1〜50重量部
の範囲が好ましい。1重量部未満では難燃性の向上の効
果が不十分になり、また50重量部を超えると積層板の
耐熱性や誘電率が悪くなるおそれがあって好ましくない
The amount of the brominated resin having this reactive group is preferably in the range of 1 to 50 parts by weight based on bromine content based on 100 parts by weight of the polyimide resin. If it is less than 1 part by weight, the effect of improving flame retardancy will be insufficient, and if it exceeds 50 parts by weight, the heat resistance and dielectric constant of the laminate may deteriorate, which is not preferable.

以上のようにして得られるポリイミド樹脂組成物を用い
て積層板を作成するにあたっては、まずポリイミド樹脂
組成物を基材に含浸させた後、加熱して希釈溶媒を乾燥
蒸発させて樹脂分を半硬化させることによってプリプレ
グを作成する。この際にポリイミドとTAIC類との反
応が進行し、さらに反応基を有する臭素化樹脂も反応基
かポリイミド樹脂の側鎖や末端の基と反応してポリイミ
ド樹脂構造の骨格内に取り込まれる。ポリイミド樹脂を
含浸させる基材としては、その種類は特に限定されない
。通常はガラスクロスか用いられるが、その他石英繊維
布等の無機繊維布、ケブラー繊維布、ポリイミド繊維布
なとの高耐熱性繊維布などを用いることもできる。半硬
化させるときの温度は110〜155°C程度の範囲に
設定するのが好ましい。155℃を超えるとTAICモ
ノマーが揮発し易く、才な反応が進み過ぎ、得られるプ
リプレグの層間接着力が低下し、誘電率を低下させる効
果も小さくなるおそれがあり、110℃未満では乾燥に
時間がかかり過ぎて実用的ではない、このように作成し
たプリプレグを1枚乃至複数枚重ね、さらに必要に応じ
て銅、ニラゲル、アルミニウム等の金属箔あるいは回路
形成された内層材を重ね、常法に従って加熱加圧して積
層成形することによって、積層板を得ることができるも
のである。
When creating a laminate using the polyimide resin composition obtained as described above, first, the base material is impregnated with the polyimide resin composition, and then heated to dry and evaporate the diluent solvent to half the resin content. A prepreg is created by curing. At this time, the reaction between the polyimide and TAICs proceeds, and the brominated resin having a reactive group also reacts with the reactive group or the side chain or terminal group of the polyimide resin, and is incorporated into the skeleton of the polyimide resin structure. The type of base material impregnated with polyimide resin is not particularly limited. Glass cloth is usually used, but other highly heat-resistant fiber cloths such as inorganic fiber cloth such as quartz fiber cloth, Kevlar fiber cloth, and polyimide fiber cloth can also be used. The temperature during semi-curing is preferably set in a range of about 110 to 155°C. If the temperature exceeds 155℃, the TAIC monomer will easily volatilize, the reaction will proceed too much, the interlayer adhesion of the obtained prepreg will decrease, and the effect of lowering the dielectric constant may be reduced. It is impractical as it takes too much time. One or more sheets of prepreg prepared in this way are stacked, and if necessary, a metal foil such as copper, niragel, or aluminum or an inner layer material with a circuit formed thereon is stacked, and then A laminate can be obtained by laminating and molding under heat and pressure.

[実施例] 次に本発明を実施例と比較例によって説明する表1.2
に示す配合で混合することによって、ポリイミド樹脂組
成物を調製した。
[Examples] Next, Table 1.2 explains the present invention using Examples and Comparative Examples.
A polyimide resin composition was prepared by mixing the following formulations.

ここで、無機質微小中空体としては、日本フィライト株
式会社製「フィライト200/7 J及び、日本シリカ
ニ業株式会社製「ニップセルに330」を用いた。
Here, as the inorganic micro hollow bodies, "Fillite 200/7 J" manufactured by Nippon Phyllite Co., Ltd. and "Nip Cell ni 330" manufactured by Nippon Silikani Gyo Co., Ltd. were used.

ポリイミド樹脂としては次の#1〜#4ものを用いた。The following polyimide resins #1 to #4 were used.

・#1・・・マレイン酸N−N−−4・4゛−ジフェニ
ルメタン−ビス−イミドと4・4°−ジアミノジフェニ
ルメタンとから合成されたポリイミド樹脂、アルキル基
又はアルキレン基を樹脂分子中に含有しない。
・#1...Polyimide resin synthesized from maleic acid N-N--4,4゛-diphenylmethane-bis-imide and 4,4°-diaminodiphenylmethane, containing an alkyl group or an alkylene group in the resin molecule do not.

・#2・・・4・4゛−メチレンジー2・6−キシリシ
ン−ビス−イミドと4・4−−ジアミノジフェニルメタ
ンとから合成されたポリイミド樹脂。アルキル基を樹脂
分子中に13重量%含有する。
・#2...Polyimide resin synthesized from 4,4'-methylene di-2,6-xylysine-bis-imide and 4,4-diaminodiphenylmethane. The resin molecule contains 13% by weight of alkyl groups.

・#3・・・4・4−−メチレンジー2・6−ジニチル
アニリンービスーイミドと1・4−ビス(2p−アニリ
ノプロピリデン)ベンゼンとから合成されたポリイミド
樹脂。アルキル基を樹脂分子中に24.5重量%含有す
る。
- #3: A polyimide resin synthesized from 4,4--methylene di-2,6-dinitylaniline-bis-imide and 1,4-bis(2p-anilinopropylidene)benzene. The resin molecule contains 24.5% by weight of alkyl groups.

・#4・・・4・4−−メチレンジー2・6−ジインプ
ロピルアニリン−ビス−イミドと1・4−ビス(2−p
−アニリノプロピリデン)ベンゼンとから合成されたポ
リイミド樹脂。アルキル基を樹脂分子中に30重量%含
有する。
・#4...4,4--methylene di-2,6-diinpropylaniline-bis-imide and 1,4-bis(2-p
- anilinopropylidene) benzene. The resin molecule contains 30% by weight of alkyl groups.

また臭素化樹脂としては、次の化学構造式で表される、
反応型の臭素化フェノールノボラック型エポキシ樹脂(
日本化薬株式会社製BREN−8)を用い□た。
In addition, brominated resins are represented by the following chemical structural formula:
Reactive brominated phenol novolac type epoxy resin (
BREN-8) manufactured by Nippon Kayaku Co., Ltd. was used.

n=3〜4 また促進剤として2E4MZ (四国化成工業株式会社
製)を、希釈溶媒として樹脂固形分率が約60重量%に
なるようにDMFを、それぞれ用いた。
n=3 to 4 Further, 2E4MZ (manufactured by Shikoku Kasei Kogyo Co., Ltd.) was used as an accelerator, and DMF was used as a diluting solvent so that the resin solid content was about 60% by weight.

次に、表1.二の組成で調製したポリイミド樹脂組成物
を厚み0.1mm、95g/m2のEガラス布に含浸さ
せ、140℃の乾燥機中で40分間加熱乾燥することに
よって、プリプレグを作成した。この各プリプレグの揮
発分を測定した。プリプレグの揮発分は、乾燥前のプリ
プレグの重量Wlと、180℃で30分間加熱して乾燥
した後の重量W2とを測定し、 (Wl−W2)/WIX100 の式から求めた。結果を表1,2に示す。
Next, Table 1. A prepreg was prepared by impregnating an E glass cloth of 95 g/m2 with a thickness of 0.1 mm with the polyimide resin composition prepared according to the second composition, and heating and drying it in a dryer at 140° C. for 40 minutes. The volatile content of each prepreg was measured. The volatile content of the prepreg was determined by measuring the weight Wl of the prepreg before drying and the weight W2 after drying by heating at 180°C for 30 minutes, and using the formula (Wl-W2)/WIX100. The results are shown in Tables 1 and 2.

このようにして作成したプリプレグの両面に厚み18μ
mの両面粗面化銅箔を重ね、成形温度130℃、成形圧
力30kg、/cm2.90分間の条件で積層成形おこ
ない、内層プリント配線板用の両面銅張り積層板を得た
。この両面銅張り積層板の銅箔をエツチング処理して回
路形成することによって内層プリント配線板を作成し、
そして35枚のこの内層プリント配線板をそれぞれの間
に上記と同じ4枚のプリプレグを介して重ねると共にそ
の上下にさらに4枚のプリプレグを介して厚み35μm
の銅箔を重ね、これを6mm厚の金型に納めて積層成形
をおこなった。この積層成形は、5kg/cm2の加圧
をおこないつつ直ちに130℃まで加熱して20分間保
持し、次いで30kg/cm2の圧力で200℃に加熱
し、120分間保持した後に圧力をかけたまま室温まで
冷却する条件でおこなった。
Both sides of the prepreg prepared in this way have a thickness of 18 μm.
A double-sided copper-clad laminate for an inner-layer printed wiring board was obtained by stacking two double-sided roughened copper foils of 2.0 m and lamination molding under the conditions of a molding temperature of 130° C., a molding pressure of 30 kg, and 2.90 minutes per cm. An inner layer printed wiring board is created by etching the copper foil of this double-sided copper-clad laminate to form a circuit.
Then, 35 inner-layer printed wiring boards are stacked with the same 4 prepregs as above interposed between each one, and 4 more prepregs are placed above and below them to a thickness of 35 μm.
Copper foils were layered, and this was placed in a 6 mm thick mold for lamination molding. This laminated molding is performed by immediately heating to 130°C while applying a pressure of 5 kg/cm2 and holding it for 20 minutes, then heating it to 200°C with a pressure of 30 kg/cm2, holding it for 120 minutes, and then leaving it at room temperature while applying pressure. The test was carried out under conditions of cooling to .

このようにして得られた両面銅張り多層積層板について
、「誘電率」、r層間接着力」、「スルーホールのメツ
キ染み込み長さ」、「スルーホールの壁面粗さ」、「難
燃性」、「耐熱性」、「板厚方向熱膨張率」をそれぞれ
測定した。結果を表1.2に示す。「誘電率」はJIS
 C6481に基づいて、「難燃性」はUL規格に準拠
して測定をおこなった。「層間接着力Jは上記多層積層
板の層と層との間を90°方向に剥がしたときの接着力
を測定した。また、上記多層積層板に0゜4mmφのド
リルビットを用いて、40000rpmの回転数、1回
転当たりの送り速度50μm/ r e vの条件でス
ルーホールを100穴をあけ、このスルーホールに無電
解メツキと電解メツキとを併用してスルーホールメツキ
をおこない、990〜1000穴目のスルーホールの断
面を顕微鏡で観察して、スルーホールメツキの際に生じ
る「スルーホール・のメツキ染み込み長さ」と、スルー
ホールの内面の「スルーホールの壁面粗さ」とをそれぞ
れ測定した。
Regarding the double-sided copper-clad multilayer laminate obtained in this way, "dielectric constant", "r interlayer adhesion strength", "through-hole plating penetration length", "through-hole wall surface roughness", and "flame retardancy" , "heat resistance" and "coefficient of thermal expansion in the thickness direction" were measured. The results are shown in Table 1.2. "Permittivity" is JIS
Based on C6481, "flame retardancy" was measured in accordance with the UL standard. "Interlayer adhesive strength J was measured by measuring the adhesive strength when the layers of the multilayer laminate were peeled off in a 90° direction. Also, using a drill bit of 0° 4 mmφ on the multilayer laminate, the adhesive strength was measured at 40000 rpm. 100 through-holes were drilled under the conditions of a rotational speed of 50μm/rev and a feed rate per rotation of 50μm/rev, and the through-holes were plated using a combination of electroless plating and electrolytic plating. Observe the cross section of the through-hole with a microscope and measure the "through-hole plating penetration length" that occurs during through-hole plating and the "through-hole wall roughness" on the inside of the through-hole. did.

表1.2にみられるように、無機質微小中空体を配合す
ることによって、誘電率や板厚方向の熱膨張率を低くで
きることが確認される。またTAICを併用して配合す
ることによ・つて、誘電率を低くできる効果が高まるこ
とが確認される。
As shown in Table 1.2, it is confirmed that the dielectric constant and the coefficient of thermal expansion in the thickness direction can be lowered by blending inorganic micro hollow bodies. It is also confirmed that by blending together with TAIC, the effect of lowering the dielectric constant is enhanced.

U発明の効果] 上述のように本発明は、ポリイミド樹脂に無機質微小中
空体を配合するようにしたので、無機質微小中空体は粒
子誘電率が低く、積層板の誘電率を低下させる効果があ
って、電気信号の伝播速度の高速化に適合させることが
できるものであり、しかも無機質微小中空体は熱膨張率
が低く、積層板の厚み方向での熱膨張率を低下させる効
果があって、多層化での信頼性を向上させることができ
るものである。
U Effect of the invention] As described above, in the present invention, the inorganic micro hollow bodies are blended into the polyimide resin, so the inorganic micro hollow bodies have a low particle permittivity and are effective in reducing the dielectric constant of the laminate. Therefore, it can be adapted to increase the propagation speed of electric signals, and the inorganic micro hollow bodies have a low coefficient of thermal expansion, and have the effect of reducing the coefficient of thermal expansion in the thickness direction of the laminate. This makes it possible to improve reliability in multi-layering.

Claims (3)

【特許請求の範囲】[Claims] (1)ポリイミド樹脂に無機質微小中空体を配合して成
ることを特徴とするポリイミド樹脂組成物。
(1) A polyimide resin composition comprising a polyimide resin mixed with inorganic microscopic hollow bodies.
(2)ポリイミド樹脂100重量部にトリアリルイソシ
アヌレート類10〜200重量部を配合して成ることを
特徴とする請求項1に記載のポリイミド樹脂組成物。
(2) The polyimide resin composition according to claim 1, characterized in that 10 to 200 parts by weight of triallyl isocyanurates are blended with 100 parts by weight of the polyimide resin.
(3)体積分率でポリイミド樹脂100部に対して無機
質微小中空体を10〜50部配合することを特徴とする
請求項1又は2に記載のポリイミド樹脂組成物。
(3) The polyimide resin composition according to claim 1 or 2, wherein 10 to 50 parts of the inorganic micro hollow bodies are blended in a volume fraction of 100 parts of the polyimide resin.
JP18612890A 1990-07-14 1990-07-14 Polyimide resin composition Pending JPH0477555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18612890A JPH0477555A (en) 1990-07-14 1990-07-14 Polyimide resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18612890A JPH0477555A (en) 1990-07-14 1990-07-14 Polyimide resin composition

Publications (1)

Publication Number Publication Date
JPH0477555A true JPH0477555A (en) 1992-03-11

Family

ID=16182860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18612890A Pending JPH0477555A (en) 1990-07-14 1990-07-14 Polyimide resin composition

Country Status (1)

Country Link
JP (1) JPH0477555A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57179215A (en) * 1981-04-30 1982-11-04 Hitachi Ltd Thermosetting resin composition
JPS5823853A (en) * 1981-08-03 1983-02-12 Matsushita Electric Works Ltd Molding material of thermosetting resin
JPS5857463A (en) * 1981-10-01 1983-04-05 Matsushita Electric Works Ltd Thermosetting resin molding material
JPS5947219A (en) * 1982-09-13 1984-03-16 Toshiba Chem Corp Thermosetting resin molding material
JPH01215819A (en) * 1988-02-24 1989-08-29 Matsushita Electric Works Ltd Epoxy-modified polyimide resin prepolymer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57179215A (en) * 1981-04-30 1982-11-04 Hitachi Ltd Thermosetting resin composition
JPS5823853A (en) * 1981-08-03 1983-02-12 Matsushita Electric Works Ltd Molding material of thermosetting resin
JPS5857463A (en) * 1981-10-01 1983-04-05 Matsushita Electric Works Ltd Thermosetting resin molding material
JPS5947219A (en) * 1982-09-13 1984-03-16 Toshiba Chem Corp Thermosetting resin molding material
JPH01215819A (en) * 1988-02-24 1989-08-29 Matsushita Electric Works Ltd Epoxy-modified polyimide resin prepolymer

Similar Documents

Publication Publication Date Title
JP5692201B2 (en) Thermosetting resin composition, and prepreg, laminate and multilayer printed wiring board using the same
KR102142753B1 (en) Thermosetting resin composition, and prepreg, insulating film with support, laminate plate, and printed wiring board, each obtained using same
TWI678390B (en) Resin composition, and prepreg, metal-clad laminate, and printed circuit board using the same
KR102466877B1 (en) Thermosetting resin compositions, prepregs, laminates and multilayer printed wiring boards
TW201702311A (en) Resin composition, prepreg, laminate and multilayer printed wiring board
KR20100110656A (en) Polyamic acid solution, polyimide resin and flexible metal clad laminate using the same
TWI580714B (en) Resin composition and uses of the same
TWI468465B (en) Resin composition and uses of the same
CN109467888B (en) Resin composition, prepreg, metal foil laminate and printed wiring board using the same
WO2006118230A1 (en) Material for plating and use thereof
JPH072829B2 (en) Laminate
TWI740204B (en) Resin composition, and prepreg, metal-clad laminate, and printed circuit board using the same
TWI812412B (en) Resin composition, and prepreg, metal-clad laminate and printed circuit board prepared using the same
US10568211B2 (en) Resin composition and uses of the same
US5160781A (en) Polyimide composition and prepreg and laminate thereof
US10711088B2 (en) Resin composition, sheet-shaped laminated material, printed wiring board, and semiconductor device
JPH0477555A (en) Polyimide resin composition
JP2718268B2 (en) Polyimide resin composition, prepreg and laminate thereof
CA2012633C (en) Polyimide composition and prepreg and laminate thereof
TWI805359B (en) Metal clad laminate, printed circuit board and method for producing the same
JPH0480261A (en) Polyimide resin composition, its prepreg and its laminate
WO2023145472A1 (en) Resin composition, prepreg, resin-bearing film, resin-bearing metal foil, metal-clad laminated board, and printed wiring board
JPH0379667A (en) Polyamide resin composition, prepreg thereof and laminate board thereof
JP2718267B2 (en) Polyimide resin composition, prepreg and laminate thereof
JPH04222862A (en) Polyimide resin composition, prepreg and laminate thereof