JP4378675B2 - Inorganic foamable composition - Google Patents

Inorganic foamable composition Download PDF

Info

Publication number
JP4378675B2
JP4378675B2 JP2003084661A JP2003084661A JP4378675B2 JP 4378675 B2 JP4378675 B2 JP 4378675B2 JP 2003084661 A JP2003084661 A JP 2003084661A JP 2003084661 A JP2003084661 A JP 2003084661A JP 4378675 B2 JP4378675 B2 JP 4378675B2
Authority
JP
Japan
Prior art keywords
weight
foam
powder
parts
foamable composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003084661A
Other languages
Japanese (ja)
Other versions
JP2004155643A (en
Inventor
裕俊 河野
泰 小木
英之 畑中
英俊 小島
治 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Boseki Co Ltd
Original Assignee
Nitto Boseki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Boseki Co Ltd filed Critical Nitto Boseki Co Ltd
Priority to JP2003084661A priority Critical patent/JP4378675B2/en
Publication of JP2004155643A publication Critical patent/JP2004155643A/en
Application granted granted Critical
Publication of JP4378675B2 publication Critical patent/JP4378675B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、発泡性組成物に係り、更に詳しくは、高温下における耐火断熱性に優れた発泡体を得ることのできる発泡性組成物に関する。また、本発明は、かかる発泡性組成物を発泡硬化してなる発泡体に関する。
【0002】
【従来の技術】
従来より、産業廃棄物として産出されるフライアッシュや高炉スラグ等の無機粉体と珪酸塩との反応系に金属(アルミニウム)及び過酸化水素を添加し、発泡硬化することにより軽量の発泡体が得られることが知られており、かかる発泡体は、例えば、発泡断熱材として建築用外壁材等の分野で用いられている。
【0003】
例えば、(A)水可溶性アルカリ珪酸塩、(B)金属系発泡剤、(C)フライアッシュまたは高炉鉱滓及び(D)水を有効成分として含む発泡性無機質組成物を用いて発泡体にすることが知られている(例えば、特許文献1参照。)。また、(A)粒径が10μm以下の粉体を80重量%以上含有するフライアッシュ、粘土、メタカオリン等の反応性無機質粉体100重量部、(B)平均粒径が0.01〜35μmの粒状物であるかあるいは長尺方向の長さが1〜250μmであり形状が柱状又は針状の無機質充填材20〜800重量部、(C)過酸化水素0.01〜10重量部、(D)アルカリ金属珪酸塩0.2〜450重量部、及び(E)水35〜1,500重量部からなる発泡性無機質組成物も提案されており、かかる組成物を用いることで、気泡の均一性、耐水性に優れ、高強度で低比重でありながら、熱収縮率(100℃における)の小さい発泡体が得られるとされている(例えば、特許文献2参照。)。しかしながら、上記先行技術に記載される発泡性無機質組成物から得られる発泡体では、高温での耐火断熱性が充分とはいえなかった。
【0004】
【特許文献1】
特開昭57−77062号公報
【特許文献2】
特開平8−73283号公報
【0005】
【発明が解決しようとする課題】
ある材質における熱の伝達としては、熱伝導、対流及び輻射が一般的に知られている。そして、材質の構造を発泡体とし、固体熱伝導部を薄膜化することにより熱伝導を小さくすることが、また、発泡体のセルを微細化・独立気泡化することで材質内の気体の対流を防ぐことが既に知られており、これらの手法は、有機発泡体及び無機発泡体において広く用いられている。
【0006】
確かに、上記した手法は、低温から300℃程度までの温度領域では発泡体の断熱性を改善する手法として有効であるが、300℃以上の高温領域では輻射の効果が大きく、材質の高温断熱性を改善するためには、熱伝導及び対流に加えて、輻射による熱の伝達を低減させる必要がある。
【0007】
また、珪酸塩と反応性無機粉体とからなる組成物においては、適当な界面活性剤を添加して発泡硬化させることにより、得られる断熱材中に微細且つ独立性を有するセルを形成させることができるが、例えば400℃以上の高温では断熱材の収縮によりセル壁にミクロクラックが発生し、セル間における気体の対流が顕著となる結果、断熱材の断熱性が低下してしまうことも分かってきた。
【0008】
このため、従来の無機質組成物から得られる発泡体を、耐火パネル等のような高温での耐火断熱性が求められる用途に用いる場合には、発泡体(パネル)の厚さを厚くする必要があり、経済的ではなかった。
【0009】
【課題を解決するための手段】
本発明は、上記の点に鑑みなされたものであって、熱伝導及び対流に加え、高温熱源からの輻射熱を大幅に低減することが可能であり、高温下においても優れた耐火断熱性を有する発泡体を形成することのできる発泡体組成物の提供を目的とする。
【0010】
すなわち、本発明は、珪酸アルミニウム系反応性無機粉体、アルカリ金属珪酸塩、発泡剤、及び赤外線不透過性粉体を含み、アルカリ金属珪酸塩、発泡剤、及び赤外線不透過性粉体の割合が、珪酸アルミニウム系反応性無機粉体100重量部に対して、それぞれ、10〜100重量部、0.05〜5重量部、及び4〜40重量部である、発泡性組成物に関する。
【0011】
本発明は、また、かかる発泡性組成物を発泡硬化してなる発泡体に関する。
【0012】
【発明の実施の形態】
上述の通り、本発明の発泡性組成物は、珪酸アルミニウム系反応性無機粉体、アルカリ金属珪酸塩、発泡剤、及び赤外線不透過性粉体を必須成分として含んでおり、以下、これらの成分について説明する。
【0013】
本発明で用いられる「珪酸アルミニウム系反応性無機粉体」とは、珪酸アルミニウム成分を含有する反応性無機粉体であって、水溶性アルカリ珪酸塩と反応硬化し得る粉体を指す。具体的には、フライアッシュ、無機化したパルプスラッジ、高炉スラグ等を挙げることができる。
【0014】
ここで、フライアッシュとはJIS A 6201に規定される、微粉炭燃焼ボイラーから集塵器で採取する微小な灰の粒子をいい、具体的には、シリカ45%以上、湿分1%以下、強熱減量5%以下、比重1.95以上、比表面積2700cm2/g以上、75%以上の粒子が44μm標準篩を通過するものを挙げることができる。本発明においては、耐熱性の点から、SiO2:Al23=45〜60:20〜28(重量比)の組成を有するフライアッシュを用いることが好ましく、また、5〜30μmの平均粒径を有していることが好ましい。
【0015】
無機化したパルプスラッジとは、製紙工程において副産される廃物を焼却無機化したもので、具体的には、シリカ40%以上、湿分1%以下、強熱減量1%以下、比重1.80以上、比表面積2500cm2/g以上、75%以上の粒子が44μm標準篩を通過するものである。本発明においては、耐熱性の面から、SiO2:Al23=30〜50:25〜35(重量比)の組成のものを用いることが好ましく、また、5〜30μmの平均粒径を有していることが好ましい。。
【0016】
高炉スラグとは、JIS A5011−1に規定される鉄鉱石から鉄を精錬採取する際に副産される無機系の粉体であり、具体的には、酸化カルシウム45%以下、硫黄分2.0%以下、比重2.50以上のもの等が挙げられる。本発明においては、70%以上の粒子が44μm標準篩を通過するものが好ましく、好ましい平均粒子径は5〜30μmである。
【0017】
本発明においては、上記した以外にも、化学組成としてSiO2を10〜80重量%、Al23を90〜10重量%を含有する無機粉体を、珪酸アルミニウム系反応性無機粉体として使用することも可能である。このような粉体としては、メタカオリンなどのカオリン鉱物、雲母粘土鉱物、ワラストナイト、タルクなどが挙げられる。ただし、組成粒度等が適当であり、高温での寸法安定性に優れたものであれば、これらに限定されるものではない。
【0018】
次に、本発明で用いられるアルカリ金属珪酸塩は、M2O・nSiO2(M=K、Na、Liから選ばれる1種以上の金属)として表すことができる。ここで、nは0.5〜4の範囲が好ましく、更に好ましくは1.0〜2.5である。nの値がこれより小さくなると反応が速すぎて発泡体のセルが連続気泡となり、断熱性能が低下する。逆に、nの値が大きくなり過ぎると反応が進みにくくなる。なお、アルカリ金属珪酸塩は水溶液として配合することが好ましい。水溶液の濃度については特に限定されないが、薄くなると反応性粉末との反応性が低下する。また、濃くなるとアルカリ金属珪酸塩が析出しやすくなるので、10〜60重量%とすることが好ましい。また、上記アルカリ金属珪酸塩水溶液は、アルカリ金属珪酸塩をそのまま加圧、加熱下で水に溶解させて調製してもよいが、まず、アルカリ金属珪酸塩に、珪砂、珪石粉などのSiO2成分を加えてnを所定の値とした後に、加圧、加熱下で溶解させ、アルカリ金属珪酸塩水溶液としてもよい。
【0019】
本発明で用いられる発泡剤としては、過酸化物および金属系発泡剤が主なものとして挙げられる。過酸化物としては、具体的には、過酸化水素、t-ブチルハイドロパーオキサイド、過酸化カリウム、過酸化ナトリウム、過硫酸アンモニウム、過硫酸ナトリウム、過硫酸カリウムなどが用いられる。これらの過酸化物は水溶液として通常用いられ、例えば、濃度が5〜40重量%の過酸化水素水、60〜70重量%のt−ブチルハイドロパーオキサイド水溶液が好ましい。金属系発泡剤としては、具体的には、金属元素、金属合金、金属間化合物などが用いられる。金属元素としては、アルミニウム、珪素、カルシウム、バリウム、鉄、ニッケル、ガリウムなどの周期律表第3〜5周期に属するものが好ましく、また、金属合金および金属間化合物としては、アルミニウム−珪素、アルミニウム−チタン、アルミニウム−マンガン、アルミニウム−銅、アルミニウム−銅−珪素などが好ましい。これらのなかでも特にアルミニウム、珪素などが好ましい。これらの金属系発泡剤は、通常、平均粒径が0.1〜200μm、好ましくは1〜50μmの粉体として用いるのが好ましい。
【0020】
続いて、本発明で使用される「赤外線不透過性粉体」とは、赤外線の透過に不透明で輻射熱を散乱させ遮断する材料を意味する。本発明においては、赤外線不透過性粉体として、酸化ジルコニウム及び酸化チタンからなる群から選ばれる少なくとも1種のものを用いることが好ましい。
【0021】
酸化ジルコニウムとしては、熱反射性及び高温での断熱性という点から、平均粒径が1〜80μmのものを用いることが好ましく、より好ましくは1〜50μmである。平均粒径の大きな酸化ジルコニウムを使用すると(>80μm)、組成物中における酸化ジルコニウムの存在が疎となるため、輻射防止による断熱性改善効果が充分に発揮されず、また、平均粒径が1μm以下では赤外線の波長より小さくなるため赤外線が通過してしまい反射効果が小さくなってしまう。また、本発明においては、ジルコンサンドのような安価な珪砂化合物を用いることもできる。
【0022】
酸化チタンとしては、熱反射性という点から、赤外波長(0.76μm)以上の粒径を有するものを用いることが好ましいが、酸化チタンは非常に細かい粉体であり、一般的に、その平均一次粒子径の上限は0.2〜0.3μm程度である。このため、本発明においては、平均粒径が0.1μm以上である酸化チタンを使用することが好ましく、より好ましくは0.2μm以上である。0.1μmより小さい粒径の酸化チタンを添加しても赤外線が通過してしまい、目的とする熱反射性効果が得られない。
【0023】
なお、酸化チタンは高い屈折率を有するため、反射材として公知であり、表面層を酸化チタンコート層とした断熱材も存在するが、高温領域における断熱性に関し顕著な結果は得られなかった。しかし、薄膜(セル壁)よりなる無機発泡硬化断熱材に配合することにより、薄膜全てが反射層となり、断熱効果の高い断熱材となりうる。
【0024】
また、本発明においては、より良好な断熱性を得るという点から、赤外線不透過性粉体として、酸化ジルコニウムと酸化チタンとを併用することが好ましい。
【0025】
上記した特定の成分を含む本発明の発泡性組成物は、発泡硬化することで、微細且つ独立気泡化したセルを有する発泡体となる。ここで、「独立気泡」とは、発泡体を構成している気泡構成単位であるセルが、隣接するセルとつながっておらず、セルを形成している壁(セル壁)によって完全に囲まれている構造を指す。このような微細且つ独立気泡化したセルを有する発泡体は、輻射による熱の伝達を低減させることができ、高温下においても優れた断熱性を有するため、断熱材として好適に用いられる。なお、本発明の発泡性組成物を用いた場合、発泡の進行過程において、赤外線不透過性粉体が発泡体セル壁面に沿って配向しながらセル壁面全体に広がっていく(セル壁面全体を覆う)と考えられる。このように、本発明の発泡体は赤外線不透過性粉体がセル壁面に沿って存在したものとなり、発泡体の高温での耐火断熱性をより効果的に高めることができる。
【0026】
また、発泡体温度が400℃以上になると、発泡体の収縮よりセル壁にミクロクラックが発生する場合があるため、かかる場合には、本発明の発泡性組成物に、更に耐熱性繊維を配合することが好ましい。なお、このミクロクラックの発生は、セル間同士が連なった連通体構造の原因となり、結果的にセル内部の気体の対流を増加させ、発泡体の断熱性を低下させることになる。耐熱性繊維を配合することにより、高温下においても発泡体が収縮し難くなり、ミクロクラックの発生を防止することが可能となる。配合可能な耐熱性繊維としては無機繊維が好ましく、更に、無機繊維として、チタン酸カリウム繊維、ボロン繊維及びシリカ繊維からなる群から選ばれる少なくとも1種を用いることが特に好ましい。
【0027】
なお、ビニロン繊維、ポリプロ繊維、アラミド繊維などの有機繊維は高温領域で炭化燃焼してしまうおそれがあり、また、Eガラスよりなるガラス繊維も耐熱性が低く、高温領域で溶融軟化してしまうため、これらの繊維を本発明の組成物に添加することは、必ずしも適当でない。しかし、これらは従来から知られている補強繊維であり、成型体の強度を向上させ、且つ保形性をも向上させるために、これらの繊維を反応性無機粉体100重量部に対して2重量部より少ない範囲で添加することは問題ない。2重量部より多くなると、粘度上昇により組成物の混練性、発泡性が悪化する。
【0028】
かかる耐熱性繊維の繊維長及び繊維径に関しては、繊維長と繊維径との比、いわゆるアスペクト比を20〜2000の範囲内にすることが好ましく、より好ましくは50〜1000である。アスペクト比が20より小さくなると、目的とする補強効果が得られず、一方、2000より大きくなると、本発明で用いられる各成分からなる原料液の粘度が高くなりすぎて、耐熱性繊維を所定量添加した場合、原料液の攪拌が均一に実施できなくなるおそれがある。ただし、繊維長と繊維径との比率、すなわち、アスペクト比が上記範囲内であっても、繊維径15μm以上の繊維を添加した場合、発泡体のセル壁に対して耐熱性繊維の存在が疎となるため、高温時のセル壁のクラック防止効果が得られなくなる。
【0029】
なお、本発明の組成物には、必要に応じて発泡助材を添加してもよい。発泡助材としては、発泡する泡を微細なまま安定にするものであれば特に限定されない。例として、ステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸アルミニウム、マレイン酸亜鉛、マレイン酸カルシウムなどの脂肪酸金属塩、ひまし油系の界面活性剤、カゼインなど動物系たん白質などが挙げられる。これらは単独で用いても良いし、2種類以上を用いても構わない。
【0030】
続いて、本発明の発泡性組成物を構成する各成分の量について説明する。まず、アルカリ金属珪酸塩の量は、珪酸アルミニウム系反応性無機粉体100重量部に対して10〜100重量部とすることが好ましく、より好ましくは20〜60重量%である。アルカリ金属珪酸塩の量がこれより多いと、成型体が脆くなりやすく、一方、アルカリ金属珪酸塩の量が少ないと、珪酸アルミニウム系反応性無機粉体との硬化反応が遅くなる。なお、上述の通り、アルカリ金属珪酸塩は水溶液の状態で配合することが好ましく、例えば、アルカリ金属珪酸塩の50%水溶液を用いた場合には、珪酸アルミニウム系反応性無機粉体100重量部に対して20〜200重量部を加えることが好ましい。
【0031】
また、発泡剤の量は、珪酸アルミニウム系反応性無機粉体100重量部に対して0.05〜5重量部とすることが好ましい。発泡剤が過酸化物の場合には、0.2〜3重量%が好ましく、より好ましくは0.5〜2重量%である。例えば、過酸化物として過酸化水素を用いる場合、過酸化水素の量がこれより多いと、異常発泡により破泡が進み、発泡体のセルが連続気泡となり断熱性能が低下する。また、適切な密度よりも小さな密度となるため、充分な強度を有する成型体が得られない。一方、過酸化水素の量が少ないと、発泡が小さいため成型体の密度が高くなり、強度と独立気泡は確保できるものの、軽量性が損なわれ断熱性能が劣る。なお、本発明においては、作業者の安全を考え、過酸化水素も水溶液、つまり過酸化水素水として配合することが好ましく、例えば、市販品の35%水溶液を適度に水で希釈して用いることが好ましい。濃度10%の過酸化水素水を用いた場合には、珪酸アルミニウム系反応性無機粉体100重量部に対して2〜30重量部を加えることが好ましい。発泡剤が金属系発泡剤の場合には、0.05〜5重量部が好ましく、特に、0.1〜3重量部が好ましい。0.05重量未満では、得られる発泡体の密度が高くなり過ぎ断熱性能が劣化するので好ましくない。また、5重量部を超えると、発泡過剰となり正常な発泡セルを形成できず、密度が低くなり過ぎ、成形体がもろくなり過ぎるとともに、良好な断熱性能が得られないので、好ましくない。
【0032】
赤外線不透過性粉体の量は、珪酸アルミニウム系反応性無機粉体100重量部に対して4〜40重量部とすることが好ましく、より好ましくは10〜30重量部である。4重量部未満では、輻射による熱の伝達を充分に抑制することが出来ず、逆に、40重量部より多くなると、得られる発泡体の強度が弱くなり高温時に割れを生じる可能性がある。なお、本発明においては、赤外線不透過性粉体として、1種類のものを単独で使用した場合でも、2種類以上のものを組み合わせて用いた場合でも、配合量の上限は40重量部である。
【0033】
本発明の発泡性組成物に、更に耐熱性繊維(無機繊維)を加える場合には、反応性粉体100重量部に対して0.3〜5重量部の量の耐熱性繊維を加えることが好ましい。耐熱性繊維の量が少なすぎると高温下におけるミクロクラック発生防止効果が得られず、多すぎると混練がうまく行えなくなる。また、発泡性組成物に耐熱性繊維(無機繊維)を配合する場合も、赤外線不透過性粉体の量は、反応性粉体100重量部に対して4〜40重量部とすることが好ましい。
【0034】
本発明の発泡性組成物は、上記した成分に加え、シラスバルーン、セラミックバルーンなどの無機耐熱中空粒子を本発明の目的を損なわない範囲で配合することもできる。
【0035】
本発明の発泡性組成物の特性は、ISO 834の耐火試験に従い、以下の方法により確認することができる。すなわち、ISO 834加熱温度曲線に準じる昇温条件で、発泡性組成物から得られた発泡体の片面を所定時間加熱した際に、その反対側の面、すなわち発泡体の非加熱面の平均温度と室温との差が140℃以下となり、且つ発泡体非加熱面の最高温度と室温との差が180℃以下となる場合、高温下での耐火断熱性に優れた発泡体が得られていると評価することができる。なお、本発明の発泡性組成物から得られる発泡体の加熱には、耐火試験炉または耐火試験炉を再現しうる装置を用いることができる。
【0036】
ここで、一般的に耐火構造体に発泡体を使用する場合、密度が高いと発泡体中の空隙率が低く、熱伝導率が高くなり好ましくない。また、密度が低い場合には、発泡体中のセルサイズが大きくなり、セル中で対流が大きくなり熱伝導率が高くなる。本発明では、発泡体中に赤外線不透過性粉体を添加せしめることにより、低密度から高密度までの幅広い範囲において優れた断熱性を有する発泡体を得ることができ、具体的には、密度100〜700kg/m3の発泡体とすることも可能である。
【0037】
本発明は、上述の通り、発泡体中に赤外線不透過性粉体を添加せしめ輻射による伝熱を低減し、更に必要に応じて高温でも安定な耐熱性繊維を補強材として添加することにより、ミクロクラック発生を防止し、対流による伝熱を低減するものである。したがって、本発明の発泡体は、土木建築用耐火断熱材、耐火充填材、吸音材、産業資材用耐熱性断熱材として好適に用いられる。
【0038】
本発明の発泡性組成物から発泡体を得るには、例えば、アルカリ金属珪酸塩の水溶液、珪酸アルミニウム系反応性無機粉体及び赤外線不透過性粉体、更に必要に応じて無機繊維及び発泡助剤を混合してスラリーとし、これに発泡剤である過酸化物の水溶液を加えて混合し、通常の方法により、所定の形状物に充填し、発泡硬化させる方法が採用できる。あるいは、例えば、珪酸アルミニウム系反応性無機粉体、金属系発泡剤及び赤外線不透過性粉体、更に必要に応じて無機繊維及び発泡助剤を混合して均一な粉体とし、これにアルカリ金属珪酸塩の水溶液を加えて混合してスラリーとし、通常の方法により、所定の形状物に充填し、発泡硬化させる方法が採用できる。
【0039】
【実施例】
以下、本発明についてより詳細に説明するが、本発明はこれらの例に限定される訳ではない。なお、以下において、「部」及び「%」とあるのは、特に断りのない限り、それぞれ「重量部」及び「重量%」を意味する。
【0040】
耐火試験炉実験
以下の実施例及び比較例で得られた発泡体を、50℃乾燥機で24時間充分乾燥した。乾燥後、1000×1000×40mmの試験体に切り出し、JIS K7222に準じて試験体の密度を計り取った後、1m耐火炉に試験体を据え付けた。試験体の加熱温度はISO834(建築構造・部材の耐火試験方法)加熱温度曲線に準じる昇温条件となるようにプログラムした。図1に示すように、試験体の非加熱面(裏面)の所定の位置(●で示される4箇所)に、それぞれ0.32mmのクロメルアルメル熱電対を固定して、1分おきに各熱電対位置における試験体の非加熱面の温度を測定し、加熱終了時間までにおける試験体非加熱面の最高平均温度と最高温度を求めた。加熱時間は72分とした。発泡体非加熱面の最高平均温度と室温との差が140℃以下であり、且つ発泡体非加熱面の最高温度と室温との差が180℃以下である場合を「良」とし、それ以外の場合を「不可」と評価した。
【0041】
実施例1〜3、比較例1〜2
表1に示す配合に従い、フライアッシュ(組成SiO2:Al23=11:5(重量比)、平均粒径10μm)、珪酸ナトリウム水溶液(組成SiO2/Na2O=1.5、濃度55%)、ステアリン酸亜鉛(和光純薬社製)、及び酸化ジルコニウム(和光純薬社製、平均粒子径30μm)をハンドミキサーで混合して得られたスラリーに、過酸化水素水(濃度10%)を添加して、更に混合した後に、1100×1100×40mmの型に流し込み発泡硬化させ、無機発泡体を得た。実施例1〜3の発泡体においては、赤外線不透過性粉体がセル壁面に沿って存在することが確認された。得られた発泡体を用い、上記方法に従い物性を評価した。結果を表1に示す。
【0042】

Figure 0004378675
【0043】
実施例4〜6、比較例3〜4
表2に示す配合に従い、フライアッシュ(組成SiO2:Al23=11:5(重量比)、平均粒径10μm)、珪酸ナトリウム水溶液(組成SiO2/Na2O=1.5、濃度55%)、ステアリン酸亜鉛(和光純薬社製)、及び酸化ジルコニウム(和光純薬社製、平均粒子径30μm)をハンドミキサーで混合した得られたスラリーに、過酸化水素水(濃度10%)を添加して、更に混合した後に、1100×1100×40mmの型に流し込み発泡硬化させ、無機発泡体を得た。密度調整のため、過酸化水素を除く各成分の配合量は、比較例1〜2実施例1〜3の3倍とした。得られた発泡体を用い、上記方法に従い物性を評価した。結果を表2に示す。
【0044】
Figure 0004378675
【0045】
実施例7〜9、比較例5〜6
表3に示す配合に従い、高炉スラグ(組成SiO2:Al23=2:1(重量比)、平均粒径10μm)、珪酸ナトリウム水溶液(組成SiO2/Na2O=1.5、濃度55%)、ステアリン酸亜鉛(和光純薬社製)、及び酸化ジルコニウム(和光純薬社製、平均粒子径30μm)をハンドミキサーで混合した得られたスラリーに、過酸化水素水(濃度10%)を添加して、更に混合した後に、1100×1100×40mmの型に流し込み発泡硬化させ、無機発泡体を得た。得られた発泡体を用い、上記方法に従い物性を評価した。結果を表3に示す。
【0046】
Figure 0004378675
【0047】
実施例10〜12、比較例7
表4に示す配合に従い、フライアッシュ(組成SiO2:Al23=11:5(重量比)、平均粒径10μm)、珪酸ナトリウム水溶液(組成SiO2/Na2O=1.5、濃度55%)、ステアリン酸亜鉛(和光純薬社製)、及び酸化チタン(テイカ(株)社製、平均粒子径0.3μm)をハンドミキサーで混合した得られたスラリーに、過酸化水素水(濃度10%)を添加して、更に混合した後に、1100×1100×40mmの型に流し込み発泡硬化させ、無機発泡体を得た。得られた発泡体を用い、上記方法に従い物性を評価した。結果を表4に示す。
【0048】
Figure 0004378675
【0049】
実施例13〜15、比較例8
表5に示す配合に従い、高炉スラグ(組成SiO2:Al23=2:1(重量比)、平均粒径10μm)、珪酸ナトリウム水溶液(組成SiO2/Na2O=1.5、濃度55%)、ステアリン酸亜鉛(和光純薬社製)、及び酸化チタン(テイカ(株)社製、平均粒子径0.3μm)をハンドミキサーで混合した得られたスラリーに、過酸化水素水(濃度10%)を添加して、更に混合した後に、1100×1100×40mmの型に流し込み発泡硬化させ、無機発泡体を得た。得られた発泡体を用い、上記方法に従い物性を評価した。結果を表5に示す。
【0050】
Figure 0004378675
【0051】
実施例16〜17、比較例9
表6に示す配合に従い、フライアッシュ(組成SiO2:Al23=11:5(重量比)、平均粒径10μm)、珪酸ナトリウム水溶液(組成SiO2/Na2O=1.5、濃度55%)、ステアリン酸亜鉛(和光純薬社製)、酸化ジルコニウム(和光純薬社製、平均粒子径30μm)を及び酸化チタン(テイカ(株)社製、平均粒子径0.3μm)をハンドミキサーで混合した得られたスラリーに、過酸化水素水(濃度10%)を添加して、更に混合した後に、1100×1100×40mmの型に流し込み発泡硬化させ、無機発泡体を得た。得られた発泡体を用い、上記方法に従い物性を評価した。結果を表6に示す。
【0052】
Figure 0004378675
【0053】
実施例18〜19、比較例10〜11
表7に示す配合に従い、フライアッシュ(組成SiO2:Al23=11:5(重量比)、平均粒径10μm)、珪酸ナトリウム水溶液(組成SiO2/Na2O=1.5、濃度55%)、ステアリン酸亜鉛(和光純薬社製)、酸化ジルコニウム(和光純薬社製、平均粒子径30μm)を及びチタン酸カリウム繊維(商品名:TISMO−D、大塚化学社製、平均繊維長と繊維径の平均比70)をハンドミキサーで混合した得られたスラリーに、過酸化水素水(濃度10%)を添加して、更に混合した後に、1100×1100×40mmの型に流し込み発泡硬化させ、無機発泡体を得た。得られた発泡体を用い、上記方法に従い物性を評価した。結果を表7に示す。
【0054】
Figure 0004378675
【0055】
実施例20〜22、比較例12〜13
表8に示す配合に従い、フライアッシュ(組成SiO2:Al23=11:5(重量比)、平均粒径10μm)、珪酸ナトリウム水溶液(組成SiO2/Na2O=1.5、濃度55%)、ステアリン酸亜鉛(和光純薬社製)、及び酸化ジルコニウム(和光純薬社製、平均粒子径30μm)をハンドミキサーで混合して得られたスラリーに、12.0〜14.0μmのアルミニウム粉体を添加して、更に混合した後に、1100×1100×40mmの型に流し込み発泡硬化させ、無機発泡体を得た。実施例20〜22の発泡体においては、赤外線不透過性粉体がセル壁面に沿って存在することが確認された。得られた発泡体を用い、上記方法に従い物性を評価した。結果を表8に示す。
【0056】
Figure 0004378675
【0057】
実施例23〜25、比較例14〜15
表9に示す配合に従い、フライアッシュ(組成SiO2:Al23=11:5(重量比)、平均粒径10μm)、珪酸ナトリウム水溶液(組成SiO2/Na2O=1.5、濃度55%)、ステアリン酸亜鉛(和光純薬社製)、及び酸化ジルコニウム(和光純薬社製、平均粒子径30μm)をハンドミキサーで混合した得られたスラリーに、12.0〜14.0μmのアルミニウム粉体を添加して、更に混合した後に、1100×1100×40mmの型に流し込み発泡硬化させ、無機発泡体を得た。密度調整のため、アルミニウム粉体を除く各成分の配合量は、実施例20〜22及び比較例12〜13の3倍とした。得られた発泡体を用い、上記方法に従い物性を評価した。結果を表9に示す。
【0058】
Figure 0004378675
【0059】
実施例26〜28、比較例16〜17
表10に示す配合に従い、高炉スラグ(組成SiO2:Al23=2:1(重量比)、平均粒径10μm)、珪酸ナトリウム水溶液(組成SiO2/Na2O=1.5、濃度55%)、ステアリン酸亜鉛(和光純薬社製)、及び酸化ジルコニウム(和光純薬社製、平均粒子径30μm)をハンドミキサーで混合した得られたスラリーに、9.0〜11.0μmのアルミニウム粉体を添加して、更に混合した後に、1100×1100×40mmの型に流し込み発泡硬化させ、無機発泡体を得た。得られた発泡体を用い、上記方法に従い物性を評価した。結果を表10に示す。
【0060】
Figure 0004378675
【0061】
【発明の効果】
本発明の発泡性組成物を用いることにより、高温下でも優れた耐火断熱性を有する発泡体を得ることが可能となる。
【図面の簡単な説明】
【図1】耐火試験体の非加熱面上に設置する熱電対の位置(●の4箇所)を表わす概略図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a foamable composition, and more particularly, to a foamable composition capable of obtaining a foam excellent in fire resistance and heat insulation at high temperatures. The present invention also relates to a foam obtained by foaming and curing such a foamable composition.
[0002]
[Prior art]
Conventionally, lightweight foam has been obtained by adding metal (aluminum) and hydrogen peroxide to the reaction system of inorganic powder such as fly ash and blast furnace slag produced as industrial waste and silicate, and then foaming and curing. It is known that it can be obtained, and such a foam is used, for example, in the field of a building outer wall material as a foam heat insulating material.
[0003]
For example, using (A) water-soluble alkali silicate, (B) metal-based foaming agent, (C) fly ash or blast furnace slag and (D) a foamable inorganic composition containing water as active ingredients to form a foam. Is known (for example, see Patent Document 1). (A) 100 parts by weight of a reactive inorganic powder such as fly ash, clay, metakaolin, etc. containing 80% by weight or more of a powder having a particle size of 10 μm or less, (B) an average particle size of 0.01 to 35 μm 20 to 800 parts by weight of an inorganic filler that is granular or has a length in the longitudinal direction of 1 to 250 μm and a columnar or needle shape, (C) 0.01 to 10 parts by weight of hydrogen peroxide, (D There is also proposed a foamable inorganic composition comprising 0.2 to 450 parts by weight of an alkali metal silicate and (E) 35 to 1,500 parts by weight of water. By using such a composition, the uniformity of bubbles is proposed. It is said that a foam having a low heat shrinkage (at 100 ° C.) can be obtained while having excellent water resistance, high strength and low specific gravity (see, for example, Patent Document 2). However, the foam obtained from the foamable inorganic composition described in the above prior art cannot be said to have sufficient fire resistance at high temperatures.
[0004]
[Patent Document 1]
JP-A-57-77062
[Patent Document 2]
JP-A-8-73283
[0005]
[Problems to be solved by the invention]
As heat transfer in a certain material, heat conduction, convection and radiation are generally known. The material structure is made of foam, and the heat conduction is reduced by thinning the solid heat conduction part. Also, the convection of the gas in the material is achieved by making the foam cells finer and closed cells. It is already known to prevent this, and these techniques are widely used in organic foams and inorganic foams.
[0006]
Certainly, the above-mentioned method is effective as a method for improving the heat insulating property of the foam in the temperature range from low temperature to about 300 ° C., but the radiation effect is large in the high temperature region above 300 ° C. In order to improve performance, it is necessary to reduce heat transfer by radiation in addition to heat conduction and convection.
[0007]
In addition, in a composition composed of a silicate and a reactive inorganic powder, an appropriate surfactant is added and foam-cured to form fine and independent cells in the obtained heat insulating material. However, at high temperatures of 400 ° C. or higher, for example, microcracks occur in the cell walls due to shrinkage of the heat insulating material, and gas convection between the cells becomes significant, and as a result, the heat insulating property of the heat insulating material decreases. I came.
[0008]
For this reason, when using the foam obtained from the conventional inorganic composition for the use as which a fireproof thermal insulation property at high temperature like a fireproof panel etc. is calculated | required, it is necessary to thicken the thickness of a foam (panel). Yes, it wasn't economical.
[0009]
[Means for Solving the Problems]
The present invention has been made in view of the above points, and in addition to heat conduction and convection, it is possible to significantly reduce radiant heat from a high-temperature heat source, and has excellent fire and heat insulation even at high temperatures. An object of the present invention is to provide a foam composition capable of forming a foam.
[0010]
That is, the present invention includes an aluminum silicate-based reactive inorganic powder, an alkali metal silicate, a foaming agent, and an infrared opaque powder, and a ratio of the alkali metal silicate, the foaming agent, and the infrared opaque powder. However, it is related with the foamable composition which is 10-100 weight part, 0.05-5 weight part, and 4-40 weight part, respectively with respect to 100 weight part of aluminum silicate type | system | group reactive inorganic powder.
[0011]
The present invention also relates to a foam obtained by foam-curing such a foamable composition.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
As described above, the foamable composition of the present invention contains aluminum silicate-based reactive inorganic powder, alkali metal silicate, foaming agent, and infrared opaque powder as essential components. Will be described.
[0013]
The “aluminum silicate-based reactive inorganic powder” used in the present invention refers to a reactive inorganic powder containing an aluminum silicate component, which can be reacted and cured with a water-soluble alkali silicate. Specific examples include fly ash, mineralized pulp sludge, blast furnace slag, and the like.
[0014]
Here, fly ash refers to fine ash particles collected by a dust collector from a pulverized coal combustion boiler as defined in JIS A 6201. Specifically, silica 45% or more, moisture 1% or less, Ignition loss 5% or less, specific gravity 1.95 or more, specific surface area 2700cm 2 / G or more and 75% or more of the particles can pass through a 44 μm standard sieve. In the present invention, from the viewpoint of heat resistance, SiO 2 : Al 2 O Three = Fly ash having a composition of 45 to 60:20 to 28 (weight ratio) is preferably used, and it is preferable to have an average particle diameter of 5 to 30 μm.
[0015]
Mineralized pulp sludge is obtained by incineration mineralization of waste produced as a by-product in the papermaking process. Specifically, silica 40% or more, moisture 1% or less, ignition loss 1% or less, specific gravity 1. 80 or more, specific surface area 2500cm 2 / G or more, 75% or more of the particles pass through the 44 μm standard sieve. In the present invention, from the viewpoint of heat resistance, SiO 2 : Al 2 O Three = 30-50: 25-35 (weight ratio) is preferable, and it is preferable to have an average particle diameter of 5-30 μm. .
[0016]
Blast furnace slag is an inorganic powder produced as a by-product when iron is refined from iron ore specified in JIS A5011-1. Specifically, calcium oxide is 45% or less, sulfur content is 2. Examples thereof include 0% or less and a specific gravity of 2.50 or more. In the present invention, it is preferable that 70% or more of the particles pass through a 44 μm standard sieve, and a preferable average particle diameter is 5 to 30 μm.
[0017]
In the present invention, in addition to the above, the chemical composition is SiO. 2 10 to 80% by weight, Al 2 O Three It is also possible to use an inorganic powder containing 90 to 10% by weight as an aluminum silicate-based reactive inorganic powder. Examples of such powders include kaolin minerals such as metakaolin, mica clay minerals, wollastonite, and talc. However, it is not limited to these as long as the composition particle size is appropriate and the dimensional stability at high temperature is excellent.
[0018]
Next, the alkali metal silicate used in the present invention is M. 2 O · nSiO 2 (M = one or more metals selected from K, Na, and Li). Here, n is preferably in the range of 0.5 to 4, more preferably 1.0 to 2.5. If the value of n is smaller than this, the reaction is too fast, and the foam cell becomes open-celled and the heat insulation performance decreases. Conversely, if the value of n becomes too large, the reaction becomes difficult to proceed. In addition, it is preferable to mix | blend alkali metal silicate as aqueous solution. The concentration of the aqueous solution is not particularly limited, but the reactivity with the reactive powder decreases as the thickness decreases. Moreover, since it will become easy to precipitate an alkali metal silicate when it becomes thick, it is preferable to set it as 10 to 60 weight%. Further, the alkali metal silicate aqueous solution may be prepared by dissolving the alkali metal silicate as it is in water under pressure and heating, but first, the alkali metal silicate is mixed with SiO such as silica sand and silica powder. 2 The components may be added to make n a predetermined value, and then dissolved under pressure and heating to obtain an alkali metal silicate aqueous solution.
[0019]
As the foaming agent used in the present invention, a peroxide and a metal-based foaming agent are mainly exemplified. Specific examples of the peroxide include hydrogen peroxide, t-butyl hydroperoxide, potassium peroxide, sodium peroxide, ammonium persulfate, sodium persulfate, and potassium persulfate. These peroxides are usually used as an aqueous solution. For example, a hydrogen peroxide solution having a concentration of 5 to 40% by weight and a t-butyl hydroperoxide aqueous solution having a concentration of 60 to 70% by weight are preferable. Specifically, metal elements, metal alloys, intermetallic compounds, and the like are used as the metal foaming agent. As the metal element, those belonging to the third to fifth periods of the periodic table such as aluminum, silicon, calcium, barium, iron, nickel, gallium, etc. are preferable, and as the metal alloy and intermetallic compound, aluminum-silicon, aluminum -Titanium, aluminum-manganese, aluminum-copper, aluminum-copper-silicon and the like are preferable. Of these, aluminum, silicon and the like are particularly preferable. These metal foaming agents are usually preferably used as a powder having an average particle size of 0.1 to 200 μm, preferably 1 to 50 μm.
[0020]
Subsequently, “infrared impervious powder” used in the present invention means a material that is opaque to infrared transmission and scatters and blocks radiant heat. In the present invention, it is preferable to use at least one selected from the group consisting of zirconium oxide and titanium oxide as the infrared opaque powder.
[0021]
Zirconium oxide preferably has an average particle diameter of 1 to 80 μm, more preferably 1 to 50 μm, from the viewpoints of heat reflectivity and heat insulation at high temperatures. When zirconium oxide having a large average particle size is used (> 80 μm), the presence of zirconium oxide in the composition becomes sparse, so that the effect of improving heat insulation by preventing radiation is not sufficiently exhibited, and the average particle size is 1 μm. Below, since it becomes smaller than the wavelength of infrared rays, infrared rays pass through and the reflection effect becomes small. In the present invention, an inexpensive silica sand compound such as zircon sand can also be used.
[0022]
As titanium oxide, it is preferable to use a titanium oxide having a particle diameter of infrared wavelength (0.76 μm) or more from the viewpoint of heat reflectivity, but titanium oxide is a very fine powder, The upper limit of the average primary particle diameter is about 0.2 to 0.3 μm. For this reason, in this invention, it is preferable to use the titanium oxide whose average particle diameter is 0.1 micrometer or more, More preferably, it is 0.2 micrometer or more. Even if titanium oxide having a particle size of less than 0.1 μm is added, infrared rays pass through, and the desired heat reflecting effect cannot be obtained.
[0023]
In addition, since titanium oxide has a high refractive index, it is known as a reflective material, and there is a heat insulating material in which the surface layer is a titanium oxide coating layer, but a remarkable result was not obtained regarding the heat insulating property in a high temperature region. However, by blending with an inorganic foam-cured heat insulating material made of a thin film (cell wall), the entire thin film becomes a reflective layer and can be a heat insulating material with a high heat insulating effect.
[0024]
Moreover, in this invention, it is preferable to use together a zirconium oxide and a titanium oxide as infrared impervious powder from the point of obtaining a more favorable heat insulation.
[0025]
The foamable composition of the present invention containing the above-described specific component becomes a foam having fine and closed cells by foaming and curing. Here, the “closed cell” means that a cell which is a bubble constituent unit constituting a foam is not connected to an adjacent cell and is completely surrounded by a wall (cell wall) forming the cell. Refers to the structure that is. A foam having such fine and closed-cells can be suitably used as a heat insulating material because it can reduce heat transfer due to radiation and has excellent heat insulating properties even at high temperatures. When the foamable composition of the present invention is used, in the process of foaming, the infrared-impermeable powder spreads over the entire cell wall surface while being oriented along the foam cell wall surface (covering the entire cell wall surface). )it is conceivable that. As described above, the foam of the present invention has the infrared-impermeable powder along the cell wall surface, and can effectively improve the fire-resistance and heat-resistance at a high temperature of the foam.
[0026]
In addition, when the foam temperature is 400 ° C. or higher, micro cracks may occur in the cell wall due to the shrinkage of the foam. In such a case, a heat-resistant fiber is further added to the foamable composition of the present invention. It is preferable to do. In addition, generation | occurrence | production of this microcrack becomes a cause of the communicating body structure where cells connected, As a result, the convection of the gas inside a cell will increase and the heat insulation of a foam will fall. By blending heat resistant fibers, the foam is less likely to shrink even at high temperatures, and microcracks can be prevented from occurring. The heat-resistant fiber that can be blended is preferably an inorganic fiber, and more preferably at least one selected from the group consisting of potassium titanate fiber, boron fiber, and silica fiber.
[0027]
Organic fibers such as vinylon fiber, polypro fiber, and aramid fiber may carbonize and burn in the high temperature range, and glass fibers made of E glass have low heat resistance and melt and soften in the high temperature range. It is not always appropriate to add these fibers to the composition of the present invention. However, these are conventionally known reinforcing fibers, and in order to improve the strength of the molded body and also improve the shape retention, these fibers are added to 2 parts by weight of the reactive inorganic powder. There is no problem if it is added in a range less than parts by weight. If it exceeds 2 parts by weight, the kneadability and foamability of the composition deteriorate due to the increase in viscosity.
[0028]
Regarding the fiber length and fiber diameter of such heat-resistant fibers, the ratio of fiber length to fiber diameter, so-called aspect ratio, is preferably in the range of 20 to 2000, more preferably 50 to 1000. When the aspect ratio is less than 20, the intended reinforcing effect cannot be obtained. On the other hand, when the aspect ratio is greater than 2000, the viscosity of the raw material liquid composed of each component used in the present invention becomes too high, and a predetermined amount of heat-resistant fiber is added. When added, the raw material liquid may not be uniformly stirred. However, even when the ratio of the fiber length to the fiber diameter, that is, the aspect ratio is within the above range, when fibers having a fiber diameter of 15 μm or more are added, the presence of heat-resistant fibers is less than the cell wall of the foam. Therefore, the effect of preventing cracking of the cell wall at a high temperature cannot be obtained.
[0029]
In addition, you may add a foaming auxiliary material to the composition of this invention as needed. The foaming aid is not particularly limited as long as foaming foam is stabilized while being fine. Examples include fatty acid metal salts such as zinc stearate, calcium stearate, aluminum stearate, zinc maleate, calcium maleate, castor oil surfactants, animal proteins such as casein, and the like. These may be used alone or in combination of two or more.
[0030]
Then, the quantity of each component which comprises the foamable composition of this invention is demonstrated. First, the amount of the alkali metal silicate is preferably 10 to 100 parts by weight, more preferably 20 to 60% by weight with respect to 100 parts by weight of the aluminum silicate-based reactive inorganic powder. When the amount of the alkali metal silicate is larger than this, the molded body tends to be brittle, while when the amount of the alkali metal silicate is small, the curing reaction with the aluminum silicate-based reactive inorganic powder is delayed. As described above, the alkali metal silicate is preferably added in the form of an aqueous solution. For example, when a 50% aqueous solution of the alkali metal silicate is used, 100 parts by weight of the aluminum silicate-based reactive inorganic powder is used. It is preferable to add 20 to 200 parts by weight.
[0031]
Moreover, it is preferable that the quantity of a foaming agent shall be 0.05-5 weight part with respect to 100 weight part of aluminum silicate type reactive inorganic powder. When a foaming agent is a peroxide, 0.2 to 3 weight% is preferable, More preferably, it is 0.5 to 2 weight%. For example, when hydrogen peroxide is used as the peroxide, if the amount of hydrogen peroxide is larger than this, bubble breakage progresses due to abnormal foaming, and the foam cells become open-celled and the heat insulation performance decreases. Moreover, since it becomes a density smaller than a suitable density, the molded object which has sufficient intensity | strength cannot be obtained. On the other hand, when the amount of hydrogen peroxide is small, foaming is small and the density of the molded body is high, and although strength and closed cells can be secured, the lightness is impaired and the heat insulating performance is inferior. In the present invention, it is preferable to mix hydrogen peroxide as an aqueous solution, that is, hydrogen peroxide water in consideration of the safety of workers. For example, a commercially available 35% aqueous solution is appropriately diluted with water and used. Is preferred. When hydrogen peroxide solution having a concentration of 10% is used, it is preferable to add 2 to 30 parts by weight with respect to 100 parts by weight of the aluminum silicate-based reactive inorganic powder. When the foaming agent is a metal foaming agent, 0.05 to 5 parts by weight is preferable, and 0.1 to 3 parts by weight is particularly preferable. If it is less than 0.05 weight, the density of the obtained foam becomes too high, and the heat insulation performance deteriorates, which is not preferable. On the other hand, when the amount exceeds 5 parts by weight, foaming is excessive and normal foam cells cannot be formed, the density becomes too low, the molded product becomes too brittle, and good heat insulation performance cannot be obtained.
[0032]
The amount of the infrared-impermeable powder is preferably 4 to 40 parts by weight, more preferably 10 to 30 parts by weight with respect to 100 parts by weight of the aluminum silicate reactive inorganic powder. If the amount is less than 4 parts by weight, heat transfer due to radiation cannot be sufficiently suppressed. Conversely, if the amount exceeds 40 parts by weight, the strength of the resulting foam is weakened, and cracking may occur at high temperatures. In the present invention, the upper limit of the blending amount is 40 parts by weight regardless of whether one kind of infrared impermeable powder is used alone or two or more kinds are used in combination. .
[0033]
When heat-resistant fibers (inorganic fibers) are further added to the foamable composition of the present invention, 0.3 to 5 parts by weight of heat-resistant fibers may be added to 100 parts by weight of the reactive powder. preferable. If the amount of heat-resistant fiber is too small, the effect of preventing the occurrence of microcracks at high temperatures cannot be obtained, and if too large, kneading cannot be performed well. Moreover, also when mix | blending a heat resistant fiber (inorganic fiber) with a foamable composition, it is preferable that the quantity of infrared rays impervious powder shall be 4-40 weight part with respect to 100 weight part of reactive powder. .
[0034]
In addition to the above-described components, the foamable composition of the present invention can also contain inorganic heat-resistant hollow particles such as shirasu balloons and ceramic balloons as long as the object of the present invention is not impaired.
[0035]
The characteristics of the foamable composition of the present invention can be confirmed by the following method according to the fire resistance test of ISO 834. That is, when one side of a foam obtained from the foamable composition is heated for a predetermined time under a temperature rise condition according to the ISO 834 heating temperature curve, the average temperature of the opposite side, that is, the non-heated side of the foam When the difference between the maximum temperature of the foam non-heated surface and the room temperature is 180 ° C. or less, a foam excellent in fire resistance and heat insulation at high temperatures is obtained. Can be evaluated. In addition, the apparatus which can reproduce a fireproof test furnace or a fireproof test furnace can be used for the heating of the foam obtained from the foamable composition of this invention.
[0036]
Here, when a foam is generally used for the fireproof structure, a high density is not preferable because the porosity in the foam is low and the thermal conductivity is high. In addition, when the density is low, the cell size in the foam increases, convection increases in the cell, and the thermal conductivity increases. In the present invention, by adding an infrared opaque powder to the foam, a foam having excellent heat insulation in a wide range from low density to high density can be obtained. 100-700kg / m Three It is also possible to use a foam.
[0037]
As described above, the present invention adds infrared impermeable powder in the foam to reduce heat transfer due to radiation, and if necessary, by adding a heat-resistant fiber that is stable even at high temperatures as a reinforcing material, It prevents microcracking and reduces heat transfer by convection. Therefore, the foam of this invention is used suitably as a fireproof heat insulating material for civil engineering construction, a fireproof filler, a sound absorbing material, and a heat resistant heat insulating material for industrial materials.
[0038]
In order to obtain a foam from the foamable composition of the present invention, for example, an aqueous solution of an alkali metal silicate, an aluminum silicate-based reactive inorganic powder and an infrared-impermeable powder, and further, if necessary, inorganic fibers and foaming aids. It is possible to employ a method in which an agent is mixed to form a slurry, an aqueous solution of a peroxide as a foaming agent is added and mixed, and filled into a predetermined shape by an ordinary method and foamed and cured. Alternatively, for example, an aluminum silicate-based reactive inorganic powder, a metal-based foaming agent and an infrared-impermeable powder, and further mixed with inorganic fibers and a foaming aid as necessary to form a uniform powder, and an alkali metal A method in which an aqueous solution of silicate is added and mixed to form a slurry, which is filled in a predetermined shape and foam-cured by an ordinary method, can be employed.
[0039]
【Example】
Hereinafter, the present invention will be described in more detail, but the present invention is not limited to these examples. In the following, “parts” and “%” mean “parts by weight” and “% by weight”, respectively, unless otherwise specified.
[0040]
Fire test furnace experiment
The foams obtained in the following Examples and Comparative Examples were sufficiently dried for 24 hours with a 50 ° C. dryer. After drying, the specimen was cut into a 1000 × 1000 × 40 mm specimen, the density of the specimen was measured according to JIS K7222, and the specimen was installed in a 1 m refractory furnace. The heating temperature of the test body was programmed so as to be a temperature increase condition according to ISO834 (fire resistance test method for building structure / member) heating temperature curve. As shown in FIG. 1, 0.32 mm chromel alumel thermocouples are fixed at predetermined positions (four locations indicated by ●) on the non-heated surface (back surface) of the test specimen, and each thermoelectric power is changed every one minute. The temperature of the non-heated surface of the test body at the opposite position was measured, and the maximum average temperature and the maximum temperature of the test body non-heated surface up to the heating end time were obtained. The heating time was 72 minutes. The case where the difference between the maximum average temperature of the foam non-heated surface and room temperature is 140 ° C or less and the difference between the maximum temperature of the foam non-heated surface and room temperature is 180 ° C or less is defined as "good", otherwise The case of was evaluated as “impossible”.
[0041]
Examples 1-3, Comparative Examples 1-2
According to the formulation shown in Table 1, fly ash (composition SiO 2 : Al 2 O Three = 11: 5 (weight ratio), average particle size 10 μm), sodium silicate aqueous solution (composition SiO) 2 / Na 2 O = 1.5, concentration 55%), zinc stearate (manufactured by Wako Pure Chemical Industries, Ltd.), and zirconium oxide (manufactured by Wako Pure Chemical Industries, Ltd., average particle diameter 30 μm) were mixed with a hand mixer into a slurry obtained. After adding hydrogen peroxide (concentration 10%) and further mixing, it was poured into a mold of 1100 × 1100 × 40 mm and foamed and cured to obtain an inorganic foam. In the foams of Examples 1 to 3, it was confirmed that the infrared-impermeable powder was present along the cell wall surface. Using the obtained foam, the physical properties were evaluated according to the above methods. The results are shown in Table 1.
[0042]
Figure 0004378675
[0043]
Examples 4-6, Comparative Examples 3-4
According to the formulation shown in Table 2, fly ash (composition SiO 2 : Al 2 O Three = 11: 5 (weight ratio), average particle size 10 μm), sodium silicate aqueous solution (composition SiO) 2 / Na 2 O = 1.5, concentration 55%), zinc stearate (manufactured by Wako Pure Chemical Industries, Ltd.), and zirconium oxide (manufactured by Wako Pure Chemical Industries, Ltd., average particle size 30 μm) were mixed with a hand mixer. Hydrogen oxide water (concentration 10%) was added, and after further mixing, it was poured into a mold of 1100 × 1100 × 40 mm and foamed and cured to obtain an inorganic foam. In order to adjust the density, the amount of each component excluding hydrogen peroxide was three times that of Comparative Examples 1-2 and Examples 1-3. Using the obtained foam, the physical properties were evaluated according to the above methods. The results are shown in Table 2.
[0044]
Figure 0004378675
[0045]
Examples 7-9, Comparative Examples 5-6
According to the formulation shown in Table 3, blast furnace slag (composition SiO 2 : Al 2 O Three = 2: 1 (weight ratio), average particle size 10 μm), sodium silicate aqueous solution (composition SiO) 2 / Na 2 O = 1.5, concentration 55%), zinc stearate (manufactured by Wako Pure Chemical Industries, Ltd.), and zirconium oxide (manufactured by Wako Pure Chemical Industries, Ltd., average particle size 30 μm) were mixed with a hand mixer. Hydrogen oxide water (concentration 10%) was added, and after further mixing, it was poured into a mold of 1100 × 1100 × 40 mm and foamed and cured to obtain an inorganic foam. Using the obtained foam, the physical properties were evaluated according to the above methods. The results are shown in Table 3.
[0046]
Figure 0004378675
[0047]
Examples 10-12, Comparative Example 7
According to the formulation shown in Table 4, fly ash (composition SiO 2 : Al 2 O Three = 11: 5 (weight ratio), average particle size 10 μm), sodium silicate aqueous solution (composition SiO) 2 / Na 2 O = 1.5, concentration 55%), a slurry obtained by mixing zinc stearate (manufactured by Wako Pure Chemical Industries, Ltd.) and titanium oxide (manufactured by Teika Co., Ltd., average particle size 0.3 μm) with a hand mixer. Hydrogen peroxide water (concentration 10%) was added to the mixture, and after further mixing, it was poured into a mold of 1100 × 1100 × 40 mm and foamed and cured to obtain an inorganic foam. Using the obtained foam, the physical properties were evaluated according to the above methods. The results are shown in Table 4.
[0048]
Figure 0004378675
[0049]
Examples 13 to 15 and Comparative Example 8
According to the formulation shown in Table 5, blast furnace slag (composition SiO 2 : Al 2 O Three = 2: 1 (weight ratio), average particle size 10 μm), sodium silicate aqueous solution (composition SiO) 2 / Na 2 O = 1.5, concentration 55%), a slurry obtained by mixing zinc stearate (manufactured by Wako Pure Chemical Industries, Ltd.) and titanium oxide (manufactured by Teika Co., Ltd., average particle size 0.3 μm) with a hand mixer. Hydrogen peroxide water (concentration 10%) was added to the mixture, and after further mixing, it was poured into a mold of 1100 × 1100 × 40 mm and foamed and cured to obtain an inorganic foam. Using the obtained foam, the physical properties were evaluated according to the above methods. The results are shown in Table 5.
[0050]
Figure 0004378675
[0051]
Examples 16-17, Comparative Example 9
According to the formulation shown in Table 6, fly ash (composition SiO 2 : Al 2 O Three = 11: 5 (weight ratio), average particle size 10 μm), sodium silicate aqueous solution (composition SiO) 2 / Na 2 O = 1.5, concentration 55%), zinc stearate (manufactured by Wako Pure Chemical Industries, Ltd.), zirconium oxide (manufactured by Wako Pure Chemical Industries, Ltd., average particle diameter 30 μm) and titanium oxide (manufactured by Teika Co., Ltd., average particles) Hydrogen peroxide solution (concentration 10%) was added to the resulting slurry mixed with a hand mixer (diameter 0.3 μm), and after further mixing, it was poured into a mold of 1100 × 1100 × 40 mm, foamed and cured, and inorganic A foam was obtained. Using the obtained foam, the physical properties were evaluated according to the above methods. The results are shown in Table 6.
[0052]
Figure 0004378675
[0053]
Examples 18-19, Comparative Examples 10-11
According to the formulation shown in Table 7, fly ash (composition SiO 2 : Al 2 O Three = 11: 5 (weight ratio), average particle size 10 μm), sodium silicate aqueous solution (composition SiO) 2 / Na 2 O = 1.5, concentration 55%), zinc stearate (manufactured by Wako Pure Chemical Industries), zirconium oxide (manufactured by Wako Pure Chemical Industries, average particle size 30 μm) and potassium titanate fiber (trade name: TISMO-D, 1100 × 1100 after adding hydrogen peroxide water (concentration 10%) to the resulting slurry obtained by mixing Otsuka Chemical Co., Ltd., average fiber length / fiber diameter average ratio 70) with a hand mixer. It was poured into a 40 mm mold and foamed and cured to obtain an inorganic foam. Using the obtained foam, the physical properties were evaluated according to the above methods. The results are shown in Table 7.
[0054]
Figure 0004378675
[0055]
Examples 20-22, Comparative Examples 12-13
According to the formulation shown in Table 8, fly ash (composition SiO 2 : Al 2 O Three = 11: 5 (weight ratio), average particle size 10 μm), sodium silicate aqueous solution (composition SiO) 2 / Na 2 O = 1.5, concentration 55%), zinc stearate (manufactured by Wako Pure Chemical Industries, Ltd.), and zirconium oxide (manufactured by Wako Pure Chemical Industries, Ltd., average particle size 30 μm) were mixed with a hand mixer into a slurry obtained. After adding 12.0 to 14.0 μm aluminum powder and further mixing, it was poured into a mold of 1100 × 1100 × 40 mm and foamed and cured to obtain an inorganic foam. In the foams of Examples 20 to 22, it was confirmed that the infrared-impermeable powder was present along the cell wall surface. Using the obtained foam, the physical properties were evaluated according to the above methods. The results are shown in Table 8.
[0056]
Figure 0004378675
[0057]
Examples 23-25, Comparative Examples 14-15
According to the formulation shown in Table 9, fly ash (composition SiO 2 : Al 2 O Three = 11: 5 (weight ratio), average particle size 10 μm), sodium silicate aqueous solution (composition SiO) 2 / Na 2 O = 1.5, concentration 55%), zinc stearate (manufactured by Wako Pure Chemical Industries, Ltd.), and zirconium oxide (manufactured by Wako Pure Chemical Industries, Ltd., average particle diameter of 30 μm) were mixed with a hand mixer. After adding 0.01 to 14.0 μm aluminum powder and further mixing, it was poured into a mold of 1100 × 1100 × 40 mm and foamed and cured to obtain an inorganic foam. In order to adjust the density, the blending amount of each component excluding the aluminum powder was three times that of Examples 20 to 22 and Comparative Examples 12 to 13. Using the obtained foam, the physical properties were evaluated according to the above methods. The results are shown in Table 9.
[0058]
Figure 0004378675
[0059]
Examples 26-28, Comparative Examples 16-17
According to the formulation shown in Table 10, blast furnace slag (composition SiO 2 : Al 2 O Three = 2: 1 (weight ratio), average particle size 10 μm), sodium silicate aqueous solution (composition SiO) 2 / Na 2 O = 1.5, concentration 55%), zinc stearate (manufactured by Wako Pure Chemical Industries, Ltd.), and zirconium oxide (manufactured by Wako Pure Chemical Industries, Ltd., average particle diameter of 30 μm) were mixed with a hand mixer into the resulting slurry. After adding 0.01 to 11.0 μm aluminum powder and further mixing, it was poured into a mold of 1100 × 1100 × 40 mm and foamed and cured to obtain an inorganic foam. Using the obtained foam, the physical properties were evaluated according to the above methods. The results are shown in Table 10.
[0060]
Figure 0004378675
[0061]
【The invention's effect】
By using the foamable composition of the present invention, it is possible to obtain a foam having excellent fire and heat insulation properties even at high temperatures.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a schematic diagram showing the positions of thermocouples (four locations in black circles) installed on a non-heated surface of a fireproof test specimen.

Claims (9)

珪酸アルミニウム系反応性無機粉体、アルカリ金属珪酸塩、発泡剤、及び赤外線不透過性粉体を含み、アルカリ金属珪酸塩、発泡剤、及び赤外線不透過性粉体の割合が、珪酸アルミニウム系反応性無機粉体100重量部に対して、それぞれ、10〜100重量部、0.05〜5重量部、及び4〜40重量部であり、前記赤外線不透過性粉体として平均粒径が0.1〜0.3μmである酸化チタンを使用する、断熱材に用いられる発泡性組成物Including aluminum silicate reactive inorganic powder, alkali metal silicate, foaming agent, and infrared opaque powder, the proportion of alkali metal silicate, foaming agent, and infrared opaque powder is aluminum silicate reaction against sexually inorganic powder 100 parts by weight, respectively, 10 to 100 parts by weight, 0.05 to 5 parts by weight, and 4-40 parts by weight der is, the average particle size as the infrared-opaque powder 0 The foamable composition used for a heat insulating material using the titanium oxide which is 0.1-0.3 micrometer . 発泡剤が過酸化物であって、珪酸アルミニウム系反応性無機粉体100重量部に対して、0.2〜3重量部である、請求項1記載の発泡性組成物。  The foamable composition according to claim 1, wherein the foaming agent is a peroxide and is 0.2 to 3 parts by weight with respect to 100 parts by weight of the aluminum silicate-based reactive inorganic powder. 過酸化物が過酸化水素である、請求項2記載の発泡性組成物。  The foamable composition of claim 2, wherein the peroxide is hydrogen peroxide. 発泡剤が金属系発泡剤である、請求項1記載の発泡性組成物。  The foamable composition according to claim 1, wherein the foaming agent is a metallic foaming agent. 金属系発泡剤がアルミニウム粉体である、請求項4記載の発泡性組成物。  The foamable composition according to claim 4, wherein the metal foaming agent is aluminum powder. 赤外線不透過性粉体が、さらに酸化ジルコニウムを含む、請求項1〜5の何れか1項に記載の発泡性組成物。The foamable composition according to any one of claims 1 to 5, wherein the infrared-impermeable powder further contains zirconium oxide . チタン酸カリウム繊維、ボロン繊維及びシリカ繊維からなる群から選ばれる少なくとも1種の無機繊維を、珪酸アルミニウム系反応性無機粉体100重量部に対して、0.3〜5重量部の割合で更に含む、請求項1〜6の何れか1項に記載の発泡性組成物。  At least one inorganic fiber selected from the group consisting of potassium titanate fiber, boron fiber and silica fiber is further added in a ratio of 0.3 to 5 parts by weight with respect to 100 parts by weight of the aluminum silicate-based reactive inorganic powder. The foamable composition according to any one of claims 1 to 6. 請求項1〜7の何れか1項に記載される発泡性組成物を発泡硬化してなる、発泡体。  The foam formed by foam-curing the foamable composition as described in any one of Claims 1-7. 密度が100〜700kg/m である、請求項8記載の発泡体。 Density of 100~700kg / m 3, foam of claim 8.
JP2003084661A 2002-09-09 2003-03-26 Inorganic foamable composition Expired - Lifetime JP4378675B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003084661A JP4378675B2 (en) 2002-09-09 2003-03-26 Inorganic foamable composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002262709 2002-09-09
JP2003084661A JP4378675B2 (en) 2002-09-09 2003-03-26 Inorganic foamable composition

Publications (2)

Publication Number Publication Date
JP2004155643A JP2004155643A (en) 2004-06-03
JP4378675B2 true JP4378675B2 (en) 2009-12-09

Family

ID=32827451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003084661A Expired - Lifetime JP4378675B2 (en) 2002-09-09 2003-03-26 Inorganic foamable composition

Country Status (1)

Country Link
JP (1) JP4378675B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5002825B2 (en) * 2005-07-07 2012-08-15 株式会社ジェイエスピー Method for producing inorganic foam
JP4676827B2 (en) * 2005-07-07 2011-04-27 株式会社アスクテクニカ Porous molded body and method for producing the same
JP2007120159A (en) * 2005-10-28 2007-05-17 Ehime Univ Heat insulating and soundproof material
JP4714640B2 (en) * 2006-06-07 2011-06-29 新日本製鐵株式会社 Manufacturing method of heat insulating gradient material
JP6960814B2 (en) * 2017-09-25 2021-11-05 ライト工業株式会社 Filler and manufacturing method of filler
JP2019059633A (en) * 2017-09-25 2019-04-18 ライト工業株式会社 Filler and method for producing filler

Also Published As

Publication number Publication date
JP2004155643A (en) 2004-06-03

Similar Documents

Publication Publication Date Title
Dhasindrakrishna et al. Progress, current thinking and challenges in geopolymer foam concrete technology
CN104152029B (en) A kind of high-temperature resistant nano hole thermal insulation coatings and preparation method
Musil et al. In situ mechanical properties of chamotte particulate reinforced, potassium geopolymer
Sawan et al. In-situ formation of geopolymer foams through addition of silica fume: Preparation and sinterability
CN106747622A (en) The preparation method of a kind of ground polymers fire-retardant heat insulation plate
US20140047999A1 (en) Acid and high temperature resistant cement composites
KR101021467B1 (en) A manufacturing method ofcomposition for adiabatic material with high fire resistance
Ercenk The effect of clay on foaming and mechanical properties of glass foam insulating material
JP4714640B2 (en) Manufacturing method of heat insulating gradient material
JPH0228632B2 (en) NANNENSEIFUKUGOTAIBUTSUSHITSU
JP4378675B2 (en) Inorganic foamable composition
Kearsley et al. The use of foamed concrete in refractories
FR2900653A1 (en) Composition, useful for preparing heat insulation and fire protection materials, comprises cement such as calcium aluminate cement and molten cement, first insulating filler e.g. pearlite and fibrous filler e.g. wollastonite fibers
Rashad et al. Aluminum dross for thermal insulation and acoustic absorption of alkali-activated slag mortars
JP6207423B2 (en) Lightweight alkali-proof fireproof insulation brick and method for producing the same
JP5465396B2 (en) Low thermal conductivity powder composition for heat insulation castable
EA005771B1 (en) Lightweight, heat insulating, high mechanical strength shaped product and method of producing the same
Abdullah et al. Thermal Properties and Drying Shrinkage Performance of Palm Kernel Shell Ash and Rice Husk Ash-Based Geopolymer Concrete
US3873332A (en) Encapsulated salt additives
KR101019980B1 (en) non-combustible styrofoam manufacture method
Aziz et al. Predicting thermal properties and temperature rise in geopolymer concrete structures
WO2023080676A1 (en) Method for manufacturing coal fly ash-based geopolymer foam by using microwaves
EP4071125A1 (en) Composition of heat-insulating lightweight composite material
Le et al. Research of Curing Time and Temperature-Dependent Strengths and Fire Resistance of Geopolymer Foam Coated on an Aluminum Plate. Coatings 2021, 11, 87
JP2022117872A (en) Geopolymer lightweight refractory material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3