JPH0480261A - Polyimide resin composition, its prepreg and its laminate - Google Patents

Polyimide resin composition, its prepreg and its laminate

Info

Publication number
JPH0480261A
JPH0480261A JP19333390A JP19333390A JPH0480261A JP H0480261 A JPH0480261 A JP H0480261A JP 19333390 A JP19333390 A JP 19333390A JP 19333390 A JP19333390 A JP 19333390A JP H0480261 A JPH0480261 A JP H0480261A
Authority
JP
Japan
Prior art keywords
polyimide resin
weight
parts
resin
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19333390A
Other languages
Japanese (ja)
Inventor
Shingo Yoshioka
吉岡 慎悟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP19333390A priority Critical patent/JPH0480261A/en
Publication of JPH0480261A publication Critical patent/JPH0480261A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0346Organic insulating material consisting of one material containing N

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

PURPOSE:To obtain a polyimide resin composition which is excellent in the infiltrability of resin into a substrate and is useful for obtaining a laminate excellent in through-hole reliability by mixing a polyimide resin with a specified triallyl isocyanurate and an accelerator, a diluent, etc. CONSTITUTION:This composition is prepared by mixing a polyimide resin (e.g. a resin comprising maleic acid N,N'-4,4'-diphenylmethane-bisimide and 4,4'- diaminodiphenylmethane), with 10-200pts.wt., per 100pts.wt. above resin, triallyl isocyanurate prepared by mixing 50-90pts.wt. triallyl isocyanurate monomer with 50-10pts.wt. trimethallyl isocyanurate, an accelerator (e.g. 2-ethyl-4- methylimidazole), a diluent (e.g. DMF), etc.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、プリント配線板などに供されるポリイミド樹
脂組成物、この樹脂組成物を用いたポリイミド樹脂のプ
リプレグ、およびこのプリプレグが硬化したポリイミド
樹脂の積層板に関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a polyimide resin composition used for printed wiring boards, etc., a polyimide resin prepreg using this resin composition, and a polyimide resin obtained by curing this prepreg. This invention relates to resin laminates.

〔従来の技術〕[Conventional technology]

従来よりポリイミド樹脂やエポキシ樹脂は、積層板用な
どの樹脂として多用されている。なかでも、ポリイミド
樹脂は特開昭59−20659号公報、特開昭61−4
0322号公報に記載のごとく、高密度実装用の高多層
配線基板に多用されてきている。
Conventionally, polyimide resins and epoxy resins have been widely used as resins for laminated boards and the like. Among them, polyimide resins are disclosed in JP-A-59-20659 and JP-A-61-4.
As described in Japanese Patent No. 0322, it has been widely used in high-multilayer wiring boards for high-density packaging.

その理由は次の欅な特徴にある。■配線基板を高密度化
するための配線導体の微細化、微細孔あけなどの高精度
加工が可能である、■厚み方向の熱膨張率が小さく、ス
ルホールメツキによる導通信顧性が高い、■ドリル加工
工程でのスミア発生かない、■高温時の導体密着力およ
び硬度が高く、実装性が良好である、■高温(たとえば
、200°C)での連続使用に耐えるなど、しかしなが
ら、近年、ポリイミド樹脂の積層板において、コンピュ
ーターをはしめ半導体装置を使った電子機械装置の高速
化に合わせた半導体の高速化に対応し、電気信号の伝播
速度の高速化と、−層の高密度実装のための多層化での
信鱈性の向上、さらに、安全性の向上などが切望されて
いた。
The reason for this lies in the following important characteristics. ■High-precision processing such as miniaturization of wiring conductors and micro-hole drilling is possible in order to increase the density of wiring boards.■The coefficient of thermal expansion in the thickness direction is low, and the through-hole plating provides high conductivity characteristics.■ However, in recent years, polyimide Resin laminates are designed to accommodate the increasing speed of semiconductors in line with the increasing speed of electromechanical devices that use semiconductor devices to hold computers, to increase the propagation speed of electrical signals, and to enable high-density packaging of -layers. There was a strong desire to improve reliability through multi-layering, as well as improve safety.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明者らは、これらの課題に対して先に電気信号の伝
播速度の高速化に適合するための積層板の誘電率の低下
、スルホール信幀性を高めるための樹脂の基材への良好
な充填性により高密度実装を可能にし、さらに、難燃性
による安全性の向上を可能にすることのできるポリイミ
ド樹脂組成物、そのプリプレグ、およびその積層板を提
供した。
The present inventors have addressed these issues by first reducing the permittivity of the laminate to accommodate the higher propagation speed of electrical signals, and improving the resin base material to improve through-hole reliability. The present invention provides a polyimide resin composition, a prepreg thereof, and a laminate thereof, which enable high-density packaging due to its filling properties, and further improve safety due to flame retardancy.

そこで、さらに、誘電率が低く、樹脂の基材への良好な
充填性によりスルホール信軌性が高いこれらの特性を安
定して示すポリイミド樹脂組成物、そのプリプレグ、お
よびその積層板を提供することにある。
Accordingly, it is an object of the present invention to further provide a polyimide resin composition, a prepreg thereof, and a laminate thereof, which stably exhibit these properties of low dielectric constant and high through-hole conductivity due to good filling properties of the resin into a base material. It is in.

〔問題を解決するための手段〕[Means to solve the problem]

本発明は、上記の点に鑑みて為されたものである0本発
明者らは、一般に知られている付加型ポリイミド樹脂に
ついて誘電率を低下させる研究を行った結果、誘電率を
低下させるのに有効な化学構造とその量的な寄与を見出
した。加えて、トリアリルイソシアヌレート類を所定量
配合すると、さらに、誘電率が低下することを見出した
。なおトリアリルイソシアヌレートffの使用にあたっ
ては、トリアリルイソシアヌレートモノマーに、所定量
のトリメタリルイソシアヌレートを併用することにより
、均質で安定したプリプレグを得ることができスルホー
ル信転性に優れ、低誘電率の積層板を安定して得ること
ができるポリイミド樹脂組成物、そのプリプレグを見出
したのである。
The present invention has been made in view of the above points. As a result of research into reducing the dielectric constant of commonly known addition type polyimide resins, the present inventors have found that We found an effective chemical structure and its quantitative contribution. In addition, it has been found that when a predetermined amount of triallylisocyanurate is blended, the dielectric constant further decreases. When using triallyl isocyanurate ff, a homogeneous and stable prepreg can be obtained by using the triallyl isocyanurate monomer in combination with a predetermined amount of trimethallyl isocyanurate, which has excellent through hole conductivity and has low dielectric properties. They have discovered a polyimide resin composition and a prepreg thereof that can stably produce a laminate with a high density.

さらに、反応基を有する臭素化樹脂を所定量配合するこ
とにより、接着性の低下、耐熱性の低下などの副作用を
引き起こさず、難燃性を有する低誘電率の積層板を安定
して得ることができるポリイミド樹脂組成物、そのプリ
プレグを見出したのである。
Furthermore, by blending a predetermined amount of a brominated resin having a reactive group, it is possible to stably obtain a flame-retardant, low dielectric constant laminate without causing side effects such as a decrease in adhesion and heat resistance. They have discovered a polyimide resin composition and its prepreg that can be used.

ポリイミド樹脂組成物は、 (イ)ポリイミド樹脂、 (ロ)前記ポリイミド樹脂100重量部に対して10〜
200重量部の範囲となる量で配合されるトリアリルイ
ソシアヌレート類で、このトリアリルイソシアヌレート
類はトリアリルイソシアヌレトモツマ−が50〜90重
量部と、トリメタリルイソシアヌレートが50〜10重
量部の範囲で配合されたもの (ハ)および、促進剤、希釈溶媒などからなることを特
徴とするものであり、さらに、難燃性をえるためにはポ
リイミド樹脂100重量部に対して臭素含有重量で1〜
50重量部の範囲の反応基を有する臭素化樹脂を配合し
てなることを特徴とするものである6 また、ポリイミド樹脂のプリプレグは、(イ)ポリイミ
ド樹脂 (ロ)前記ポリイミド樹脂100重量部に対して10〜
200重量部の範囲となる量で配合されるトリアリルイ
ソシアヌレート類で、このトリアリルイソシアヌレート
類はトリアリルイソシアヌレートモノマーが50〜90
重量部と、トリメタリルイソシアヌレートが50〜10
重量部の範囲で配合されたもの (ハ)および、促進剤、希釈溶媒などからなる積層板用
の樹脂組成物を基材に含浸させ、半硬化させたことを特
徴とするものであり、さらに、難燃性をえるためにはポ
リイミド樹脂100重量部に対して臭素含有重量で1〜
50重量部の範囲の反応基を有する臭素化樹脂を配合し
てなることを特徴とするものである。
The polyimide resin composition includes (a) polyimide resin, and (b) 10 to 10 parts by weight of the polyimide resin.
Triallylisocyanurates are blended in an amount ranging from 200 parts by weight, and these triallylisocyanurates include 50 to 90 parts by weight of triallylisocyanurate and 50 to 10 parts by weight of trimethallyl isocyanurate. (c), an accelerator, a diluting solvent, etc. In addition, in order to obtain flame retardance, the bromine content is added to 100 parts by weight of the polyimide resin. So 1~
It is characterized in that it is made by blending a brominated resin having a reactive group in the range of 50 parts by weight.6 In addition, the polyimide resin prepreg includes (a) a polyimide resin, and (b) 100 parts by weight of the polyimide resin. 10~
Triallyl isocyanurate is blended in an amount ranging from 200 parts by weight, and the triallyl isocyanurate contains 50 to 90 parts of triallyl isocyanurate monomer.
parts by weight, and trimethallyl isocyanurate is 50 to 10
It is characterized by impregnating a base material with a resin composition for laminates consisting of a mixture of parts by weight (c), an accelerator, a diluting solvent, etc., and semi-curing it, and further In order to obtain flame retardancy, the bromine content should be 1 to 100 parts by weight of polyimide resin.
It is characterized by containing 50 parts by weight of a brominated resin having a reactive group.

また、ポリイミド樹脂の積層板は、 (イ)ポリイミド樹脂 (ロ)前記ポリイミド樹脂100重量部に対して10〜
200重量部の範囲となる量で配合されるトリアリルイ
ソシアヌレート類で、このトリアリルイソシアヌレート
類はトリアリルイソシアヌレトモツマ−が50〜90重
量部と、トリメタリルイソシアヌレートが50〜10重
量部の範囲で配合されたもの (ハ)および、促進剤、希釈溶媒などからなる積層板用
の樹脂組成物を基材に含浸させ半硬化させたプリプレグ
が硬化したことを特徴とするものであり、さらに、難燃
性をえるためにはポリイミド樹脂100重量部に対して
臭素含有重量で1〜50重量部の範囲の反応基を有する
臭素化樹脂を配合してなることを特徴とするものである
In addition, the polyimide resin laminate is made of (a) polyimide resin (b) 10 to 10 parts by weight of the polyimide resin (b)
Triallylisocyanurates are blended in an amount ranging from 200 parts by weight, and these triallylisocyanurates include 50 to 90 parts by weight of triallylisocyanurate and 50 to 10 parts by weight of trimethallyl isocyanurate. It is characterized by curing a prepreg prepared by impregnating a base material with a resin composition for laminates consisting of an accelerator, a diluting solvent, etc. and semi-curing it, Furthermore, in order to obtain flame retardancy, a brominated resin having a reactive group in a range of 1 to 50 parts by weight of bromine is blended with 100 parts by weight of the polyimide resin. .

以下に、これらを詳しく説明する。These will be explained in detail below.

ポリイミド樹脂は、不飽和ビス−イミド類とジアミン類
などを反応させて得ることができる。このようにして得
るポリイミド樹脂には、アルキル基または、メチレン基
を除くアルキレン基の少なくとも一方をポリイミド樹脂
中に11重量%以上含有するのが好ましい、なぜならば
、アルキル基または、メチレン基を除くアルキレン基が
樹脂の分子中に11重量%未満の化学構造の場合には、
ポリイミド樹脂の誘電率を低下させることができないか
らである。
Polyimide resins can be obtained by reacting unsaturated bis-imides with diamines and the like. The polyimide resin obtained in this way preferably contains at least 11% by weight of at least one of an alkyl group or an alkylene group other than a methylene group, because the polyimide resin contains at least 11% by weight of an alkyl group or an alkylene group other than a methylene group. If the group has a chemical structure of less than 11% by weight in the resin molecule,
This is because the dielectric constant of polyimide resin cannot be lowered.

前記不飽和ビス−イミドは下記の式(I)、ジアミンは
下記の式(n)でそれぞれ表されるものを用いることが
できる。
The unsaturated bis-imide may be represented by the following formula (I), and the diamine may be represented by the following formula (n).

〔式(I)中りは炭素−炭素間の二重結合を含む2価の
基を表し、Aは少なくとも2個の炭素原子を含む2価の
基を表す) H,N−B−NH,(It) 〔式(II)中のBは30個以下の炭素原子を有する2
価の基である〕 式(1)のAおよび、式(II)のBは同一か、または
異なることができ、また13個よりも少ない炭素原子を
持っている直鎖のもしくは分岐したアルキレン基か、環
の中に5個もしくは6個の炭素原子をもっている環状ア
ルキレン基か、O,NおよびS原子の少なくとも1個を
含む異種環状基か、またはフェニレンもしくは多環状芳
香族基であることもできる。これらの種々の基は反応温
度70〜170°C1反応時間30〜350分の反応条
件のもとて不必要な副反応を与えない置換基をもってい
てもよい。
[The formula (I) represents a divalent group containing a carbon-carbon double bond, and A represents a divalent group containing at least 2 carbon atoms.] H, N-B-NH, (It) [B in formula (II) has 30 or less carbon atoms 2
A of formula (1) and B of formula (II) can be the same or different and are straight-chain or branched alkylene groups having less than 13 carbon atoms. or a cyclic alkylene group having 5 or 6 carbon atoms in the ring, a heterocyclic group containing at least one of O, N and S atoms, or a phenylene or polycyclic aromatic group. can. These various groups may have substituents that do not cause unnecessary side reactions under reaction conditions of reaction temperature of 70 to 170 DEG C. and reaction time of 30 to 350 minutes.

式(1)のAおよび、式(II)のBはまた、沢山のフ
ェニレン基か、または直接にまたは2価の原子または次
の様な群で結合された脂環状の基を表わすこともできる
。たとえば、それらは酸素もしくは硫黄か、炭素原子1
個から3個のアルキレンの群か、または次の群の内の1
つである。
A in formula (1) and B in formula (II) can also represent a number of phenylene groups or an alicyclic group bonded directly or with divalent atoms or groups such as . For example, they are oxygen or sulfur, or one carbon atom
from 3 to 3 alkylene groups, or one of the following groups:
It is one.

NR4−−P (0)R,−、−N=NO=N−−Co
−0−、−3o。
NR4--P (0)R,-,-N=NO=N--Co
-0-, -3o.

S i Rz R4、C0NH NY−Co−X−Co−NY −o−co−x−co−o− 式中R8 およびYはおのおの炭素原子1 個から4個のアルキル基、環中に5個もしく6個の炭素
原子を持つ環状アルキル基、もしくはフェニルもしくは
多環状芳香族基を表し、Xは13個よりも少ない炭素原
子を持っている直鎖もしくは分岐したアルキレン基、環
の中に5個もしくは6個の炭素原子をもっている環状ア
ルキレン基、または単環もしくは多環状アリレン基を表
す。
S i Rz R4, C0NH NY-Co-X-Co-NY -o-co-x-co-o- In the formula, R8 and Y each have 1 to 4 carbon atoms, and as many as 5 alkyl groups in the ring. represents a cyclic alkyl group having 6 carbon atoms, or a phenyl or polycyclic aromatic group, where X is a straight-chain or branched alkylene group having fewer than 13 carbon atoms, 5 in the ring or a cyclic alkylene group having 6 carbon atoms, or a monocyclic or polycyclic arylene group.

なお、前記の式(1)中の基りを含む次式:はエチレン
系無水物から誘導されるもので、例えばマレイン酸無水
物、シトラコン酸無水物、テトラヒドロフタル酸無水物
、イタコン酸無水物、およびシクロジエンとこれらの無
水物の1つとの間に起こるディールスアルダー反応の生
成物を表すこともできる。
The following formula including the group in formula (1) above is derived from an ethylene anhydride, such as maleic anhydride, citraconic anhydride, tetrahydrophthalic anhydride, itaconic anhydride. , and can also represent the product of a Diels-Alder reaction between a cyclodiene and one of these anhydrides.

使用することのできる式(1)の好ましい不飽和ビス−
イミドには次のものが挙げられる。
Preferred unsaturated bis- of formula (1) that can be used
Imides include the following:

マレイン酸N・N’−エチレン−ビス−イミド、マレイ
ン酸N −N ’−ヘキサメチレンービスーイミド、マ
レイン酸N−N’−メタフェニレン−ビス−イミド、マ
レイン酸N−N’−バラフェニレン−ビス−イミド、マ
レイン酸N−N’−4・4′ジフェニルメタン−ビス−
イミド〔通常、N・N′−メチレンビス(N−フェニル
マレイミド)とも言われる]、マレイン酸N−N’−4
・41ジフェニルエーテル−ビス−イミド、マレイン酸
N−N’−4・4′−ジフェニルスルフォンビス−イミ
ド、マレイン酸N−N’−4・4′ジシクロヘキシルメ
タン−ビス−イミド、マレイン酸N−N’−α・α′−
4・4′−ジメチレンシクロヘキサン−ビス−イミド、
マレイン酸N・N1−メタキシリレン−ビス−イミド、
マレイン酸N−N’−ジフェニルシクロキサン−ビス−
イミド、1・3−ビス(2−p−アニリノプロピリデン
)ベンゼン−ビス−イミド、1・4−ビス(2−P−ア
ニリノプロピリデン)ベンゼン−ビスイミド、1・4−
ビス(2−m−アニリノプロピリデン)ベンゼン−ビス
−イミド、4・4′メチレンジー2・6−キシリシン−
ビス−イミド、4・4′−メチレンジー2・6−シエチ
ルアニリンービスーイミド、4・4°−ジアミノ−3・
3゜−ジエチル−5・51−ジメチルジフェニルメタン
−ビス−イミド、4・41−メチレンジー2・6−ジイ
ツプロピルアニリンービスーイミド、2・5−ジメチル
−p−フェニレンジアミン−ビス−イミド、2・2−ビ
ス(4−アミノフェニル)プロパン−ビス−イミド、2
・4−ジアミノメシチレン−ビス−イミド、および、3
・5−ジエチル−2・4−トリレンジアミン−ビス−イ
ミドなど。
Maleic acid N-N'-ethylene-bis-imide, maleic acid N-N'-hexamethylene-bis-imide, maleic acid N-N'-metaphenylene-bis-imide, maleic acid N-N'-paraphenylene- Bis-imide, maleic acid N-N'-4,4' diphenylmethane-bis-
Imide [usually also referred to as N-N'-methylenebis (N-phenylmaleimide)], maleic acid N-N'-4
・41 diphenyl ether-bis-imide, maleic acid N-N'-4,4'-diphenylsulfone bis-imide, maleic acid N-N'-4,4' dicyclohexylmethane-bis-imide, maleic acid N-N' −α・α′−
4,4'-dimethylenecyclohexane-bis-imide,
maleic acid N・N1-methaxylylene bis-imide,
Maleic acid N-N'-diphenylcycloxane-bis-
Imide, 1,3-bis(2-p-anilinopropylidene)benzene-bis-imide, 1,4-bis(2-P-anilinopropylidene)benzene-bisimide, 1,4-
Bis(2-m-anilinopropylidene)benzene-bis-imide, 4,4'methylene-2,6-xylysine-
Bis-imide, 4,4'-methylene di-2,6-ethylaniline-bis-imide, 4,4°-diamino-3,
3゜-Diethyl-5,51-dimethyldiphenylmethane-bis-imide, 4,41-methylenedi-2,6-diitupropylaniline-bis-imide, 2,5-dimethyl-p-phenylenediamine-bis-imide, 2. 2-bis(4-aminophenyl)propane-bis-imide, 2
・4-diaminomesitylene-bis-imide, and 3
- 5-diethyl-2,4-tolylenediamine-bis-imide, etc.

また、使用することのできる式(It)のジアミンの実
例には次のものがある。4・4゛−ジアミノジシクロヘ
キシルメタン、■・4−ジアミノシクロヘキサン、2・
6−ジアミツピリジン、メタフェニンジアミン、パラフ
ェニンジアミン、4・4′−ジアミノジフェニルメタン
、2・2−ビス〜(4−アミノフェニル)プロパン、ヘ
ンジジン、4・4′−ジアミノフェニルオキサイド、4
・41ジアミノジフエニルサルフアイド、4・4“ジア
ミノジフェニルスルフォン、ビス−(4−アミノフェニ
ル)ジフェニルシラン、ビス〜(4−アミノフェニル)
メチルホスフィンオキサイド、ビス−(3−アミノフェ
ニル)メチルホスフィンオキサイド、ビス−(4−アミ
ノフェニル)フェニルホスフィンオキサイド、ビス−(
4−アミノフェニル)フェニラミン、1・5−ジアミノ
ナフタレン、メタキシリレンジアミン、パラキシリレン
ジアミン、■・1−ビス−(パラアミノフェニル)フタ
ラン、ヘキサメチレンジアミン、l・3ビス(2−p−
アニリノプロピリデン)ベンゼン、1・4−ビス(2−
p−アニリノプロピリデン)ベンゼン、1・4−ビス(
2−m−アニリノプロピリデン)ベンゼン、4・4°−
メチレンジー2・6−キシリジン、4・41−メチレン
ジ2・6〜ジエチルアニリン、4・41−ジアミノ3・
31−ジエチル−5・5′−ジメチルジフェニルメタン
、4・41−メチレンジー2・6ジイソプロビルアニリ
ン、2・5−ジメチル−p−フェニレンジアミン、2・
2−ビス(4−アミノフェニル)プロパン、2・4−ジ
アミノメシチレン、および、3・5−ジエチル−2・4
−トリレンジアミンなど。
Examples of diamines of formula (It) that can also be used include: 4・4゛-diaminodicyclohexylmethane, ■・4-diaminocyclohexane, 2・
6-diamitupyridine, metaphenynediamine, paraphenynediamine, 4,4'-diaminodiphenylmethane, 2,2-bis-(4-aminophenyl)propane, henzidine, 4,4'-diaminophenyl oxide, 4
・41 diaminodiphenyl sulfide, 4.4"diaminodiphenylsulfone, bis-(4-aminophenyl)diphenylsilane, bis~(4-aminophenyl)
Methylphosphine oxide, bis-(3-aminophenyl)methylphosphine oxide, bis-(4-aminophenyl)phenylphosphine oxide, bis-(
4-aminophenyl)pheniramine, 1,5-diaminonaphthalene, meta-xylylene diamine, para-xylylene diamine, ■・1-bis-(para-aminophenyl)phthalane, hexamethylene diamine,
anilinopropylidene)benzene, 1,4-bis(2-
p-anilinopropylidene)benzene, 1,4-bis(
2-m-anilinopropylidene)benzene, 4.4°-
Methylenedi2,6-xylidine, 4,41-methylenedi2,6-diethylaniline, 4,41-diamino3,
31-diethyl-5,5'-dimethyldiphenylmethane, 4,41-methylenedi-2,6-diisoprobylaniline, 2,5-dimethyl-p-phenylenediamine, 2.
2-bis(4-aminophenyl)propane, 2,4-diaminomesitylene, and 3,5-diethyl-2,4
- Tolylene diamine etc.

そして、上記のビス−イミドとジアミンとを反応させる
ことによって付加型のポリイミド樹脂を調製することが
できる。ビス−イミドとジアミンとの配合比は、モル比
でジアミン1に対してビス−イミドが1.7〜2.5の
範囲が好ましい。17よりビス−イミドが少ないと高分
子量の生成が多くなって硬化時間が短くなり取扱に問題
が住じる傾向があり、また、2.5よりビス−イミドが
多いと未反応原料が多く残存し昌くなる。反応はビス−
イミドとジアミンとをN−メチルピロリドン(NMP)
やN、N−ジメチルアセトアミド(DMA c )など
の溶削に溶解した状態で行うことができるものであり、
反応の際の加熱温度は70〜170℃程度の範囲で行う
ことができ、反応時間は30〜350分程度の範囲で行
うことができる。
Then, an addition type polyimide resin can be prepared by reacting the above bis-imide with a diamine. The mixing ratio of bis-imide and diamine is preferably in a molar ratio of 1.7 to 2.5 bis-imide to 1 diamine. If the amount of bis-imide is less than 17, a large amount of high molecular weight will be produced, shortening the curing time, and there will be problems in handling.If the amount of bis-imide is more than 2.5, a large amount of unreacted raw material will remain. It becomes Shimasa. The reaction is bis-
Imide and diamine are combined into N-methylpyrrolidone (NMP).
or N,N-dimethylacetamide (DMAc).
The heating temperature during the reaction can be in the range of about 70 to 170°C, and the reaction time can be in the range of about 30 to 350 minutes.

本発明のポリイミド樹脂組成物は、前記のポリイミド樹
脂100重量部(以下、部と記す)にトリアリルイソシ
アヌレート(以下、TAICと記す)類、を10〜20
0重量部の範囲となる量で、このTAIC類のTAIC
モノマー50〜90重量部に対して、トリメタリルイソ
シアヌレート(以下、TMAIC)が50〜10重量部
の範囲で配合されたちを配合し、さらに、促進剤として
イミダゾール類や有機過酸化物などと、希釈溶媒として
DMAc、ジオキサ、ン、NMPSMEK、ジメチルホ
ルムアミド(DMF)などの中から適宜、単独または、
混合して用いたものからなる樹脂組成物である。TAI
CI!の添加量を増すと、それから得られる積層板の誘
電率が低下する傾向にあり、10部未満の添加では誘電
率の低下の効果が殆ど認められず、200部を越して使
用すると誘電率は低下するが、積層板として硬く、脆い
ものとなり好ましくない、また、TA I Cモノマと
TMAI Cの添加で樹脂組成物の固有粘度と表面張力
が低下することによって、基材の繊維間に樹脂組成物が
良く浸透し、かっTMA I CにコってTAICモノ
マーの乾燥工程での揮発が抑拳され、TAICの残量が
安定し、増したことにJす、基材への樹脂の充填が著し
く向上したプリプレグを安定して得ることができる。そ
して、こCプリプレグが硬化した積層板においては、ス
ルオールメツキのメツキの染み込み長さがバラツキすく
なく著しく短かくなり、同時にスルホールの内壁が著し
く平滑にバラツキすくなく仕上がり、これらによってス
ルホールと内装回路との絶縁性が確保されスルホールの
信較性が安定して著しく向上するなどの効果を得ること
ができた。
The polyimide resin composition of the present invention contains 10 to 20 parts by weight of the above-mentioned polyimide resin and triallyl isocyanurate (hereinafter referred to as TAIC).
TAIC of this TAIC class in an amount within the range of 0 parts by weight.
Trimethallylisocyanurate (hereinafter referred to as TMAIC) is blended in a range of 50 to 10 parts by weight to 50 to 90 parts by weight of the monomer, and further, imidazoles, organic peroxides, etc. are added as accelerators. As a diluting solvent, DMAc, dioxane, NMPSMEK, dimethylformamide (DMF), etc., may be used alone or as appropriate.
It is a resin composition consisting of mixed materials. TAI
CI! As the amount of addition increases, the dielectric constant of the resulting laminate tends to decrease; when less than 10 parts is added, there is almost no effect of lowering the dielectric constant, and when more than 200 parts are added, the dielectric constant decreases. However, the laminate becomes hard and brittle, which is undesirable.Additionally, the addition of TA I C monomer and TMAI C lowers the intrinsic viscosity and surface tension of the resin composition, which causes the resin composition to deteriorate between the fibers of the base material. The material penetrated well, and the volatilization of TAIC monomer during the drying process was suppressed due to TMA I C, and the remaining amount of TAIC was stabilized and increased. A significantly improved prepreg can be stably obtained. In the laminated board in which this C prepreg is cured, the penetration length of the through-hole plating is significantly shortened without any variation, and at the same time, the inner wall of the through-hole is finished extremely smooth and without any variation. The insulation properties were ensured, and through-hole reliability was stabilized and significantly improved.

TAICモノマーとTMA I Cの使用量は、TAr
c七ツマ−50〜90重量部に対してTMAIC50〜
10重量部で配合されたものであり、この配合の範囲が
、プリプレグ製造時の乾燥においてTAICモノマーの
激しい揮発を抑制することができるのである。TAIC
モノマーにTMAICを添加してこの効果が認められる
のがTMAICIO部の配合であり、50部を超して配
合してももはやその効果変わらないので上記範囲に限定
されるのである。このことによって基材に含浸した樹脂
組成物を十分に安定して半硬化させることができ、基材
への樹脂の充填が著しく向上したプリプレグを安定して
得ることができるのである。
The amount of TAIC monomer and TMA I C used is TAr
c Nanatsuma - TMAIC50~90 parts by weight
It is blended in an amount of 10 parts by weight, and this range of blending can suppress the intense volatilization of the TAIC monomer during drying during prepreg production. TAIC
This effect is observed when TMAIC is added to the monomer when TMAICIO is added, and the effect is no longer changed even if more than 50 parts are added, so it is limited to the above range. As a result, the resin composition impregnated into the base material can be semi-cured in a sufficiently stable manner, and a prepreg in which the resin filling into the base material is significantly improved can be stably obtained.

電子機械装置の安全化のために要求される難燃性の確保
には、難燃剤として反応基を有する臭素化樹脂を前記ポ
リイミド樹脂組成物に配合する必要があり、特に、反応
基を有する臭素化樹脂の配合量をポリイミド樹脂100
重量部に対して、臭素含有重量で1〜50重量部の範囲
で用いる必要がある。その理由は、1重量部未満では、
難燃性が得られず、50重量部を越して用いると得られ
る積層板の耐熱性が悪くなり、誘電率も上昇するなど性
能が低下するからである。また、反応基を有する臭素化
樹脂でなければならないのは、難燃剤を前記ポリイミド
樹脂の側鎖、末端の基と反応させ、そのポリイミド樹脂
構造の骨格内に取り込むことによって、初めて層間接着
力、スルホール信幀性、耐熱性などと難燃性の性能を兼
備したものが得られるからである。
In order to ensure the flame retardancy required for the safety of electronic mechanical devices, it is necessary to incorporate a brominated resin having a reactive group as a flame retardant into the polyimide resin composition. The blending amount of polyimide resin is 100%
It is necessary to use it in a range of 1 to 50 parts by weight based on the bromine content. The reason is that less than 1 part by weight,
This is because flame retardancy cannot be obtained, and if more than 50 parts by weight is used, the heat resistance of the resulting laminate deteriorates, the dielectric constant increases, and performance deteriorates. In addition, the brominated resin must have a reactive group because the flame retardant is reacted with the side chains and terminal groups of the polyimide resin and incorporated into the skeleton of the polyimide resin structure, thereby increasing the interlayer adhesive strength. This is because it is possible to obtain a product that combines throughhole reliability, heat resistance, and flame retardant performance.

したがって、反応基として、エポキシ基、アリル基、ビ
ニル基などを有する炭素原子1個から4個のアルキル、
環中に5個もしくは6個の炭素原子を持つ環状アルキル
、もしくはフェニルもしくは多環状芳香族、または、1
3個よりも少ない炭素原子を持っている直鎖もしくは分
岐したアルキレン、環の中に5個もしくは6個の炭素原
子をもっている環状アルキレン、または単環もしくは多
環状アリレンなどの臭素化樹脂の中から適宜用いること
ができる。特に、好ましい反応基としては、耐熱性、層
間接着力を維持、もしくは向上させる点で、エポキシ基
をあげることができる。
Therefore, as a reactive group, an alkyl having 1 to 4 carbon atoms having an epoxy group, an allyl group, a vinyl group, etc.
cyclic alkyl or phenyl or polycyclic aromatic with 5 or 6 carbon atoms in the ring, or 1
from among brominated resins such as straight-chain or branched alkylenes having less than 3 carbon atoms, cyclic alkylenes having 5 or 6 carbon atoms in the ring, or monocyclic or polycyclic arylenes; It can be used as appropriate. In particular, an epoxy group can be mentioned as a preferable reactive group since it maintains or improves heat resistance and interlayer adhesive strength.

以上のポリイミド樹脂組成物がらプリプレグを得るには
、前記のポリイミド樹脂組成物を基材に含浸させた後、
希釈溶媒を乾燥1発させつつポリイミド樹脂とTAIC
モノマーやTMA I Cとの反応を進行させ基材中の
樹脂組成物を半硬化させて得られたものである。さらに
難燃性を得るために含有した反応性を有する臭素化樹脂
もこのプリプレグ調製時に、反応基がポリイミド樹脂の
側鎖、末端の基と反応し、ポリイミド樹脂構造の骨格内
に取り込まれるのである。
In order to obtain a prepreg from the above polyimide resin composition, after impregnating the base material with the above polyimide resin composition,
Polyimide resin and TAIC while drying the diluted solvent once
It is obtained by semi-curing the resin composition in the base material by proceeding with the reaction with monomers and TMA IC. Furthermore, the reactive brominated resin contained in order to obtain flame retardancy reacts with the side chains and terminal groups of the polyimide resin during the preparation of this prepreg, and is incorporated into the skeleton of the polyimide resin structure. .

前記のポリイミド樹脂組成物を含浸させる基材のW類は
、特に限定されない0通常は、ガラスクロス等が用いら
れる。この他、石英繊維布等の無機繊維布、ポリイミド
樹脂繊維布等の高耐熱性有機繊維布等が用いられてもよ
い。
The W of the base material to be impregnated with the polyimide resin composition is not particularly limited, and glass cloth or the like is usually used. In addition, inorganic fiber cloth such as quartz fiber cloth, highly heat-resistant organic fiber cloth such as polyimide resin fiber cloth, etc. may be used.

半硬化させる時の温度は110〜155℃で行うのが好
ましい。155°Cを越えると、特にTAICモノマー
が揮発し易く、反応が進み過ぎ、得られるプリプレグの
層間接着力が低下し、誘電率の低下する効果が小さくな
り、110℃未満では、処理に時間がかかり実用てきで
ないからである。半硬化とは、熱硬化性樹脂の硬化過程
において、一般にBステージと言われる範囲のものであ
り、さらに熱が加われば樹脂が流動し、硬化反応が起こ
りえる状態のものを言う。
The temperature during semi-curing is preferably 110 to 155°C. If the temperature exceeds 155°C, the TAIC monomer in particular will easily volatilize, the reaction will proceed too much, the interlayer adhesion of the resulting prepreg will decrease, and the effect of lowering the dielectric constant will become smaller. This is because it is not practical. Semi-cured refers to the range generally referred to as the B stage in the curing process of thermosetting resins, and refers to a state in which the resin flows when heat is applied and a curing reaction can occur.

次には、前記のポリイミド樹脂のプリプレグをを1枚以
上積層してポリイミド樹脂の積層板を作ることかできる
、すなわち、必要に応じて、銅、ニッケル、アルミニウ
ムなどの金属箔あるいは、回路形成された金属箔などと
プリプレグを積層成形してつくられる。その積層成形は
常法により行うことができる。
Next, a polyimide resin laminate can be made by laminating one or more of the above-mentioned polyimide resin prepregs. That is, if necessary, a metal foil such as copper, nickel, or aluminum or a circuit formed thereon can be made. It is made by laminating prepreg and metal foil. The lamination molding can be performed by a conventional method.

なお、この積層板には、前記の化学構造のポリイミド樹
脂に、TA I CIIを配合したポリイミド樹脂組成
物が用いられ、樹脂組成物の基材への充填が安定して十
分に行われている。したがって、この積層板を用いれば
、誘電率が低く、スルホール信顛性が著しく高い特性を
安定して有する積層板を得ることが可能となり、このT
AI CMを配合したポリイミド樹脂組成物に、さらに
反応基をもつ臭素化樹脂を配合したポリイミド樹脂組成
物を用いた積層板においては、層間接着力、スルホル信
鯨性、および、耐熱性と難燃性の兼備した積層板を得る
ことが可能となり、多層積層板、特に、8層以上の多層
積層板においては、有用な特性を有することになるので
ある。 次に、以上の発明を実施例と比較例によって説
明する。
Note that this laminate uses a polyimide resin composition in which TA I CII is blended with a polyimide resin having the above chemical structure, and the resin composition is stably and sufficiently filled into the base material. . Therefore, by using this laminate, it is possible to obtain a laminate that stably has the characteristics of low dielectric constant and extremely high through hole reliability, and this T
A laminate using a polyimide resin composition in which a brominated resin having a reactive group is further blended into a polyimide resin composition containing AI CM has excellent interlayer adhesion, sulfur resistance, heat resistance, and flame retardancy. It becomes possible to obtain a laminate having both properties, and multilayer laminates, particularly multilayer laminates with eight or more layers, have useful properties. Next, the above invention will be explained using Examples and Comparative Examples.

〔実施例〕〔Example〕

実施例1〜18と比較例1〜3は、第1表と第2表の上
半分に示される各々の配合のポリイミド樹脂組成物でな
り、これらの樹脂組成物からなるプリプレグおよび積層
板の特性値は第1表と第2表の下半分に示す。
Examples 1 to 18 and Comparative Examples 1 to 3 are made of polyimide resin compositions having the respective formulations shown in the upper half of Tables 1 and 2, and the characteristics of prepregs and laminates made of these resin compositions are as follows. The values are shown in the lower half of Tables 1 and 2.

第1表と第2表のポリイミド樹脂は、それぞれ次のもの
を用いた。
The following polyimide resins were used in Tables 1 and 2, respectively.

Hは、マレイン酸N、N’−4・4′−ジフェニルメタ
ン−ビス−イミドと4・41−ジアミノジフェニルメタ
ンとから合成されたもので、アルキル基または、アルキ
レン基を樹脂の分子中に含有しない。
H is synthesized from maleic acid N, N'-4,4'-diphenylmethane-bis-imide and 4,41-diaminodiphenylmethane, and does not contain an alkyl group or an alkylene group in the resin molecule.

雲2は、4・4′−メチレンジー2・6−キシリシン−
ビス−イミドと4・4′−ジアミノジフェニルメタンと
から合成されたもので、アルキル基を樹脂の分子中に1
3重量%含有する。
Cloud 2 is 4,4'-methylenedi2,6-xylysine-
It is synthesized from bis-imide and 4,4'-diaminodiphenylmethane, and has one alkyl group in the resin molecule.
Contains 3% by weight.

雲3は、4・4′−メチレンジー2・6−ジニチルアニ
リンービスーイミドと1・4−ビス(2−pアニリノプ
ロピリデン)ベンゼンから合成されたもので、アルキル
基を樹脂の分子中に24.5%含有する。
Cloud 3 was synthesized from 4,4'-methylenedi-2,6-dinithylaniline-bis-imide and 1,4-bis(2-panilinopropylidene)benzene, and the alkyl group was added to the resin molecule. Contains 24.5%.

s4は、4・4′−メチレンジー2・6ジイソプロピル
アニリンービスーイミドと1・4−ビス(2−P−7−
1−!Jノプロピリデン)ベンゼンとから合成されたも
ので、アルキル基を樹脂の分子中に30重量%含有する
s4 is 4,4'-methylene-2,6-diisopropylaniline-bis-imide and 1,4-bis(2-P-7-
1-! J-nopropylidene) benzene, and contains 30% by weight of alkyl groups in the resin molecule.

I5ハ、1・4−ビス(2−P−アニリノプロピリデン
)ベンゼン−ビス−イミドと1・4−ビス(2−m−ア
ニリノプロピリデン)ベンゼンとから合成されたもので
、アルキル基を樹脂の分子中に17重量%含有する。
I5 is synthesized from 1,4-bis(2-P-anilinopropylidene)benzene-bis-imide and 1,4-bis(2-m-anilinopropylidene)benzene, and has an alkyl group. is contained in the resin molecule in an amount of 17% by weight.

難燃剤の臭素化樹脂は、それぞれ次のものを用い、第1
表、第2表には配合量の前に■〜■で種類を明示した。
The following brominated resins are used as flame retardants.
In Tables 2 and 2, the types are clearly indicated with ■ to ■ before the compounding amounts.

■は、反応型の臭素化フェノールノボラック型エポキシ
樹脂(日本化薬社製、BR[!N−5)■は、反応型の
臭素化ビスフェノールA型エポキシ樹脂(東部化成社製
、YDB−400)■は、非反応型の多環状芳香族の臭
素化樹脂(グレートレーク社製、BC58) ■は、非反応型の多環状芳香族の臭素化樹脂レートレー
ク社製、BC52) (グ なお、前記の難燃剤としての臭素化樹脂は、それぞれ、
次の化学構造式で表される。
■: Reactive brominated phenol novolac epoxy resin (manufactured by Nippon Kayaku Co., Ltd., BR[!N-5); ■: Reactive brominated bisphenol A epoxy resin (manufactured by Tobu Kasei Co., Ltd., YDB-400) (2) is a non-reactive polycyclic aromatic brominated resin (manufactured by Great Lake Co., Ltd., BC58) (2) is a non-reactive polycyclic aromatic brominated resin (manufactured by Great Lake Co., Ltd., BC52) Brominated resins as flame retardants are, respectively,
It is represented by the following chemical structural formula.

■ 2〜4 ■ また、促進剤は、いずれも2エチル−4メチルイミダゾ
ール(2E4MZ、四国化成社製)を、希釈溶媒は、樹
脂固形分率が約60%になるようにDMFをそれぞれに
用いた。
■ 2 to 4 ■ In addition, 2-ethyl-4-methylimidazole (2E4MZ, manufactured by Shikoku Kasei Co., Ltd.) was used as the accelerator, and DMF was used as the diluent so that the resin solid content was approximately 60%. there was.

第1表と第2表の実施例1−18、比較例2と比較例1
との誘電率の特性値の対比からポリイミド樹脂にTA 
I C1t、すなわち、TAICモノマーやTMA r
 Cを配合すると誘を率の低下することがTII!認で
きた。
Examples 1-18, Comparative Example 2 and Comparative Example 1 in Tables 1 and 2
From the comparison of the characteristic value of dielectric constant with polyimide resin, TA
I C1t, i.e., TAIC monomer or TMA r
TII that when C is blended, the induction rate decreases! I could recognize it.

さらに、実施例1〜5、実施例7〜13のポリイミド樹
脂と実施例6、実施例14〜18のポリイミド樹脂との
化学構造の対比から、アルキル基を樹脂の分子中に11
重量%以上含有する場合、−層誘電率の低下の効果を奏
することが確認できた。この誘電率の測定はJ I S
、 C6481によって行った。
Furthermore, from the comparison of the chemical structures of the polyimide resins of Examples 1 to 5 and Examples 7 to 13 and the polyimide resins of Examples 6 and 14 to 18, it was found that an alkyl group was added to the resin molecule with 11
It was confirmed that when the content is more than % by weight, there is an effect of lowering the -layer dielectric constant. This dielectric constant measurement is carried out by JIS
, C6481.

また、実施例7〜11、実施例14〜18の反応基を有
する反応型の臭素化樹脂の配合では、実施例12と13
の反応基を持たない非反応型の臭素化樹脂の配合に比べ
層間接着力、耐熱性を高水準に維持したまま難燃性を確
保できることが確認できた。この難燃性の試験はUL−
94に準じて行った。
In addition, in the formulation of reactive brominated resins having reactive groups in Examples 7 to 11 and Examples 14 to 18, Examples 12 and 13
It was confirmed that flame retardancy can be ensured while maintaining interlayer adhesion and heat resistance at a high level compared to formulations of non-reactive brominated resins that do not have reactive groups. This flame retardant test is UL-
It was carried out according to 94.

次に、ポリイミド樹脂のプリプレグについて説明する。Next, polyimide resin prepreg will be explained.

第1表の実施例18以外は、第1表、第2表の樹BFi
&I酸物を厚み0.1m、95g/ax”のEガラス布
に含浸させ、140°Cの乾燥機中で40分間乾燥させ
ることにより各々のプリプレグを得た。実施例18は、
Eガラス布に代えて厚み0.1閣、105 gem”の
Dガラス布を用いて同様にプリプレグを得た。
Other than Example 18 in Table 1, the trees BFi in Tables 1 and 2 are
Each prepreg was obtained by impregnating a 0.1 m thick, 95 g/ax" E glass cloth with &I acid and drying it in a dryer at 140°C for 40 minutes. In Example 18,
A prepreg was similarly obtained using a D glass cloth with a thickness of 0.1 mm and a thickness of 105 gems instead of the E glass cloth.

この結果、第1表、第2表の特性値のプリプレグ揮発分
〔重量%〕に示したように比較例2のTAICモノマー
のみで使用すると、乾燥工程での揮発が激しく樹脂の半
硬化を安定して行うのが困難あり、加えて得られるプリ
プレグの揮発分も大きく、このプリプレグを用いた積層
板では膨れやボイドの原因になる。これに対し実施例1
〜18のTMA f Cを併せて配合すると、乾燥工程
での樹脂の半硬化を安定して行うことが、特にTMAI
Cの場合、蒸気圧がTMA I CO,24mHg/1
34°C,TA I Cモ/7−3mHg/144°C
であり、TAICモノマー単独に比べTMA I Cを
併用することによってTAICモノマーの沸点が上昇す
るために、乾燥工程でのTAICモノマーの揮発が低減
し、TAICの残量が安定しかつ増加するので誘電率の
低減が一層進むものと考えられる。
As a result, as shown in the prepreg volatile content [wt%] of the characteristic values in Tables 1 and 2, when only the TAIC monomer of Comparative Example 2 was used, the volatilization during the drying process was severe and the semi-curing of the resin was stabilized. In addition, the resulting prepreg has a large volatile content, which causes bulges and voids in laminates using this prepreg. In contrast, Example 1
TMAI f
In the case of C, the vapor pressure is TMA I CO, 24 mHg/1
34°C, TA I C/7-3mHg/144°C
Compared to using TAIC monomer alone, the boiling point of TAIC monomer increases by using TMA I C in combination, so the volatilization of TAIC monomer during the drying process is reduced, and the remaining amount of TAIC becomes stable and increases. It is thought that the reduction in the rate will further progress.

なお、プリプレグ揮発分は乾燥前のプリプレグ重量W1
と180°Cで30分間乾燥後のプリプレグ重量W2を
測定し、 100X (Wl−W2)/W1式から求めた。
In addition, the prepreg volatile content is the prepreg weight before drying W1
The prepreg weight W2 after drying at 180°C for 30 minutes was measured and calculated from the formula 100X (Wl-W2)/W1.

次に、前記のプリプレグを用いて形成される積層板につ
いての実施例を説明する。
Next, an example of a laminate formed using the prepreg described above will be described.

前記のプリプレグの両面に18μmの両面粗面化銅箔を
置いて蒸気プレスを用いて、成形温度13o ”c、成
形圧力30kg/cm”、90分間の条件で積層成形を
行い内層プリント配線板用の両面銅張積層板を得た。こ
のようにして得た両面銅張積層板の銅箔をエツチング処
理して回路形成することによって内層プリント配線板を
作成し、35枚の内層プリント配線板をそれぞれの間に
上記と同し4枚のプリプレグを介して重ねると共にその
上下にさらに4枚のプリプレグを介して35μ−厚みの
銅箔を重ね、6anの金型に納め、蒸気プレスを用いて
5 kg/cm”の加圧を行いつつ直ちに130℃まで
加熱し、20分間保持した。この後、30kg/cm”
の圧力で200℃に加熱し、120分間保持した後、圧
力をかけたまま室温まで冷却して両面銅張多層積層板を
得た。
A double-sided roughened copper foil of 18 μm was placed on both sides of the prepreg, and laminated molding was performed using a steam press at a molding temperature of 13°C and a molding pressure of 30 kg/cm for 90 minutes to form an inner layer printed wiring board. A double-sided copper-clad laminate was obtained. Inner layer printed wiring boards were created by etching the copper foil of the double-sided copper-clad laminate obtained in this way to form a circuit, and 35 inner layer printed wiring boards were placed between each of the 4 same inner layer printed wiring boards. 35 μ-thick copper foil was layered on top and bottom of the prepreg with another 4 sheets of prepreg placed between them, placed in a 6an mold, and pressurized to 5 kg/cm using a steam press. Immediately heated to 130°C and held for 20 minutes. After this, 30kg/cm"
The sample was heated to 200° C. under a pressure of 200° C., held for 120 minutes, and then cooled to room temperature while keeping the pressure applied to obtain a double-sided copper-clad multilayer laminate.

この積層板の層と層の間を90°方向に剥がしたときの
接着力を、第1表の特性値の層間接着力〔kg/cm’
Jに示した。また、この積層板に0.4 m霞φのドリ
ルビットを用い、40000rp−の回転数、1回転当
たりの送り速度50μ/revの条件で1000穴あけ
、常法によりスルホールメツキを無電解メツキと電解メ
ンキとを併用して行い、990〜1000大目のスルホ
ールの断面を顕ta鏡で観察し、スルホールメツキの際
に生じるスルホールのメツキ染み込み長さとスルホール
の壁面粗さをそれぞれ測定し、その結果を第1表、第2
表の特性値の欄に示した。
The adhesion force when the layers of this laminate are peeled off in a 90° direction is calculated as the interlayer adhesion force [kg/cm'
Shown in J. In addition, 1,000 holes were drilled in this laminate using a drill bit with a diameter of 0.4 m under the conditions of a rotation speed of 40,000 rpm and a feed rate of 50 μ/rev per rotation, and through-hole plating was performed using a conventional method using electroless plating and electrolytic plating. The cross section of the 990 to 1000-sized through holes was observed with a microscope, and the penetration length of the through holes that occurred during through hole plating and the roughness of the wall surface of the through holes were measured. Table 1, 2
It is shown in the characteristic value column of the table.

TA I Cモノマーおよび、TMA I Cを配合し
た実施例1〜6と、これにさらに、反応型の難燃側を配
合した実施例7〜11、実施例14〜18のいずれにお
いてもスルホールのメツキ染み込み長さが比較例1に比
べ低減している。また、比較例2に比べ、スルホールの
メツキ染み込み長さの最大値と平均値の差が小さいこと
から、得られる特性が安定したものであることが確認で
きた。しかし、難燃性を付与するのに、非反応型の臭素
化樹脂の配合の実施例12と13では、反応型の臭素化
樹脂と同量の配合では、難燃性が得られないだけではな
く、耐熱性が低下する。この耐熱性の低下に原因して、
ドリル加工時の発熱でスルホル壁面が荒れたり、クラッ
クが発生する結果、スルホールのメツキ染み込み長さも
スルホールの壁面粗さも比較例1より悪くなり、TA 
I C類の配合の効果がなくなってしまうことになる。
In Examples 1 to 6, in which TA I C monomer and TMA I C were blended, and in Examples 7 to 11, and Examples 14 to 18, in which reactive flame retardant side was further blended, throughhole plating was The penetration length is reduced compared to Comparative Example 1. Furthermore, compared to Comparative Example 2, the difference between the maximum value and the average value of the plating penetration length of the through holes was smaller, so it was confirmed that the obtained properties were stable. However, in Examples 12 and 13, in which non-reactive brominated resin was blended in the same amount as the reactive brominated resin, flame retardancy could not be obtained. heat resistance decreases. Due to this decrease in heat resistance,
As a result of heat generation during drilling, the through-hole wall surface becomes rough and cracks occur, and as a result, the plating penetration length of the through-hole and the wall surface roughness of the through-hole are worse than in Comparative Example 1.
The effect of the combination of ICs will be lost.

しかし、前記のように反応型の臭素化樹脂の配合では、
難燃性が確保でき、耐熱性を低下させることがない、し
たがって、ドリル加工時の発熱でスルホル壁面が荒れた
り、クランクが発生することを阻止するので、スルホー
ルのメツキ染み込み長さもスルボールの壁面粗さも比較
例Iに比べ著しく低減し、比較例2に比べ、スルホール
のメツキ染み込み長さおよび、スルホールの壁面粗さの
最大値と平均値の差が小さいことから、得られる特性が
安定したものであることが確認できた。
However, as mentioned above, in the formulation of reactive brominated resin,
It ensures flame retardancy and does not reduce heat resistance. Therefore, it prevents the wall surface of the through hole from becoming rough or cranking due to the heat generated during drilling, so the length of penetration of the plating of the through hole also reduces the roughness of the wall surface of the through hole. This is also significantly reduced compared to Comparative Example I, and compared to Comparative Example 2, the difference between the length of plating penetration of the through holes and the maximum value and average value of the wall surface roughness of the through holes is smaller, so the obtained properties are stable. I was able to confirm something.

スルホールのメツキ染み込み長さやスルホールの壁面粗
さの両特性値の小さいことは、いずれもスルホールメツ
キと内層回路との絶縁性が悪くなるのを阻止し、スルホ
ール信鎖性の向上をもたらすものである。なお、実施例
17に比べ基材をDガラス布に変えただけの実施例18
においては、Dガラスの寄与により誘電率は確かに低減
できるが、基材の硬さにより、スルホールのメツキ染み
込み長さが大きくなる、スルホール壁面粗さがあらくな
るなどの欠点が現れてくる。
The small characteristic values of the penetration length of the through-hole plating and the wall surface roughness of the through-hole both prevent the insulation between the through-hole plating and the inner layer circuit from deteriorating and improve the through-hole continuity. . In addition, compared to Example 17, Example 18 only changed the base material to D glass cloth.
Although it is true that the dielectric constant can be reduced by the contribution of D glass, disadvantages appear such as the length of plating penetration of the through holes becomes longer and the roughness of the through hole walls becomes rougher due to the hardness of the base material.

〔発明の効果〕〔Effect of the invention〕

本発明のポリイミド樹脂組成物を用いて、そのプリプレ
グを得、そのプリプレグを積層し硬化させてなる積層板
は、積層板の誘電率を低下させ電気信号の伝播速度の高
速化への安定した適合性、樹脂の基材への安定した良好
な充填性による安定した高いスルホール信幀性などよっ
て一層の高密度実装を、さらに、難燃性によって安全性
の向上を可能にするものである。
A laminate obtained by obtaining a prepreg using the polyimide resin composition of the present invention, laminating and curing the prepreg reduces the dielectric constant of the laminate, and is stable and suitable for increasing the propagation speed of electric signals. It enables higher-density packaging due to its high through-hole reliability due to stable and good filling properties into the resin base material, and also improves safety due to its flame retardancy.

特許出願人  松下電工株式会社Patent applicant Matsushita Electric Works Co., Ltd.

Claims (12)

【特許請求の範囲】[Claims] (1)(イ)ポリイミド樹脂、 (ロ)前記ポリイミド樹脂100重量部に対して10〜
200重量部の範囲となる量で配合されるトリアリルイ
ソシアヌレート類で、このトリアリルイソシアヌレート
類はトリアリルイソシアヌレートモノマーが50〜90
重量部と、トリメタリルイソシアヌレートが50〜10
重量部の範囲で配合されたもの (ハ)および、促進剤、希釈溶媒などからなるポリイミ
ド樹脂組成物。
(1) (a) Polyimide resin, (b) 10 to 10 parts by weight of the polyimide resin
Triallyl isocyanurate is blended in an amount ranging from 200 parts by weight, and the triallyl isocyanurate contains 50 to 90 parts of triallyl isocyanurate monomer.
parts by weight, and trimethallyl isocyanurate is 50 to 10
A polyimide resin composition comprising (c) an accelerator, a diluting solvent, etc., blended in the following parts by weight.
(2)前記ポリイミド樹脂が不飽和ビス−イミドとジア
ミンとを反応させて鋼製されるポリイミド樹脂で、アル
キル基または、メチレン基を除くアルキレン基の少なく
とも一方をポリイミド樹脂中に11重量%以上含有する
ことを特徴とする請求項1記載のポリイミド樹脂組成物
(2) The polyimide resin is made of steel by reacting unsaturated bis-imide and diamine, and the polyimide resin contains at least 11% by weight of at least one of an alkyl group and an alkylene group other than a methylene group. The polyimide resin composition according to claim 1, characterized in that:
(3)請求項1記載のポリイミド樹脂組成物にポリイミ
ド樹脂100重量部に対して臭素含有重量で1〜50重
量部の範囲の反応基を有する臭素化樹脂を配合してなる
ことを特徴とするポリイミド樹脂組成物。
(3) A brominated resin having a reactive group having a bromine content in the range of 1 to 50 parts by weight based on 100 parts by weight of the polyimide resin is blended into the polyimide resin composition according to claim 1. Polyimide resin composition.
(4)前記反応基を有する臭素化樹脂が、臭素化エポキ
シ樹脂であることを特徴とする請求項3記載のポリイミ
ド樹脂組成物。
(4) The polyimide resin composition according to claim 3, wherein the brominated resin having a reactive group is a brominated epoxy resin.
(5)(イ)ポリイミド樹脂 (ロ)前記ポリイミド樹脂100重量部に対して10〜
200重量部の範囲となる量で配合されるトリアリルイ
ソシアヌレート類で、このトリアリルイソシアヌレート
類はトリアリルイソシアヌレートモノマーが50〜90
重量部と、トリメタリルイソシアヌレートが50〜10
重量部の範囲で配合されたもの (ハ)および、促進剤、希釈溶媒などからなるポリイミ
ド樹脂組成物を基材に含浸させ、半硬化させたことを特
徴とするポリイミド樹脂のプリプレグ。
(5) (a) Polyimide resin (b) 10 to 100 parts by weight of the polyimide resin
Triallyl isocyanurate is blended in an amount ranging from 200 parts by weight, and the triallyl isocyanurate contains 50 to 90 parts of triallyl isocyanurate monomer.
parts by weight, and trimethallyl isocyanurate is 50 to 10
A prepreg of a polyimide resin, characterized in that a base material is impregnated with a polyimide resin composition consisting of (c), an accelerator, a diluent solvent, etc. blended in a range of parts by weight, and semi-cured.
(6)前記ポリイミド樹脂が不飽和ビス−イミドとジア
ミンとを反応させて調製されるポリイミド樹脂で、アル
キル基または、メチレン基を除くアルキレン基の少なく
とも一方をポリイミド樹脂中に11重量%以上含有する
ことを特徴とする請求項5記載のポリイミド樹脂のプリ
プレグ。
(6) The polyimide resin is a polyimide resin prepared by reacting an unsaturated bis-imide with a diamine, and the polyimide resin contains at least 11% by weight of at least one of an alkyl group and an alkylene group other than a methylene group. The polyimide resin prepreg according to claim 5, characterized in that:
(7)請求項5記載のポリイミド樹脂組成物にポリイミ
ド樹脂100重量部に対して臭素含有重量で1〜50重
量部の範囲の反応基を有する臭素化樹脂を配合してなる
ことを特徴とするポリイミド樹脂のプリプレグ。
(7) The polyimide resin composition according to claim 5 is characterized by blending a brominated resin having a reactive group in a range of 1 to 50 parts by weight in terms of bromine content based on 100 parts by weight of the polyimide resin. Polyimide resin prepreg.
(8)前記反応基を有する臭素化樹脂が、臭素化エポキ
シ樹脂であることを特徴とする請求項7記載のポリイミ
ド樹脂のプリプレグ。
(8) The polyimide resin prepreg according to claim 7, wherein the brominated resin having a reactive group is a brominated epoxy resin.
(9)(イ)ポリイミド樹脂、 (ロ)前記ポリイミド樹脂100重量部に対して10〜
200重量部の範囲となる量で配合されるトリアリルイ
ソシアヌレート類で、このトリアリルイソシアヌレート
類はトリアリルイソシアヌレートモノマーが50〜90
重量部と、トリメタリルイソシアヌレートが50〜10
重量部の範囲で配合されたもの (ハ)および、促進剤、希釈溶媒などからなるポリイミ
ド樹脂組成物を基材に含浸させ、半硬化させたプリプレ
グを1枚以上積層して硬化させたことを特徴とするポリ
イミド樹脂の積層板。
(9) (a) Polyimide resin, (b) 10 to 10 parts by weight of the polyimide resin
Triallyl isocyanurate is blended in an amount ranging from 200 parts by weight, and the triallyl isocyanurate contains 50 to 90 parts of triallyl isocyanurate monomer.
parts by weight, and trimethallyl isocyanurate is 50 to 10
A base material is impregnated with a polyimide resin composition consisting of a polyimide resin composition containing a mixture of parts by weight (c), an accelerator, a diluent solvent, etc., and one or more semi-cured prepregs are laminated and cured. Characteristic polyimide resin laminate.
(10)前記ポリイミド樹脂が不飽和ビス−イミドとジ
アミンとを反応させて鋼製されるポリイミド樹脂で、ア
ルキル基または、メチレン基を除くアルキレン基の少な
くとも一方をポリイミド樹脂中に11重量%以上含有す
ることを特徴とする請求項9記載のポリイミド樹脂の積
層板。
(10) The polyimide resin is made of steel by reacting unsaturated bis-imide and diamine, and the polyimide resin contains at least 11% by weight of at least one of an alkyl group or an alkylene group other than a methylene group. The polyimide resin laminate according to claim 9, characterized in that:
(11)請求項9記載のポリイミド樹脂組成物にポリイ
ミド樹脂100重量部に対して臭素含有重量で1〜50
重量部の範囲の反応基を有する臭素化樹脂を配合してな
ることを特徴とするポリイミド樹脂の積層板。
(11) The polyimide resin composition according to claim 9 has a bromine content of 1 to 50 parts by weight based on 100 parts by weight of the polyimide resin.
1. A polyimide resin laminate comprising a brominated resin having reactive groups in the range of parts by weight.
(12)前記反応基を有する臭素化樹脂が、臭素化エポ
キシ樹脂であることを特徴とする請求項11記載のポリ
イミド樹脂の積層板。
(12) The polyimide resin laminate according to claim 11, wherein the brominated resin having a reactive group is a brominated epoxy resin.
JP19333390A 1990-07-20 1990-07-20 Polyimide resin composition, its prepreg and its laminate Pending JPH0480261A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19333390A JPH0480261A (en) 1990-07-20 1990-07-20 Polyimide resin composition, its prepreg and its laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19333390A JPH0480261A (en) 1990-07-20 1990-07-20 Polyimide resin composition, its prepreg and its laminate

Publications (1)

Publication Number Publication Date
JPH0480261A true JPH0480261A (en) 1992-03-13

Family

ID=16306149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19333390A Pending JPH0480261A (en) 1990-07-20 1990-07-20 Polyimide resin composition, its prepreg and its laminate

Country Status (1)

Country Link
JP (1) JPH0480261A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008172898A (en) * 2007-01-10 2008-07-24 Toyota Motor Corp Stator lead terminal attaching structure in rotary electric machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008172898A (en) * 2007-01-10 2008-07-24 Toyota Motor Corp Stator lead terminal attaching structure in rotary electric machine

Similar Documents

Publication Publication Date Title
JP5692201B2 (en) Thermosetting resin composition, and prepreg, laminate and multilayer printed wiring board using the same
KR101733646B1 (en) Thermosetting resin composition, and prepreg, insulating film with support, laminate plate, and printed wiring board, each obtained using same
KR20170104470A (en) Thermosetting resin composition, resin film for interlayer insulation, composite film, printed wiring board, and method for producing same
JP2006518774A (en) Thermosetting resin composition for high-speed transmission circuit board
JP7198156B2 (en) Halogen-free flame-retardant thermosetting resin composition, resin rubber liquid, prepreg for printed circuit, insulating board, metal clad laminate and printed wiring board
JP4784066B2 (en) Resin composition and copper clad laminate
KR20150026557A (en) Insulating resin composition for printed circuit board and products having the same
JP2007070418A (en) Adhesive sheet, metal foil-clad laminated sheet and built-up type multilayered printed wiring board
US8309636B2 (en) Flame retardant resin composition for multilayer wiring board and multilayer wiring board including the same
JP2003253018A (en) Prepreg and printed wiring board using the same
JP5914988B2 (en) Prepreg, laminate and printed wiring board using thermosetting resin composition
KR20090036074A (en) Composition for forming polyimide/clay nanocompoiste and printed circuit board using the same
CN105348741B (en) Compositions of thermosetting resin, laminate for high speed substrate
US5160781A (en) Polyimide composition and prepreg and laminate thereof
JPH0480261A (en) Polyimide resin composition, its prepreg and its laminate
JP2718268B2 (en) Polyimide resin composition, prepreg and laminate thereof
JP2718267B2 (en) Polyimide resin composition, prepreg and laminate thereof
JP5447268B2 (en) Thermosetting resin composition, prepreg and laminate
JPH0379667A (en) Polyamide resin composition, prepreg thereof and laminate board thereof
CA2012633C (en) Polyimide composition and prepreg and laminate thereof
JPH04222862A (en) Polyimide resin composition, prepreg and laminate thereof
WO2023145472A1 (en) Resin composition, prepreg, resin-bearing film, resin-bearing metal foil, metal-clad laminated board, and printed wiring board
KR101513350B1 (en) Insulating film for printed circuit board and products having the same
WO2024043084A1 (en) Resin composition, prepreg, film with resin, metal foil with resin, metal-clad laminate, and wiring board
JPH0477555A (en) Polyimide resin composition