JPH0477373A - Fireproof coating material - Google Patents

Fireproof coating material

Info

Publication number
JPH0477373A
JPH0477373A JP18805690A JP18805690A JPH0477373A JP H0477373 A JPH0477373 A JP H0477373A JP 18805690 A JP18805690 A JP 18805690A JP 18805690 A JP18805690 A JP 18805690A JP H0477373 A JPH0477373 A JP H0477373A
Authority
JP
Japan
Prior art keywords
fire
coating material
foaming
fireproof coating
coating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18805690A
Other languages
Japanese (ja)
Inventor
Takao Hioki
日置 隆雄
Hisao Masuyama
増山 久男
Mineo Moriya
守谷 峯雄
Hajime Tashiro
肇 田代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichias Corp
Original Assignee
Nichias Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichias Corp filed Critical Nichias Corp
Priority to JP18805690A priority Critical patent/JPH0477373A/en
Priority to MYPI91001213A priority patent/MY107465A/en
Priority to CN 91104802 priority patent/CN1058225A/en
Publication of JPH0477373A publication Critical patent/JPH0477373A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a fireproof coating material causing expansion at a high rate by uniform foaming at the time of fire and exhibiting superior heat insulating property by incorporating a specified substance as a blowing aid into a fireproof coating material having a prescribed compsn. and giving a coating film convertible into a heat insulating covering layer by foaming at the time of a fire. CONSTITUTION:Thermally expandable microcapsules (e.g. 'Matsumoto Microsphere F30(R)' made by Matsumoto Fats and Oils Pharm. Co. are incorporated as a blowing aid into a fireproof coating material consisting essentially of a thick aq. soln. of alkali silicate (e.g. No.3 sodium silicate) and a heat resistant inorg. filler (e.g. a silica powderwollastonite mixture) and giving a coating film convertible into a heat resistant covering layer by foaming at the time of a fire.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、火災に遭ったとき発泡して断熱性のよい被覆
層となる塗膜を与える建築物鉄骨用被覆材に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a coating material for building steel frames that provides a coating film that foams in the event of a fire and becomes a coating layer with good heat insulation properties.

〔従来の技術〕[Conventional technology]

水ガラスなど濃厚なケイ酸アルカリ水溶液に耐熱性無機
質充填材を配合し、さらには熱分解したとき水蒸気また
は不活性カスを発生するとともに高融点の酸化物となる
化合物を配合してなる耐火被覆材か、特公昭54−22
689号公報、特公昭55−18673号公報等により
知られている。この被覆材は、建築物の鉄骨部分に普通
の塗料と同様に塗布され、乾燥すると硬化した塗膜を生
じるが、火災に遭って加熱されるとケイ酸アルカリ硬化
物が軟化するとともに内部で水蒸気や分解ガスが発生す
ることにより発泡し、断熱性のよい被覆層となって鉄骨
を火災の高熱から遮断し、建築物の構造破壊を防ぐ。
A fire-resistant coating material made by blending a heat-resistant inorganic filler with a concentrated aqueous alkali silicate solution such as water glass, and further blending a compound that generates water vapor or inert scum when thermally decomposed and becomes an oxide with a high melting point. Or, Special Public Service 1974-22
It is known from Japanese Patent Publication No. 689, Japanese Patent Publication No. 55-18673, etc. This coating material is applied to the steel frame parts of buildings in the same way as ordinary paint, and when it dries, it forms a hardened coating film. However, when it is heated in a fire, the alkali silicate cured product softens and steam vapor builds up inside. It foams as a result of the generation of decomposition gas and forms a coating layer with good insulation properties, which insulates the steel frame from the high heat of a fire and prevents the structure of the building from collapsing.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述のような耐火被覆材は、建築物の耐火性向上にきわ
めて有効なものであるが、火災により加熱されたときの
発泡特性にはまだ改良の余地があった。すなわち、粗大
な気泡が生じる一方でほとんど発泡しない部分が残るこ
とが多く、その結果、発泡による塗膜の断熱性向上はそ
れほど顕著なものではなかった。
Although the above-mentioned fire-resistant coating materials are extremely effective in improving the fire resistance of buildings, there is still room for improvement in their foaming properties when heated by fire. That is, while coarse bubbles are generated, there are often areas where little foaming remains, and as a result, the improvement in heat insulation properties of the coating film due to foaming is not so remarkable.

そこで本発明は、上記ケイ酸アルカリ系耐火被覆材の使
用効果を一層高めるため、塗膜が高温にさらされたとき
の発泡がより均一かつ顕著なものとなるように被覆材を
改良することを目的とするものである。
Therefore, in order to further enhance the effectiveness of the alkali silicate fire-resistant coating, the present invention aims to improve the coating so that foaming becomes more uniform and noticeable when the coating film is exposed to high temperatures. This is the purpose.

〔課題を解決するための手段〕[Means to solve the problem]

本発明が提供することに成功した耐火被覆材は、ケイ酸
アルカリ水溶液および耐熱性無機質充填材より主として
なる基本的には従来の耐火被覆材と同様の組成物に対し
て、熱膨張性マイクロカプセルを発泡助剤として配合し
たものである。
The fire-resistant coating that the present invention has succeeded in providing consists of thermally expandable microcapsules for a composition essentially similar to conventional fire-resistant coatings, consisting primarily of an aqueous alkali silicate solution and a heat-resistant inorganic filler. is blended as a foaming aid.

この耐火被覆材に発泡助剤として配合される熱膨張性マ
イクロカプセルは、約100℃以上に加熱されたとき顕
著な膨張を起こすものである。本発明の被覆材に配合す
るのに特に好適な熱膨張性マイクロカプセルは、120
℃に1分間加熱されたとき体積が少なくとも20倍に膨
張するものである。
Thermal-expandable microcapsules blended into this fire-resistant coating material as a foaming aid cause significant expansion when heated to about 100° C. or higher. Particularly suitable heat-expandable microcapsules to be incorporated into the coating material of the present invention include 120
The material expands in volume by at least 20 times when heated to .degree. C. for 1 minute.

このようなマイクロカプセルは、塩化ビニリデン共重合
体など、約80℃以上では軟化して高率の塑性変形が可
能になる重合体を殻壁構成物質として用い、且つ沸点が
殻壁構成物質の軟化点以下の物質を内包物質として用い
ることにより得られるものである。さらに、このマイク
ロカプセルの殻壁構成物質は水ガラス硬化物中で長期間
安定であり且つ内包物質を透過させることなく長期間カ
プセル内に保持し得る性質のものであることが必要であ
る。内包物質は、沸点が上記のとおりであることを除け
は、本発明との関係では特に限定されるものではないが
、マイクロカプセル化されたものが安価に入手可能なも
のの例としては、沸点が約908C以下の炭化水素類が
ある。これらの要件を備えtユマイクロカプセルで市販
されているものの例としては、マツモトマイクロスフェ
ア(松本油脂製薬株式会社製品)がある。
Such microcapsules use a polymer such as vinylidene chloride copolymer, which softens at temperatures above about 80°C and can undergo a high rate of plastic deformation, as the shell wall constituent material, and whose boiling point is higher than the softening point of the shell wall constituent material. It is obtained by using a substance below the point as an inclusion substance. Furthermore, the material constituting the shell wall of the microcapsules must be stable for a long period of time in the cured water glass product and must have a property that it can be retained in the capsule for a long period of time without allowing the encapsulated material to pass through. The encapsulated substance is not particularly limited in relation to the present invention, except that it has a boiling point as described above, but examples of microencapsulated substances that can be obtained at low cost include There are hydrocarbons below about 908C. An example of a commercially available microcapsule that meets these requirements is Matsumoto Microspheres (manufactured by Matsumoto Yushi Pharmaceutical Co., Ltd.).

熱膨張性マイクロカプセルの配合率は、約10%以下、
好ましくは約2〜5%とする。熱膨張性マイクロカプセ
ルの配合率が高いほど火災時の発泡倍率が高い塗膜が得
られるが、多すぎると塗膜強度が不足し、且つ膨張に伴
い裂は目を生じるようになる。
The blending ratio of thermally expandable microcapsules is approximately 10% or less,
Preferably it is about 2-5%. The higher the blending ratio of thermally expandable microcapsules, the higher the foaming ratio in the event of a fire. However, if the ratio is too high, the strength of the film will be insufficient and cracks will occur as a result of expansion.

上述のような熱膨張性マイクロカプセル以外の構成成分
は、従来の耐火被覆材と特に異なる点はない。
The components other than the thermally expandable microcapsules described above are not particularly different from conventional fireproof coating materials.

ケイ酸アルカリ水溶液としては、ケイ酸ソーダ水溶液、
いわゆる水ガラスを用いることができる。ケイ酸ソーダ
には1号から4号まであるが、1.2号品は高粘度に過
ぎて水の添加を必要とし、またアルカリ量も多すぎて耐
熱性や耐候性が劣る傾向があるので、そのまま使うには
3号品が適当である。ケイ酸ソーダに相溶性のあるケイ
酸カリウムを添加すると、耐水性を向上させることがで
きる。
Examples of alkali silicate aqueous solutions include sodium silicate aqueous solution,
So-called water glass can be used. Sodium silicate comes in sizes 1 to 4, but products 1 and 2 have too high a viscosity and require the addition of water, and they also contain too much alkali, so they tend to have poor heat resistance and weather resistance. , No. 3 product is suitable for use as is. Water resistance can be improved by adding potassium silicate which is compatible with sodium silicate.

無機質充填材としてはケイ石粉、ウオラストナイト等が
、耐熱性と塗膜強度を向上させる作用に優れていて好ま
しいが、これら以外にも、各種耐火物、粘土鉱物等の粉
末、さらにはセラミック繊維等を使用することができる
。無機質充填材の好ましい配合率は、ケイ酸アルカリと
して3号ケイ酸ソーダを用いる場合、同成分の合計重量
に対して約50〜65重量%である。
As the inorganic filler, silica powder, wollastonite, etc. are preferable because they have an excellent effect of improving heat resistance and coating strength, but in addition to these, various refractories, powders such as clay minerals, and even ceramic fibers can be used. etc. can be used. When No. 3 sodium silicate is used as the alkali silicate, the preferred blending ratio of the inorganic filler is about 50 to 65% by weight based on the total weight of the same components.

全成分は均一に混合しておく。また、必要ならば水を混
合して粘度を塗工に適当な値に調整しておく。
Mix all ingredients evenly. Also, if necessary, water is mixed to adjust the viscosity to an appropriate value for coating.

本発明の耐火被覆材は、従来のこの種被覆材と同様に、
鉄骨建方を終わった段階で鉄骨表面に塗布するほか、工
場等において、建方前の鉄骨に塗布することもできる。
The fireproof coating material of the present invention, like conventional coating materials of this type,
In addition to being applied to the surface of the steel frame once the steel frame has been erected, it can also be applied to the steel frame before it is erected at a factory.

ケイ酸アルカリが乾燥して形成される硬い塗膜は、外観
上は従来の耐火被覆材のそれと相違がないが、その中に
は熱膨張性マイクロカプセルが均一に分布シている。そ
して、火災に遭って温度が上昇すると、ケイ酸アルカリ
マトリックスの軟化と並行してマイクロカプセル中の低
沸点内包物質が気化し、発生したガスはその圧力により
カプセル殻壁を膨らませる。マイクロカプセルは軟化し
たケイ酸アルカリを押しのけながら膨張して、マイクロ
カプセルごとの細かい気泡を塗膜中に形成する。カプセ
ル中で発生したガスの一部は殻壁を透過してカプセル外
に出る。また、殻壁破壊が起こってそのカプセル内のガ
スの全部がカプセルがら解放されることもある。それら
カプセルから出たガスも、含有水分が気化して生した水
蒸気と共に気泡形成に関与する。以上により、塗膜はマ
イクロカプセルを含有しない場合よりも確実に、はるか
に高率かつ均一に分布した気泡をはらんで、高い倍率で
膨張することになる。マイクロカプセルが熱膨張性の低
いものである場合は、カプセル殻壁の破壊が加熱の早い
段階から高率で起こり、内包物質のガスの利用率か悪い
ため、塗膜の発泡倍率は低くなる。
The hard coating film formed by drying the alkali silicate is similar in appearance to that of conventional fireproof coating materials, but thermally expandable microcapsules are uniformly distributed therein. Then, when a fire occurs and the temperature rises, the low-boiling-point inclusion material in the microcapsules evaporates in parallel with the softening of the alkali silicate matrix, and the generated gas inflates the capsule shell wall due to its pressure. The microcapsules expand while pushing away the softened alkali silicate, forming fine bubbles of each microcapsule in the coating film. Some of the gas generated in the capsule passes through the shell wall and exits the capsule. Also, shell wall rupture may occur and all of the gas within the capsule is released from the capsule. The gases released from the capsules also participate in the formation of bubbles together with water vapor produced by vaporization of the contained moisture. As a result of the above, the coating film will surely contain a much higher and more uniformly distributed air bubbles and will expand at a higher magnification than if it did not contain microcapsules. If the microcapsules have low thermal expansion, the capsule shell wall will be destroyed at a high rate from an early stage of heating, and the gas utilization rate of the encapsulated material will be poor, resulting in a low expansion ratio of the coating film.

〔実施例〕〔Example〕

以下の実施例において、「部」は重量部を意味する。 In the following examples, "parts" means parts by weight.

実施例1 3号ケイ酸ソーダ62部、ケイ石粉19部、ウオラスト
ナイト19部からなる耐火被覆材およびそれに熱膨張性
マイクロカプセル・マツモトマイクロスフェアF30(
松本油脂製薬株式会社製品)1〜7部を混合して得られ
た耐火被覆材を型内で風乾して、厚さ2IIII11の
円板状に成形した。
Example 1 Fireproof coating material consisting of 62 parts of No. 3 sodium silicate, 19 parts of silica powder, and 19 parts of wollastonite, and thermally expandable microcapsules/Matsumoto Microspheres F30 (
A fireproof coating material obtained by mixing 1 to 7 parts of Matsumoto Yushi Pharmaceutical Co., Ltd. product) was air-dried in a mold and formed into a disk shape with a thickness of 2III11.

得られた塗膜モデルの試験片を100℃で15分間加熱
したのち、厚さを測定した。引さ続き、試験片を500
℃の電気炉に入れて15分間加熱し、冷却後、厚さの測
定を行なった。測定結果から求めた膨張率(厚さ増加率
)は、表1のとおりであった。
The obtained test piece of the coating film model was heated at 100° C. for 15 minutes, and then the thickness was measured. Subsequently, 500 test pieces were
The sample was placed in an electric furnace at ℃ and heated for 15 minutes, and after cooling, the thickness was measured. The expansion rates (thickness increase rates) determined from the measurement results are as shown in Table 1.

表1 実施例2 3号ケイ酸ソーダ55部、タルク45部に実施例1で用
いたのと同じマイクロカプセルを2部加えて混合し、厚
さ3.2+amの鉄板上に厚さが6+a+eになるよう
に塗布した。
Table 1 Example 2 2 parts of the same microcapsules used in Example 1 were added to 55 parts of No. 3 sodium silicate and 45 parts of talc, mixed, and placed on a 3.2+ am iron plate to a thickness of 6+a+e. I applied it to make it look like this.

得られた試験片を2週間風乾し、その後、塗布面を下に
して水平に支持し、ブンゼンバーナーの火炎が塗膜に直
接当たるようにして30分間加熱する試験を行なった。
The resulting test piece was air-dried for two weeks, then supported horizontally with the coated side facing down, and heated for 30 minutes with the flame of a Bunsen burner directly hitting the coating.

火炎温度は970℃1加熱30分後の加熱面真上の鉄板
温度は140℃であった。
The flame temperature was 970°C. After 30 minutes of heating, the temperature of the iron plate directly above the heating surface was 140°C.

冷却後、火炎が当たった部分の塗膜は約4倍の厚さに膨
れており、これを割ってみると内部は直径50〜200
μmの微細な気泡が均一に分布していた。
After cooling, the coating film in the area hit by the flame swelled to about four times the thickness, and when it was cut open, the inside was found to have a diameter of 50 to 200 mm.
Microscopic bubbles of μm size were uniformly distributed.

比較例 マイクロカプセルを配合しないほかは実施例2と同様に
して試験片を作成し、実施例2の場合と同様の加熱試験
を行なった。
Comparative Example A test piece was prepared in the same manner as in Example 2, except that no microcapsules were blended, and the same heating test as in Example 2 was conducted.

30分後、加熱面真上の鉄板温度は240℃に達した。After 30 minutes, the temperature of the iron plate directly above the heating surface reached 240°C.

塗膜は約3倍に膨張したが、割ってみると表層部には大
きな空洞があり、鉄板に近い部分にも直径2〜3mmの
大きな気泡が認められた。
The paint film expanded approximately three times as much, but when it was cut open, large cavities were found in the surface layer, and large air bubbles with a diameter of 2 to 3 mm were also observed in the area close to the iron plate.

〔発明の効果〕〔Effect of the invention〕

上述のように、本発明のケイ酸アルカリ系耐火被覆材は
熱膨張性マイクロカプセルを発泡助剤として含有させた
ものであるから、その塗膜は、火災に遭ったとき熱膨張
性マイクロカプセル内包物質のガスが無駄なく利用され
ることにより均一に発泡して高い倍率で膨張し、優れた
断熱性を示すに至る。したがって、本発明の被覆材によ
れば、鉄骨建築物の耐火性能を一層向上させることが可
能になる。また、従来のこの種被覆材を用いた場合と同
じ耐火性能を達成するのに必要な塗膜か薄くて済み、建
築物の有効容積の増加と自重軽減か可能になる。
As mentioned above, since the alkali silicate fire-resistant coating material of the present invention contains thermally expandable microcapsules as a foaming aid, the coating film will not contain the thermally expandable microcapsules in the event of a fire. By utilizing the gas of the substance without wasting it, it foams uniformly and expands at a high magnification, resulting in excellent heat insulation properties. Therefore, according to the covering material of the present invention, it becomes possible to further improve the fire resistance performance of a steel frame building. Additionally, a thinner coating is required to achieve the same fire resistance as with conventional coatings of this type, allowing for an increase in the effective volume of the building and a reduction in its own weight.

Claims (2)

【特許請求の範囲】[Claims] (1)濃厚なケイ酸アルカリ水溶液および耐熱性無機質
充填材より主としてなり火災に遭ったとき発泡して断熱
性のよい被覆層となる塗膜を与える耐火被覆材において
、熱膨張性マイクロカプセルを発泡助剤として含有する
ことを特徴とする耐火被覆材。
(1) Foaming of thermally expandable microcapsules in a fire-resistant coating material that is mainly composed of a concentrated aqueous alkali silicate solution and a heat-resistant inorganic filler and foams in the event of a fire to form a coating layer with good insulation properties. A fire-resistant coating material characterized by containing it as an auxiliary agent.
(2)熱膨張性マイクロカプセルが、120℃に1分間
加熱されたとき少なくとも20倍の体積膨張率を示すも
のである請求項1記載の耐火被覆材。
(2) The fireproof coating material according to claim 1, wherein the thermally expandable microcapsules exhibit a volumetric expansion coefficient of at least 20 times when heated to 120° C. for 1 minute.
JP18805690A 1990-07-18 1990-07-18 Fireproof coating material Pending JPH0477373A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP18805690A JPH0477373A (en) 1990-07-18 1990-07-18 Fireproof coating material
MYPI91001213A MY107465A (en) 1990-07-18 1991-07-04 Fire resistant covering material.
CN 91104802 CN1058225A (en) 1990-07-18 1991-07-17 Fire resistant covering material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18805690A JPH0477373A (en) 1990-07-18 1990-07-18 Fireproof coating material

Publications (1)

Publication Number Publication Date
JPH0477373A true JPH0477373A (en) 1992-03-11

Family

ID=16216920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18805690A Pending JPH0477373A (en) 1990-07-18 1990-07-18 Fireproof coating material

Country Status (3)

Country Link
JP (1) JPH0477373A (en)
CN (1) CN1058225A (en)
MY (1) MY107465A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114736554A (en) * 2022-06-15 2022-07-12 浙江虹达特种橡胶制品有限公司杭州分公司 Environment-friendly fireproof coating and preparation method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1038137C (en) * 1992-09-29 1998-04-22 天津市东光特种涂料总厂 Expanding type modification perchloroethene refractory paint
CN103717397B (en) * 2011-07-29 2015-08-19 F顾问株式会社 Duplexer
CN102627876A (en) * 2012-03-20 2012-08-08 江苏同辉照明科技有限公司 Preparation method of heatproof paint for lamp housing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114736554A (en) * 2022-06-15 2022-07-12 浙江虹达特种橡胶制品有限公司杭州分公司 Environment-friendly fireproof coating and preparation method thereof

Also Published As

Publication number Publication date
MY107465A (en) 1995-12-31
CN1058225A (en) 1992-01-29

Similar Documents

Publication Publication Date Title
CA2554044C (en) Expanded polystyrene bead having functional skin layer, manufacturing process thereof, and functional eps product and manufacturing process thereof using the same
WO1987003612A1 (en) Fire-resistant material, non-combustible material for interior material, and preocess for their production
AU750400B2 (en) Fire resistant compositions
CN110256880A (en) A kind of anti-flaming dope for fire-proof doors and windows
JP2000007416A (en) Production of flame retardant porous product and product produced by the same
JPH0477373A (en) Fireproof coating material
US3429836A (en) Foamed articles comprising an alkali metal silicate and a styrene resin
US3655600A (en) Flame resistant materials and methods for producing same
US2053244A (en) Composite article carrying a cellular backing of porcelain enamel and method of making same
JP4378675B2 (en) Inorganic foamable composition
US10280118B1 (en) Non-flamable materials, products, and method of manufacture
JPS5930745B2 (en) Fillers for fire-resistant building materials and compositions for fire-resistant building materials
KR20020056027A (en) Paint composition
JPS5860634A (en) Preparation of granular air-bubble glass
WO2001040136A2 (en) Refractory insulating construction element
JPH11349720A (en) Production of inorganic foam
JPS644992B2 (en)
KR101246762B1 (en) Manufacuring method of the glass having nano structure to prevent heat transfer
KR100430437B1 (en) Method of producing foam glass for a fireproof insulating material
KR20220162222A (en) Non-combustible building materials with improved heat resistance
JPS6217084A (en) Foamed body ceramics
SK129697A3 (en) Method for producing bodies from fireproof expanding polystyrene materials
JPH04219352A (en) Transparent heat insulating material
RU2463262C1 (en) Method of making expanded glass
CN115504758A (en) Composition with fireproof, explosion-proof and heat-insulating functions and manufacturing method thereof