WO2023080676A1 - Method for manufacturing coal fly ash-based geopolymer foam by using microwaves - Google Patents

Method for manufacturing coal fly ash-based geopolymer foam by using microwaves Download PDF

Info

Publication number
WO2023080676A1
WO2023080676A1 PCT/KR2022/017134 KR2022017134W WO2023080676A1 WO 2023080676 A1 WO2023080676 A1 WO 2023080676A1 KR 2022017134 W KR2022017134 W KR 2022017134W WO 2023080676 A1 WO2023080676 A1 WO 2023080676A1
Authority
WO
WIPO (PCT)
Prior art keywords
fly ash
specimen
coal fly
geopolymer foam
geopolymer
Prior art date
Application number
PCT/KR2022/017134
Other languages
French (fr)
Korean (ko)
Inventor
이기윤
김효
박준성
Original Assignee
흥국산업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 흥국산업 주식회사 filed Critical 흥국산업 주식회사
Publication of WO2023080676A1 publication Critical patent/WO2023080676A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/50Producing shaped prefabricated articles from the material specially adapted for producing articles of expanded material, e.g. cellular concrete
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/24Apparatus or processes for treating or working the shaped or preshaped articles for curing, setting or hardening
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/06Oxides, Hydroxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding

Definitions

  • the present invention relates to a method for manufacturing a geopolymer foam based on coal fly ash through microwave irradiation.
  • Portland cement which is mainly used in the construction industry, accounts for more than 95% of the total cement use, and is widely used because of its abundant raw materials and easy production.
  • the Portland cement production process is energy intensive and has a problem in that it emits a large amount of carbon dioxide, which accounts for 8% of global carbon dioxide emissions.
  • Geopolymer is an inorganic material with an aluminosilicate structure with a three-dimensional structure, and is made by mixing materials rich in silicon and aluminum in a strong alkaline solution. It is reported that geopolymers have high compressive strength, excellent fire resistance and acid resistance, and can reduce carbon dioxide emissions by about 70% compared to the manufacturing process of Portland cement. Furthermore, geopolymers show advantages in terms of resource circulation through recycling of industrial by-products because various industrial by-products (such as coal ash from thermal power plants or blast furnace slag from blast furnaces) can be used as raw materials.
  • industrial by-products such as coal ash from thermal power plants or blast furnace slag from blast furnaces
  • the surfactant added together as a bubble stabilizer is an organic material, so there is a problem of generating toxic substances through high-temperature decomposition.
  • silica fume is an industrial by-product generated in the production process of silicon or silicon alloy, and is mainly used in a densified form for convenience of distribution. For this reason, when preparing a geopolymer foam by adding silica fume, there is a problem in that a somewhat irregular foam structure is formed because the particles are not sufficiently dispersed due to the large particle size. Therefore, there is a need to develop a method for synthesizing geopolymer foam without using additives.
  • coal fly ash is a major by-product of coal-fired power plants and is used as a geopolymer raw material because it has small particles and is rich in silica and alumina.
  • Si and Al in the coal fly ash are dissolved by an alkali activator such as sodium hydroxide to act as a binder.
  • an alkali activator such as sodium hydroxide
  • a compound of sodium hydroxide (or calcium hydroxide) and/or sodium silicate (or potassium silicate) is used as an alkali activator
  • geopolymer concrete is generally 40 A curing time of 24-72 hours was required at a temperature of ⁇ 80°C. Therefore, there is a problem in that energy and time consumption are high.
  • Korean Patent Registration No. 2279744 discloses a method for manufacturing a coal ash-based geopolymer foam.
  • the manufacturing method has the above-mentioned problem because it includes the step of using silica fume as a foaming agent and curing at 75 ° C for 72 hours and then further exposing to a high temperature of 200 ° C to 500 ° C.
  • the present inventors have confirmed that when the geopolymer foam is prepared by using coal fly ash as a raw material for the geopolymer foam and foaming through microwave irradiation, the geopolymer foam having low thermal conductivity and light weight can be manufactured in an environmentally friendly manner.
  • the present invention is based on this.
  • an object of the present invention is to use coal fly ash as a raw material for geopolymer foam and to provide a method for synthesizing a geopolymer foam that is environmentally friendly and has low thermal conductivity and is lightweight by a foaming method through microwave irradiation.
  • the present invention (a) preparing an alkali activator solution by mixing water glass (Na 2 SiO 3 solution) and sodium hydroxide (NaOH); (b) preparing a dough sample by adding coal fly ash to the alkali activator solution; (c) preparing a molded body by filling the dough sample into a mold and irradiating microwaves; And (d) demolding the molded body; provides a method for manufacturing a geopolymer foam based on coal fly ash using microwaves.
  • the present invention provides a coal fly ash-based geopolymer foam prepared by the above manufacturing method.
  • a geopolymer foam having low thermal conductivity and light weight can be manufactured by using coal fly ash as a raw material of the geopolymer foam and using microwave irradiation without using a foaming agent.
  • the geopolymer foam according to the present invention is an environmentally friendly inorganic material and can be used to improve the insulation performance and safety of buildings.
  • FIG. 1 is a graph of average temperature and maximum temperature immediately after microwave irradiation of a geopolymer foam according to the present invention.
  • Figure 2 is a cross-sectional photograph according to the microwave irradiation time of the SS90 geopolymer foam specimen according to the present invention.
  • Figure 3 is a cross-sectional photograph of SS100, SS90, and SS80 geopolymer foam specimens at 10 minutes of microwave irradiation according to the present invention.
  • Figure 4 is a graph of the results of the volume density versus the microwave irradiation time of the geopolymer foam according to the present invention.
  • FIG. 5 is a graph showing the results of compressive strength versus microwave irradiation time of the geopolymer foam according to the present invention.
  • Figure 6 is a SEM picture of the SS90 geopolymer foam according to the microwave irradiation time according to the present invention.
  • FIG. 7 is a graph of thermal conductivity versus microwave irradiation time of the geopolymer foam according to the present invention.
  • FIG. 9 is a graph showing the result of bulk density versus L/S ratio of the geopolymer foam according to the present invention.
  • FIG. 10 is a graph of results of compressive strength versus L/S ratio of the geopolymer foam according to the present invention.
  • FIG. 11 is a graph of thermal conductivity versus L/S ratio of the geopolomer foam according to the present invention.
  • One embodiment of the present invention is (a) preparing an alkali activator solution by mixing water glass (Na 2 SiO 3 solution) and sodium hydroxide (NaOH); (b) preparing a dough sample by adding coal fly ash to the alkali activator solution; (c) preparing a molded body by filling the dough sample into a mold and irradiating microwaves; And (d) demolding the molded body; provides a method for manufacturing a geopolymer foam based on coal fly ash using microwaves.
  • Step a) may be a step of mixing water glass (Na 2 SiO 3 solution) and sodium hydroxide (NaOH) at a ratio (weight ratio) of 10:2.5 to 0.
  • step a) may be a step of mixing water glass (Na 2 SiO 3 solution) and sodium hydroxide (NaOH) at a ratio (weight ratio) of 10:2.5 to 1, but is not limited thereto.
  • the water glass (Na 2 SiO 3 solution) is added to the mixture to form a stable foam and improve the curing speed.
  • the water glass (Na 2 SiO 3 solution) may have an SiO 2 content of 28-30% and a Na 2 O content of 9-10%.
  • the sodium hydroxide (NaOH) may be a 13 to 15 M NaOH aqueous solution.
  • the composition of the alkaline activator solution determines the viscosity and chemical reactivity of the specimen.
  • the addition of NaOH aqueous solution can lower the viscosity of the geopolymer paste, resulting in large, non-uniform pores and hindering structural development.
  • the sample with NaOH aqueous solution showed an initial low level of expansion, but since the NaOH aqueous solution serves to improve the geopolymer reactivity, more pores were formed when the microwave irradiation was prolonged, and small pores were formed. was found to have an effect on
  • the present invention uses coal fly ash as a raw material for geopolymer foam. If coal bottom ash is used as a raw material, somewhat irregular foam may be formed.
  • the coal fly ash may have an average particle size of 10 to 100 ⁇ m, preferably 20 to 70 ⁇ m, and more preferably 30 to 50 ⁇ m.
  • the sum of SiO 2 , Al 2 O 3 and Fe 2 O 3 may be 70% or more, preferably 80%.
  • the step b) may be a step of mixing the alkali activator and the coal fly ash at a ratio (weight ratio) of 0.60 to 0.80 (L/S ratio) with respect to 1 (weight ratio) of the alkali activator.
  • the L/S ratio is 0.60 or less, the bulk density is high, and thus the thermal conductivity is high, and the curing of the specimen is unstable, resulting in a low compressive strength. voids can be created.
  • a geopolymer paste in a flowing state can be prepared.
  • This geopolymer paste is called a dough sample in the present invention.
  • the dough sample means that the mixture of the alkali activator solution and the coal fly ash flows without forming a gel.
  • the coal fly ash may be added in an amount of 50% to 65% by weight, preferably 55% to 60% by weight based on the total weight of the dough sample.
  • step b) may be a step of stirring at 200 to 400 rpm for 3 to 10 minutes, but is not limited thereto.
  • the manufacturing method of the present invention is characterized by comprising the step (step c) of filling the dough sample into a mold and irradiating microwaves.
  • Curing by microwave is very efficient in terms of energy consumption than using a drying oven, and is more effective because uniform heating is possible over the entire geopolymer specimen. Therefore, the microwave rapidly raises the temperature of the geopolymer paste, and the resulting hardening of the specimen and vapor generated by evaporation of internal moisture enable the synthesis of the geopolymer having a porous structure. This phenomenon occurred faster as the microwave output increased, resulting in greater expansion of the specimen. However, at microwave power above a certain level, the specimen did not expand significantly anymore. In addition, at microwave power below a certain level, the curing time of the specimen is greatly increased and the outer shape of the specimen is deformed due to excessive heat exposure.
  • Microwave power and microwave irradiation time can be adjusted considering various factors such as coal fly ash raw material, type and concentration of alkali activator, and physical properties of geopolymer products.
  • step c) may be a step of irradiating the mold with microwaves of 300 to 1000 W for 5 to 15 minutes, preferably 8 to 12 minutes. At this time, the molded body may be cured at an average temperature of 80 to 140 °C or a maximum temperature of 100 to 260 °C.
  • the present invention provides a coal fly ash-based geopolymer foam prepared by the above manufacturing method.
  • the coal fly ash-based geopolymer foam may have a bulk density of 0.530 to 0.688 g/cm 3 , thermal conductivity of 0.166 to 0.361 W/mK, and compressive strength of 2.14 to 8.23 MPa.
  • Coal fly ash was supplied from Seocheon Thermal Power Plant.
  • the particle size distribution of the coal fly ash was measured using a particle size analyzer (Partica LA-960, HORIBA, Japan).
  • the chemical components of the coal fly ash were subjected to X-ray fluorescence (XRF) analysis, and the results are shown in Table 1 below (ZSK Primus II, Rigaku, Japan). Referring to Table 1 below, since the sum of SiO 2 , Al 2 O 3 , and Fe 2 O 3 among the components was 86.09%, more than 70%, it was classified as Class F fly ash.
  • Water glass (Sodium silicate solution, SiO 2 : 28-30%, Na 2 O : 9-10%) was purchased from Daejeong Chemical Gold.
  • NaOH pellets (Sodium hydroxide pellet, EP grade) were purchased from Duksan Chemical. NaOH pellets were dissolved in tap water to prepare a 14 M NaOH aqueous solution, left for 24 hours, cooled to room temperature, and then used.
  • An alkaline solution was prepared by mixing the water glass and 14 M NaOH aqueous solution in a mixing ratio shown in Table 2 below.
  • the coal fly ash and the alkali solution were put in a Teflon beaker at the ratios shown in Table 2 below and mixed at a speed of 300 rpm for 5 minutes using an overhead stirrer. At this time, the mixing ratio (L / S ratio) of the alkali solution and the fly ash is shown in Table 2 below.
  • SS80 a geopolymer foam specimen in which the proportion of water glass in an alkaline solution is 80% is named SS80.
  • a, b, and c are additionally described to distinguish that the microwave irradiation time is set differently according to the curing temperature.
  • the bulk density was calculated by measuring the mass of the specimens sufficiently cooled at room temperature, and then a thermal conductivity analyzer (TPS500S, Hot Disk) using the TPS method (Transient plane source method) , Sweden) was used to measure the thermal conductivity of the specimen.
  • the compressive strength of each specimen was measured using a compressive strength tester (PL-9700H, Woojin Precision Co., South Korea) according to ASTM C109. After picking out the inner part of the specimen destroyed by measuring the compressive strength and finely pulverizing it using a mortar and pestle, the No.
  • the sample powder passed through a 100 standard sieve (mesh 150 ⁇ m) was used for measuring the powder density.
  • the true density was measured using a Gas pycnometer (AccuPyc Micromeritics, USA) and H 2 gas, and the porosity was calculated using the following formula from the measured true density and the bulk density of the sample.
  • foam structure was analyzed using SEM (Scanning electron microscopy, SU8010, HITACHI, Japan) and surface photographs.
  • Example 1 The thermal behavior and pore structure of the specimens prepared in Example 1 according to microwave irradiation were investigated.
  • 1 is a graph showing the temperature of geopolymer foam specimens according to microwave irradiation. As the microwave irradiation time increased, the temperature of the specimen increased rapidly. Due to this temperature rise, vaporization of moisture in the specimen proceeds, and the resulting vapor forms pores in the specimen.
  • the specimens with microwave irradiation times of 8 and 9 minutes had the highest temperature formed between 100 and 130 ° C, and free water vaporization proceeded. Vapor is generated by dihydroxylation or polycondensation reaction by combining T-OH groups.
  • FIG. 2 is a cross-sectional photograph of a geopolymer foam specimen prepared through microwave irradiation.
  • the microwave irradiation time increased, the overall size of the specimen did not change significantly, but the foam structure inside the specimen changed. That is, in the specimen with a short microwave irradiation time, large voids appeared from the center of the specimen. This is due to the characteristics of microwave heating. Heating by microwave penetration heats the entire specimen evenly, but heat loss to the outside occurs, so microwave heating forms a temperature distribution with a high center temperature and a low external temperature, In the center with high , since moisture vaporization occurs actively, large pores are established. This structure changed with increasing microwave irradiation time. That is, the steam generated in the paste of the specimen forms pores, and since these pores replace the previously formed large-sized pores, the effect of reducing the size of the pores as a whole and forming a relatively uniform pore distribution.
  • Example 2 With respect to the specimens prepared in Example 1, changes in specimen structure and bulk density according to microwave irradiation were investigated.
  • 3 is a cross-sectional photograph of SS100, SS90, and SS80 geopolymer foam specimens when irradiated with microwaves for 10 minutes.
  • the SS100 specimen had the greatest expansion, and the SS90 specimen had the least expansion.
  • the viscosity and reactivity of the geopolymer paste vary depending on the alkali solution used. Since aqueous sodium hydroxide solution has a higher water content than water glass solution, it has a low viscosity and can greatly reduce the viscosity of geopolymer paste.
  • the SS80 sample had a relatively higher sodium hydroxide solution content than the SS90 sample, so the viscosity of the geopolymer paste could be lowered, but the expansion rate was higher than that of the SS90 sample.
  • the reactivity of the geopolymer of the SS80 specimen is greater than that of the SS90 specimen because the aqueous sodium hydroxide solution is highly reactive due to its high pH. Because the geopolymer reaction generates moisture, the SS80 specimen with increased geopolymer reaction exhibits greater expansion than the SS90 specimen.
  • Figure 4 shows the change in bulk density of geopolymer foam specimens according to microwave irradiation. As the microwave irradiation time increased, the bulk density decreased. SS100 specimen showed the lowest bulk density of 0.56 ⁇ 0.53 g/cm 3 and SS90 specimen showed the highest bulk density of 0.69 ⁇ 0.64 g/cm 3 . The SS80 specimen showed a bulk density of 0.62 ⁇ 0.66 g/cm 3 .
  • Example 1 With respect to the specimens prepared in Example 1, the change in compressive strength according to microwave irradiation was investigated.
  • 5 is a graph showing the change in compressive strength of geopolymer foam specimens according to microwave irradiation. As shown in FIG. 5, the compressive strength of the geopolymer foam specimens was highest when the microwave irradiation time was 8 minutes, and the compressive strength of the geopolymer foam specimens decreased as the microwave irradiation time increased. This is because voids are continuously formed in the specimen as the microwave irradiation time increases, and cracks occur in the specimen at a temperature above a certain level.
  • the SS90 specimen showed the highest compressive strength (8.23 ⁇ 4.40 MPa), and the SS100 specimen showed the lowest compressive strength (3.53 ⁇ 2.14 MPa). This is because a difference occurred in the expansion of the specimen depending on the composition of the alkali solution used.
  • the SS90 specimen exhibits high strength due to its high bulk density, whereas the SS100 specimen exhibits low strength due to its low bulk density.
  • Example 1 The specimens prepared in Example 1 were cut vertically and the thermal conductivity of the center portion was measured, and the results are shown in FIG. 7 .
  • the thermal conductivity of the geopolymer foam specimens decreased. That is, the thermal conductivity decreased to 0.202 ⁇ 0.167 W/mK for SS100 specimen, 0.223 ⁇ 0.166 W/mK for SS90 specimen, and 0.222 ⁇ 0.154 W/mK for SS80 specimen. This decrease in thermal conductivity is due to the increase of voids inside the specimen by microwave irradiation.
  • the relationship between porosity and thermal conductivity of geopolymer foam specimens is shown in FIG. 8 .
  • the highest porosity was shown in the SS100 specimen, which had the highest degree of expansion of the geopolymer foam specimen.
  • the SS100 specimen showed high thermal conductivity compared to the porosity.
  • the S80 specimen showed low thermal conductivity compared to the porosity. That is, there does not seem to be a certain correlation between the porosity and the thermal conductivity of the geopolymer foam specimens. It is believed that the difference in the material formed may occur depending on the alkali activator, and the pore structure, size, and distribution affect the thermal conductivity. For example, it has been investigated that as the number of small pores in a specimen increases, the thermal conductivity decreases. Therefore, it is estimated that the S80 specimen with many small pores shows low thermal conductivity even with low porosity.
  • FIG. 9 is a graph showing the bulk density according to the L / S ratio of geopolymer foam specimens.
  • the bulk density of the geopolymer foam specimens decreased as the L/S ratio increased, because the increase in the alkalizing agent solution used to fabricate the geopolymer foam specimens contained more moisture that could expand the specimens.
  • the bulk density decreased by 11.4% as the L/S ratio decreased from 0.60 to 0.65, but the bulk density decreased by 4.7 to 3.5% as the L/S ratio increased.
  • the decrease in bulk density is thought to be gradually reduced because the viscosity of the geopolymer foam specimen decreases and the ability to trap vapor decreases.
  • FIG 10 is a graph showing the compressive strength of geopolymer foam specimens according to the L/S ratio.
  • the compressive strength of the geopolymer foam specimen showed the highest value of 8.43 MPa when the L/S ratio was 0.65, and as the L/S ratio increased, the compressive strength gradually decreased to 5.65 MPa when the L/S ratio was 0.75. showed up Contrary to this phenomenon, as the L/S ratio increased from 0.60 to 0.65, the compressive strength increased from 7.74 MPa to 8.43 MPa. This phenomenon is shown to be that when the L/S ratio decreases below a certain level, the temperature rise due to microwaves occurs rapidly, adversely affecting the curing of the specimen and reducing the compressive strength.
  • FIG. 11 is a graph showing the thermal conductivity of geopolymer foam specimens according to the L/S ratio.
  • the thermal conductivity of the SS90 geopolymer foam specimens decreased as the L/S ratio increased.
  • the increase in the L/S ratio of the geopolymer foam specimens is due to the increase in the internal pore structure.
  • the L/S ratio was 0.60, a value of 0.251 W/mK was shown, but when the L/S ratio was 0.75, a value of 0.187 W/mK was shown.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

The present invention can manufacture a geopolymer foam, which has a low thermal conductivity and is lightweight, through microwave irradiation by using coal fly ash as a material for a geopolymer foam and not using foaming agents. A geopolymer foam according to the present invention can be used, as an eco-friendly inorganic material, for improving the insulation performance and safety of buildings.

Description

마이크로파를 이용한 석탄 비산재 기반 지오폴리머 폼의 제조방법Manufacturing method of geopolymer foam based on coal fly ash using microwave
본 발명은 마이크로파 조사를 통한 석탄 비산재 기반 지오폴리머 폼의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a geopolymer foam based on coal fly ash through microwave irradiation.
지구 온난화 문제가 대두되면서 온실가스 배출과 에너지 소비 문제가 주목받고 있다. 현재 건축 산업에서 주로 사용되는 포틀랜드 시멘트는 전체 시멘트 사용의 95% 이상을 차지하고 있으며, 원료가 풍부하고 생산이 용이하다는 이유로 많이 활용되고 있다. 하지만, 포틀랜드 시멘트 생산 과정은 에너지 집약적이며 전세계 이산화탄소 배출량의 8%에 이르는 다량의 이산화탄소를 배출한다는 문제를 가지고 있다.As the issue of global warming emerges, greenhouse gas emissions and energy consumption issues are drawing attention. Currently, Portland cement, which is mainly used in the construction industry, accounts for more than 95% of the total cement use, and is widely used because of its abundant raw materials and easy production. However, the Portland cement production process is energy intensive and has a problem in that it emits a large amount of carbon dioxide, which accounts for 8% of global carbon dioxide emissions.
이러한 문제로 인해 환경친화적이고 지속가능한 물질인 지오폴리머가 포틀랜드 시멘트의 대체물질로 주목 받고 있다. 지오폴리머는 3차원 구조를 가진 알루미노실리케이트 구조의 무기 물질로서, 실리콘과 알루미늄이 풍부한 물질을 강알칼리 용액에 혼합하여 만들어진다. 지오폴리머는 높은 압축 강도와 더불어 내화성 및 내산성이 우수하다는 특징을 가지고 있고, 포틀랜드 시멘트의 제조 공정에 비해 약 70%의 이산화탄소 배출을 줄일 수 있는 것으로 보고되고 있다. 더욱이, 지오폴리머는 다양한 산업 부산물 (화력 발전소의 석탄재나 용광로의 고로슬래그 등)이 원료 물질로써 활용이 가능하기 때문에 산업 부산물의 재활용을 통한 자원 순환의 관점에 있어 이점을 나타낸다. Due to these problems, geopolymer, an environmentally friendly and sustainable material, is attracting attention as an alternative to Portland cement. Geopolymer is an inorganic material with an aluminosilicate structure with a three-dimensional structure, and is made by mixing materials rich in silicon and aluminum in a strong alkaline solution. It is reported that geopolymers have high compressive strength, excellent fire resistance and acid resistance, and can reduce carbon dioxide emissions by about 70% compared to the manufacturing process of Portland cement. Furthermore, geopolymers show advantages in terms of resource circulation through recycling of industrial by-products because various industrial by-products (such as coal ash from thermal power plants or blast furnace slag from blast furnaces) can be used as raw materials.
이와 더불어 단열 성능을 갖춘 건축 소재의 요구가 증가하고 있다. 현재 건물에서 사용되는 에너지는 전체 에너지 소비량의 40%에 달하고 있다. 이를 감축시키는 하나의 방법으로, 건물의 냉방과 난방의 효율을 높이는 노력이 이루어지고 있다. 우리나라에서 가장 많이 사용되는 단열재는 유기 단열재로 높은 단열 성능과 더불어 저렴한 가격이 장점이다. 하지만, 유기 단열재는 불에 취약하고 화재 시 유독 가스를 발생시키는 문제가 있다. 이러한 이유로 높은 단열 성능을 가지면서 불에 취약하지 않고 유독 가스가 발생하지 않는 무기 단열재가 주목받고 있다. 이에 현재 산업계와 학계에서는 지오폴리머를 이용한 단열재 연구가 이루어지고 있다. 일 례로 과산화수소, 알루미늄이나 실리카 퓸과 같이 반응을 통해 기체를 발생시키는 첨가제를 활용하여 지오폴리머 폼을 합성하는 방법이 연구되고 있다. V. Ducman과 L. Korat의 연구에서는 과산화수소와 알루미늄 파우더를 사용하였고, E. Prud'homme et al. 은 실리카 퓸을 사용하여 지오폴리머 폼을 합성하는 등 다양한 첨가제가 활용되어왔다.In addition, the demand for building materials with thermal insulation performance is increasing. Currently, energy used in buildings accounts for 40% of total energy consumption. As one way to reduce this, efforts are being made to increase the efficiency of cooling and heating of buildings. The most widely used insulator in Korea is organic insulator, which has high insulation performance and low price. However, organic insulators are vulnerable to fire and generate toxic gases in the event of a fire. For this reason, inorganic insulators that have high insulation performance, are not vulnerable to fire, and do not generate toxic gases are attracting attention. Accordingly, research on insulation materials using geopolymers is currently being conducted in industry and academia. For example, a method of synthesizing geopolymer foam using an additive that generates a gas through a reaction, such as hydrogen peroxide, aluminum or silica fume, is being studied. V. Ducman and L. Korat used hydrogen peroxide and aluminum powder, and E. Prud'homme et al. Various additives have been utilized, such as synthesizing geopolymer foam using silver silica fume.
그러나, 알루미늄 파우더는 생산 과정이 에너지 집약적이므로 환경적인 측면에서 사용량을 최소화하는 것이 바람직하고, 일반적으로 기포 안정제로 함께 첨가되는 계면활성제는 유기물질이어서 고온 분해를 통해 독성 물질을 생성하는 문제가 있다. 또한, 실리카 퓸(silica fume)은 실리콘이나 실리콘 합금 생산 과정에서 발생하는 산업 부산물로, 유통의 편의성을 위해 주로 densified된 형태로 사용이 된다. 이로 인해 실리카 퓸을 첨가하여 지오폴리머 폼을 제조할 시, 큰 입자 크기로 인해 입자가 충분히 분산되지 않아 다소 불규칙적인 폼 구조가 형성되는 문제가 있다. 따라서, 첨가제 사용없는 지오폴리머 폼 합성법의 개발이 요구되고 있다.However, since the aluminum powder production process is energy-intensive, it is desirable to minimize the amount used from an environmental point of view. In general, the surfactant added together as a bubble stabilizer is an organic material, so there is a problem of generating toxic substances through high-temperature decomposition. In addition, silica fume is an industrial by-product generated in the production process of silicon or silicon alloy, and is mainly used in a densified form for convenience of distribution. For this reason, when preparing a geopolymer foam by adding silica fume, there is a problem in that a somewhat irregular foam structure is formed because the particles are not sufficiently dispersed due to the large particle size. Therefore, there is a need to develop a method for synthesizing geopolymer foam without using additives.
또한, 석탄 비산재(coal fly ash)는 석탄 화력발전소의 주된 부산물로서 입자가 작고 실리카와 알루미나가 풍부하여 지오폴리머 원료로 사용한다. 석탄 비산재 내의 Si와 Al은 수산화나트륨 등의 알칼리 활성화제에 의해 용해되어 결합재로 작용하게 된다. 일반적으로 알칼리 활성화제로는 수산화나트륨(또는 수산화칼슘) 및/또는 규산화나트륨(또는 규산화칼륨)의 화합물이 사용되며, 열이 가해질 경우 지오폴리머 생성 화학반응이 가속화되기 때문에 일반적으로 지오폴리머 콘크리트는 40~80℃의 온도에서 24~72시간의 양생 시간이 필요하였다. 따라서, 에너지 및 시간 소비량이 많은 문제점이 있었다. In addition, coal fly ash is a major by-product of coal-fired power plants and is used as a geopolymer raw material because it has small particles and is rich in silica and alumina. Si and Al in the coal fly ash are dissolved by an alkali activator such as sodium hydroxide to act as a binder. Typically, a compound of sodium hydroxide (or calcium hydroxide) and/or sodium silicate (or potassium silicate) is used as an alkali activator, and geopolymer concrete is generally 40 A curing time of 24-72 hours was required at a temperature of ~80°C. Therefore, there is a problem in that energy and time consumption are high.
한국등록특허 제2279744호는 석탄재 기반 지오폴리머 폼의 제조 방법이 개시되어 있다. 상기 제조방법은 발포제로서 실리카 퓸을 사용하고 75℃에서 72시간 양생한 후 추가로 200℃ 내지 500℃ 고온에 노출하는 단계를 포함하므로 상기 언급된 문제점을 가지고 있다.Korean Patent Registration No. 2279744 discloses a method for manufacturing a coal ash-based geopolymer foam. The manufacturing method has the above-mentioned problem because it includes the step of using silica fume as a foaming agent and curing at 75 ° C for 72 hours and then further exposing to a high temperature of 200 ° C to 500 ° C.
이에 본 발명자들은 석탄 비산재를 지오폴리머 폼 원료로 사용하여, 마이크로파 조사를 통한 발포 방식으로 지오폴리머 폼을 제조할 경우 환경친화적으로 열전도도가 낮고 가벼운 지오폴리머 폼을 제조할 수 있음을 확인하였다. 본 발명은 이에 기초한 것이다.Accordingly, the present inventors have confirmed that when the geopolymer foam is prepared by using coal fly ash as a raw material for the geopolymer foam and foaming through microwave irradiation, the geopolymer foam having low thermal conductivity and light weight can be manufactured in an environmentally friendly manner. The present invention is based on this.
본 발명의 목적은 상기와 같은 문제점을 해결하기 위하여, 석탄 비산재를 지오폴리머 폼 원료로 사용하여, 마이크로파 조사를 통한 발포 방식으로 환경친화적으로 열전도도가 낮고 가벼운 지오폴리머 폼을 합성하는 방법을 제공하는 것이다.In order to solve the above problems, an object of the present invention is to use coal fly ash as a raw material for geopolymer foam and to provide a method for synthesizing a geopolymer foam that is environmentally friendly and has low thermal conductivity and is lightweight by a foaming method through microwave irradiation. will be.
상기 과제를 해결하기 위하여, 본 발명은 (a) 물유리(Na2SiO3 용액) 및 수산화나트륨(NaOH)을 혼합하여 알칼리 활성화제 용액을 제조하는 단계; (b) 상기 알칼리 활성화제 용액에 석탄 비산재를 첨가하여 반죽 시료를 제조하는 단계; (c) 상기 반죽 시료를 몰드에 충진하고 마이크로파를 조사하여 성형체를 제조하는 단계; 및 (d) 상기 성형체를 탈형하는 단계;를 포함하는 마이크로파를 이용한 석탄 비산재 기반 지오폴리머 폼 제조방법을 제공한다. In order to solve the above problems, the present invention (a) preparing an alkali activator solution by mixing water glass (Na 2 SiO 3 solution) and sodium hydroxide (NaOH); (b) preparing a dough sample by adding coal fly ash to the alkali activator solution; (c) preparing a molded body by filling the dough sample into a mold and irradiating microwaves; And (d) demolding the molded body; provides a method for manufacturing a geopolymer foam based on coal fly ash using microwaves.
또한, 본 발명은 상기 제조방법으로 제조된 석탄 비산재 기반 지오폴리머 폼을 제공한다.In addition, the present invention provides a coal fly ash-based geopolymer foam prepared by the above manufacturing method.
본 발명에 따르면 석탄 비산재를 지오폴리머 폼의 원료로 사용하고, 발포제를 사용하지 않고 마이크로파 조사를 통해 열전도도가 낮고 가벼운 지오폴리머 폼을 제조할 수 있다.According to the present invention, a geopolymer foam having low thermal conductivity and light weight can be manufactured by using coal fly ash as a raw material of the geopolymer foam and using microwave irradiation without using a foaming agent.
본 발명에 따른 지오폴리머 폼은 환경친화적 무기 소재로서 건축물의 단열 성능 및 안전 향상에 활용될 수 있다.The geopolymer foam according to the present invention is an environmentally friendly inorganic material and can be used to improve the insulation performance and safety of buildings.
도 1은 본 발명에 따른 지오폴리머 폼의 마이크로파 조사 직후의 평균 온도와 최고 온도 결과 그래프이다. 1 is a graph of average temperature and maximum temperature immediately after microwave irradiation of a geopolymer foam according to the present invention.
도 2는 본 발명에 따른 SS90 지오폴리머 폼 시편의 마이크로파 조사 시간에 따른 단면 사진이다.Figure 2 is a cross-sectional photograph according to the microwave irradiation time of the SS90 geopolymer foam specimen according to the present invention.
도 3은 본 발명에 따른 마이크로파 조사 10분에서의 SS100, SS90, 그리고 SS80 지오폴리머 폼 시편의 단면 사진이다.Figure 3 is a cross-sectional photograph of SS100, SS90, and SS80 geopolymer foam specimens at 10 minutes of microwave irradiation according to the present invention.
도 4는 본 발명에 따른 지오폴리머 폼의 마이크로파 조사 시간 대비 부피 밀도 결과 그래프이다. Figure 4 is a graph of the results of the volume density versus the microwave irradiation time of the geopolymer foam according to the present invention.
도 5는 본 발명에 따른 지오폴리머 폼의 마이크로파 조사 시간 대비 압축 강도 결과 그래프이다. 5 is a graph showing the results of compressive strength versus microwave irradiation time of the geopolymer foam according to the present invention.
도6은 본 발명에 따른 마이크로파 조사 시간에 따른 SS90 지오폴리머 폼의 SEM 사진이다.Figure 6 is a SEM picture of the SS90 geopolymer foam according to the microwave irradiation time according to the present invention.
도 7는 본 발명에 따른 지오폴리머 폼의 마이크로파 조사 시간 대비 열전도도 결과 그래프이다. 7 is a graph of thermal conductivity versus microwave irradiation time of the geopolymer foam according to the present invention.
도 8는 본 발명에 따른 지오폴리머 폼의 공극률 대비 열전도도 결과 그래프이다. 8 is a graph of thermal conductivity versus porosity of the geopolymer foam according to the present invention.
도 9는 본 발명에 따른 지오폴리머 폼의 L/S 비율 대비 부피 밀도 결과 그래프이다.9 is a graph showing the result of bulk density versus L/S ratio of the geopolymer foam according to the present invention.
도 10은 본 발명에 따른 지오폴리머 폼의 L/S 비율 대비 압축 강도 결과 그래프이다.10 is a graph of results of compressive strength versus L/S ratio of the geopolymer foam according to the present invention.
도 11은 본 발명에 따른 지오폴로머 폼의 L/S 비율 대비 열전도도 결과 그래프이다.11 is a graph of thermal conductivity versus L/S ratio of the geopolomer foam according to the present invention.
이하, 본 발명의 바람직한 구현예에 대하여 상세히 설명한다. 또한, 하기의 설명에서는 구체적인 구성요소 등과 같은 많은 특정 사항들이 도시되어 있는데, 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐 이러한 특정 사항들 없이도 본 발명이 실시될 수 있음은 이 기술분야에서 통상의 지식을 가진 자에게는 자명하다 할 것이다. 그리고, 본 발명을 설명함에 있어서, 관련된 공지 기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.Hereinafter, preferred embodiments of the present invention will be described in detail. In addition, in the following description, many specific details such as specific components are shown, which are provided to help a more general understanding of the present invention, and it is common in the art that the present invention can be practiced without these specific details. It will be self-evident to those who have the knowledge of And, in describing the present invention, if it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the subject matter of the present invention, the detailed description will be omitted.
본 발명의 일 실시예는 (a) 물유리(Na2SiO3 용액) 및 수산화나트륨(NaOH)을 혼합하여 알칼리 활성화제 용액을 제조하는 단계; (b) 상기 알칼리 활성화제 용액에 석탄 비산재를 첨가하여 반죽 시료를 제조하는 단계; (c) 상기 반죽 시료를 몰드에 충진하고 마이크로파를 조사하여 성형체를 제조하는 단계; 및 (d) 상기 성형체를 탈형하는 단계;를 포함하는 마이크로파를 이용한 석탄 비산재 기반 지오폴리머 폼의 제조방법을 제공한다.One embodiment of the present invention is (a) preparing an alkali activator solution by mixing water glass (Na 2 SiO 3 solution) and sodium hydroxide (NaOH); (b) preparing a dough sample by adding coal fly ash to the alkali activator solution; (c) preparing a molded body by filling the dough sample into a mold and irradiating microwaves; And (d) demolding the molded body; provides a method for manufacturing a geopolymer foam based on coal fly ash using microwaves.
상기 단계 a)는, 물유리(Na2SiO3 용액)와 수산화나트륨(NaOH)를 10 : 2.5~0의 비율(중량비)로 혼합하는 단계일 수 있다. Step a) may be a step of mixing water glass (Na 2 SiO 3 solution) and sodium hydroxide (NaOH) at a ratio (weight ratio) of 10:2.5 to 0.
바람직하게는, 상기 단계 a)는, 물유리(Na2SiO3 용액)와 수산화나트륨(NaOH)를 10 : 2.5~1의 비율(중량비)로 혼합하는 단계일 수 있으나 이에 제한되지는 않는다. Preferably, step a) may be a step of mixing water glass (Na 2 SiO 3 solution) and sodium hydroxide (NaOH) at a ratio (weight ratio) of 10:2.5 to 1, but is not limited thereto.
상기 물유리(Na2SiO3 용액)는 안정적인 폼 형성 및 경화 속도 향상을 위해서 혼합물에 첨가된다.The water glass (Na 2 SiO 3 solution) is added to the mixture to form a stable foam and improve the curing speed.
일 례로, 상기 물유리(Na2SiO3 용액)는 SiO2의 함량이 28-30%, Na2O의 함량이 9-10%일 수 있다.For example, the water glass (Na 2 SiO 3 solution) may have an SiO 2 content of 28-30% and a Na 2 O content of 9-10%.
상기 수산화나트륨(NaOH)은 13 내지 15 M의 NaOH 수용액일 수 있다.The sodium hydroxide (NaOH) may be a 13 to 15 M NaOH aqueous solution.
상기 알칼리 활성화제 용액의 조성은 시편의 점도와 화학반응성을 결정한다. NaOH 수용액의 첨가는 지오폴리머 페이스트의 점도를 하락시켜 공극을 크고 불균일한 모양으로 만들고 구조 발달을 방해할 수 있다. The composition of the alkaline activator solution determines the viscosity and chemical reactivity of the specimen. The addition of NaOH aqueous solution can lower the viscosity of the geopolymer paste, resulting in large, non-uniform pores and hindering structural development.
실험 결과 NaOH 수용액이 첨가된 시편은 초기 낮은 수준의 팽창이 나타났으나, NaOH 수용액은 지오폴리머 반응성을 향상시키는 역할을 하기 때문에 마이크로파 조사가 길어졌을 때 더 많은 공극이 형성되도록 하였고 작은 크기의 공극 형성에 영향을 미치는 것을 알 수 있었다.As a result of the experiment, the sample with NaOH aqueous solution showed an initial low level of expansion, but since the NaOH aqueous solution serves to improve the geopolymer reactivity, more pores were formed when the microwave irradiation was prolonged, and small pores were formed. was found to have an effect on
본 발명은 석탄 비산재를 지오폴리머 폼 원료로 사용한다. 석탄 바닥재를 원료로 사용할 경우 다소 불규칙적인 폼이 형성될 수 있다.The present invention uses coal fly ash as a raw material for geopolymer foam. If coal bottom ash is used as a raw material, somewhat irregular foam may be formed.
상기 석탄 비산재는 평균 입도가 10~100㎛, 바람직하게는 20~70㎛, 더욱 바람직하게는 30~50㎛일 수 있다.The coal fly ash may have an average particle size of 10 to 100 μm, preferably 20 to 70 μm, and more preferably 30 to 50 μm.
상기 석탄 비산재는 SiO2, Al2O3 및 Fe2O3의 합이 70% 이상, 바람직하게는 80%인 것일 수 있다.In the coal fly ash, the sum of SiO 2 , Al 2 O 3 and Fe 2 O 3 may be 70% or more, preferably 80%.
상기 단계 b)는, 알칼리 활성화제와 석탄 비산재를 석탄 비산재 1(중량비)에 대해 알칼리 활성화제를 0.60 내지 0.80의 비율(중량비)(L/S 비)로 혼합하는 단계일 수 있다.The step b) may be a step of mixing the alkali activator and the coal fly ash at a ratio (weight ratio) of 0.60 to 0.80 (L/S ratio) with respect to 1 (weight ratio) of the alkali activator.
바람직하게는, 상기 단계 b)는, 알칼리 활성화제 용액과 석탄 비산재를 0.70 내지 0.75의 비율(중량비)(L/S 비)로 혼합하는 단계일 수 있으나 이에 제한되지는 않는다.Preferably, the step b) may be a step of mixing the alkali activator solution and the coal fly ash at a ratio (weight ratio) (L/S ratio) of 0.70 to 0.75, but is not limited thereto.
상기 L/S 비가 0.60 이하이면 부피 밀도가 높고 이에 따라 열전도도가 높을 뿐 아니라 시편의 양생이 불안정해져 압축 강도가 낮아질 수 있고, 0.80 초과이면 기체 발생량이 많아 공극이 합쳐지면서 시편 중심을 기점으로 큰 공극이 만들어질 수 있다.If the L/S ratio is 0.60 or less, the bulk density is high, and thus the thermal conductivity is high, and the curing of the specimen is unstable, resulting in a low compressive strength. voids can be created.
상기 범위로 혼합됨으로써 흐르는 상태의 지오폴리머 페이스트를 제조할 수 있다. 이러한 지오폴리머 페이스트를 본 발명에서는 반죽 시료로 부르기로 하였다. 본 발명에서 반죽 시료는 알칼리 활성화제 용액과 석탄 비산재의 혼합물이 겔을 형성하지 않고 흐르는 상태인 것을 의미한다.By mixing within the above range, a geopolymer paste in a flowing state can be prepared. This geopolymer paste is called a dough sample in the present invention. In the present invention, the dough sample means that the mixture of the alkali activator solution and the coal fly ash flows without forming a gel.
상기 단계 b)에서, 석탄 비산재는 반죽 시료의 총 중량을 기준으로 50 중량% 내지 65 중량%, 바람직하게는 55 중량% 내지 60 중량%의 함량으로 첨가될 수 있다.In step b), the coal fly ash may be added in an amount of 50% to 65% by weight, preferably 55% to 60% by weight based on the total weight of the dough sample.
본 발명의 일 실시예에서, 상기 단계 b)는 3 내지 10분 동안 200 내지 400 rpm으로 교반하는 단계일 수 있으나 이에 제한되지는 않는다.In one embodiment of the present invention, step b) may be a step of stirring at 200 to 400 rpm for 3 to 10 minutes, but is not limited thereto.
본 발명의 제조방법은 상기 반죽 시료를 몰드에 충진하고 마이크로파를 조사하는 단계(단계 c)를 포함하는 것을 특징으로 한다.The manufacturing method of the present invention is characterized by comprising the step (step c) of filling the dough sample into a mold and irradiating microwaves.
종래의 지오폴리머 폼 합성시 40~80℃의 온도에서 24~72 시간 양생하는 단계가 필요하여 에너지 소모가 큰 단점이 있었으나 본 발명에서는 마이크로파 가열 방식을 사용하여 에너지 효율을 높여 수분 내지 수십분 내에 지오폴리머 폼을 합성할 수 있다.In the case of conventional geopolymer foam synthesis, a step of curing at a temperature of 40 to 80 ° C for 24 to 72 hours was required, resulting in high energy consumption. Forms can be synthesized.
마이크로파를 통한 양생은 건조 오븐을 사용하는 것보다 에너지 소비 측면에서 매우 효율적이며, 지오폴리머 시편 전체에 균일한 가열이 가능하기 때문에 보다 효과적이다. 따라서, 마이크로파는 지오폴리머 페이스트의 온도를 급격히 상승시키고, 이로 인해 발생하는 시편의 경화와 내부 수분 증발로 발생한 증기가 다공성 구조의 지오폴리머를 합성할 수 있도록 한다. 이 현상은 마이크로파의 출력이 클수록 빠르게 발생하여, 시편에 더 큰 팽창을 발생시켰다. 하지만, 일정 이상의 마이크로파 출력에서는 시편이 더 이상 크게 팽창하지 않았다. 또한, 특정 수준 이하의 마이크로파 출력에서는 시편의 경화 시간이 크게 늘어나고 과도한 열 노출에 의한 시편 외형의 변형이 발생한다.Curing by microwave is very efficient in terms of energy consumption than using a drying oven, and is more effective because uniform heating is possible over the entire geopolymer specimen. Therefore, the microwave rapidly raises the temperature of the geopolymer paste, and the resulting hardening of the specimen and vapor generated by evaporation of internal moisture enable the synthesis of the geopolymer having a porous structure. This phenomenon occurred faster as the microwave output increased, resulting in greater expansion of the specimen. However, at microwave power above a certain level, the specimen did not expand significantly anymore. In addition, at microwave power below a certain level, the curing time of the specimen is greatly increased and the outer shape of the specimen is deformed due to excessive heat exposure.
마이크로파 출력과 마이크로파 조사 시간은 석탄 비산재 원료, 알칼리 활성화제의 종류 및 농도, 지오폴리머 제품의 물성 등의 여러 인자를 고려하여 조절할 수 있다.Microwave power and microwave irradiation time can be adjusted considering various factors such as coal fly ash raw material, type and concentration of alkali activator, and physical properties of geopolymer products.
본 발명의 일 실시예에서, 상기 단계 c)는, 몰드에 300 내지 1000 W 출력의 마이크로파를 5분 내지 15분, 바람직하게는 8분 내지 12분 동안 조사하는 단계일 수 있다. 이 때 성형체는 80 내지 140 ℃의 평균 온도 혹은 100 내지 260 ℃의 최고 온도로 양생될 수 있다.In one embodiment of the present invention, step c) may be a step of irradiating the mold with microwaves of 300 to 1000 W for 5 to 15 minutes, preferably 8 to 12 minutes. At this time, the molded body may be cured at an average temperature of 80 to 140 °C or a maximum temperature of 100 to 260 °C.
실험 결과, 마이크로파 조사 시간이 증가함에 따라 지오폴리머의 온도가 높아지며, 지오폴리머 시편의 온도에 따라 형성되는 공극의 차이가 나타났다. 또한, 자유수 혹은 물리적 결합수의 증발이 발생하는 낮은 온도 구간에서는 큰 크기의 공극의 형성이 관측되었으나, 화학적 결합수 혹은 화학 반응수의 증발이 발생하는 높은 온도 구간에서는 작은 크기의 공극이 형성되었다. 이러한 작은 크기의 공극은 시편을 팽창시키기 보다는 시편 내의 큰 공극을 대체하여 시편의 전반적인 공극 크기를 감소시키고 균일한 공극 분포를 형성함을 확인하였다. 또한, 마이크로파 조사 시간의 증가에 따른 시편의 팽창은 일반적으로 시편의 압축 강도, 부피 밀도, 그리고 열전도도를 감소시켰다. As a result of the experiment, as the microwave irradiation time increased, the temperature of the geopolymer increased, and the difference in pores formed according to the temperature of the geopolymer specimen was shown. In addition, large-sized pores were observed in the low temperature range where free water or physically bound water evaporated, but small-sized pores were formed in the high temperature range where chemical bound water or chemical reaction water evaporated. . It was confirmed that these small-sized voids replaced large voids in the specimen rather than expanding the specimen, reducing the overall pore size of the specimen and forming a uniform void distribution. In addition, the expansion of the specimens with increasing microwave irradiation time generally reduced the compressive strength, bulk density, and thermal conductivity of the specimens.
또한, 본 발명은 상기 제조방법으로 제조된 석탄 비산재 기반 지오폴리머 폼을 제공한다.In addition, the present invention provides a coal fly ash-based geopolymer foam prepared by the above manufacturing method.
본 발명의 일 실시예에 따르면, 상기 석탄 비산재 기반 지오폴리머 폼은 부피 밀도가 0.530 내지 0.688 g/cm3, 열전도도가 0.166 내지 0.361 W/mK, 압축강도가 2.14 내지 8.23 MPa일 수 있다.According to one embodiment of the present invention, the coal fly ash-based geopolymer foam may have a bulk density of 0.530 to 0.688 g/cm 3 , thermal conductivity of 0.166 to 0.361 W/mK, and compressive strength of 2.14 to 8.23 MPa.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 상세하게 후술되어있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다The advantages and features of the present invention, and how to achieve them, will become clear with reference to the detailed description of the following embodiments. However, the present invention is not limited to the embodiments disclosed below, but will be implemented in various different forms, and only the present embodiments will complete the disclosure of the present invention and allow common knowledge in the art to which the present invention belongs. It is provided to fully inform the owner of the scope of the invention, and the present invention is only defined by the scope of the claims.
<실시예 1> 석탄 비산재 기반 지오폴리머 폼의 제조<Example 1> Preparation of geopolymer foam based on coal fly ash
석탄 비산재(coal fly ash, CFA)는 서천화력발전소로부터 공급받았다. 석탄 비산재는 입도 분석기(Partica LA-960, HORIBA, Japan)를 이용하여 입도 분포를 측정하였으며, 석탄 비산재의 평균 입도는 33.77 μm이고, 90% 이하의 입자가 89.04 μm로 나타났다. 석탄 비산재의 화학 구성 성분은 X-ray fluorescence (XRF) 분석을 진행하였고, 그 결과는 하기 표 1에 나타내었다(ZSK Primus Ⅱ, Rigaku, Japan). 하기 표 1을 참조하면, 성분 중 SiO2, Al2O3, 그리고 Fe2O3의 합이 86.09%로 70%이상이기 때문에 Class F fly ash로 분류되었다.Coal fly ash (CFA) was supplied from Seocheon Thermal Power Plant. The particle size distribution of the coal fly ash was measured using a particle size analyzer (Partica LA-960, HORIBA, Japan). The chemical components of the coal fly ash were subjected to X-ray fluorescence (XRF) analysis, and the results are shown in Table 1 below (ZSK Primus II, Rigaku, Japan). Referring to Table 1 below, since the sum of SiO 2 , Al 2 O 3 , and Fe 2 O 3 among the components was 86.09%, more than 70%, it was classified as Class F fly ash.
성분ingredient SiO2 SiO 2 Al2O3 Al 2 O 3 Fe2O3 Fe 2 O 3 CaOCaO MgOMgO Na2ONa 2 O K2O K2O TiO2 TiO 2 기타etc
중량(%)weight(%) 55.955.9 22.222.2 7.997.99 4.844.84 1.171.17 1.401.40 1.841.84 1.231.23 3.433.43
물유리(Sodium silicate solution, SiO2: 28-30%, Na2O: 9-10%)는 대정화금에서 구매하였다. NaOH 펠릿 (Sodium hydroxide pellet, E.P. grade)은 덕산화학에서 구매하였다. 수돗물에 NaOH 펠릿을 녹여 14 M NaOH 수용액을 제조하고, 24시간 방치하여 상온으로 식힌 후 사용하였다.Water glass (Sodium silicate solution, SiO 2 : 28-30%, Na 2 O : 9-10%) was purchased from Daejeong Chemical Gold. NaOH pellets (Sodium hydroxide pellet, EP grade) were purchased from Duksan Chemical. NaOH pellets were dissolved in tap water to prepare a 14 M NaOH aqueous solution, left for 24 hours, cooled to room temperature, and then used.
상기 물유리와 14 M NaOH 수용액을 하기 표 2에 기재된 혼합비로 혼합하여 알칼리 용액을 제조하였다.An alkaline solution was prepared by mixing the water glass and 14 M NaOH aqueous solution in a mixing ratio shown in Table 2 below.
하기 표 2에 기재된 비율로 상기 석탄 비산재와 상기 알칼리 용액을 테플론 비커에 넣고 오버헤드 교반기를 통해 5분간 300 rpm의 속도로 혼합하였다. 이 때 알칼리 용액와 비산재의 혼합비(L/S ratio)를 하기 표 2에 기재하였다. 혼합된 시료의 200g을 50Х50Х100 mm3 규격의 테플론 몰드에 부은 후, 가정용 마이크로 오븐(MW25B, LG electronics, South Korea)에서 400 W의 출력으로 양생하였다. 양생 후 몰드를 제거하고, 팽창된 부분을 다이아몬드 톱으로 잘라내어 지오폴리머 폼 시편을 제조하였다.The coal fly ash and the alkali solution were put in a Teflon beaker at the ratios shown in Table 2 below and mixed at a speed of 300 rpm for 5 minutes using an overhead stirrer. At this time, the mixing ratio (L / S ratio) of the alkali solution and the fly ash is shown in Table 2 below. After pouring 200 g of the mixed sample into a 50Х50Х100 mm 3 Teflon mold, it was cured in a household micro-oven (MW25B, LG electronics, South Korea) at a power of 400 W. After curing, the mold was removed, and the expanded part was cut with a diamond saw to prepare a geopolymer foam specimen.
하기 표 2에 나타난 지오폴리머 폼 시편 명은 다음과 같이 명명하였다.The names of the geopolymer foam specimens shown in Table 2 below were named as follows.
SS□ : □=알칼리 용액 내 물유리의 비율 (단위: %).SS□ : □=Ratio of water glass in alkaline solution (Unit: %).
예를 들어, 알칼리 용액 내 물유리의 비율이 80%인 지오폴리머 폼 시편은 SS80으로 명명된다. For example, a geopolymer foam specimen in which the proportion of water glass in an alkaline solution is 80% is named SS80.
원료 물질들의 혼합비와 그에 따른 시편 그룹명들을 하기 표 2에 요약하여 나타내었다.The mixing ratio of the raw materials and the corresponding sample group names are summarized in Table 2 below.
시편 명psalm name 석탄 비산재(중량%)Coal fly ash (% by weight) 알칼리 용액alkaline solution L/S 비L/S ratio 마이크로파 조사시간(min)Microwave irradiation time (min)
물유리(중량%)Water glass (% by weight) NaOH 수용액(중량%)NaOH aqueous solution (% by weight)
SS100SS100 57.1457.14 42.8642.86 00 0.750.75 8~128 to 12
SS90(d)SS90(d) 38.5738.57 4.294.29
SS80SS80 34.2934.29 8.578.57
SS90aSS90a 62.5062.50 33.7533.75 3.753.75 0.600.60 99
SS90bSS90b 60.6160.61 35.4535.45 3.943.94 0.650.65 99
SS90cSS90c 58.8258.82 37.0637.06 4.124.12 0.700.70 1010
SS90a, SS90b, SS90c, 그리고 SS90d 시편은 양생 온도에 따라 마이크로파 조사 시간이 달리 설정된 것을 구분하기 위해 a, b, c를 추가로 기재한 것이다.For the SS90a, SS90b, SS90c, and SS90d specimens, a, b, and c are additionally described to distinguish that the microwave irradiation time is set differently according to the curing temperature.
<실시예 2> 석탄 비산재 기반 지오폴리머 폼의 마이크로파 조사에 따른 물성 변화 <Example 2> Physical property change of coal fly ash-based geopolymer foam by microwave irradiation
상기 실시예 1에서 제조한 시편들에 대하여 하기 측정 방법에 따라 물성 변화를 조사하였다.Changes in physical properties of the specimens prepared in Example 1 were investigated according to the following measurement method.
상온에서 충분히 식은 시편들의 질량을 측정하여 부피 밀도(bulk density)를 계산하였으며, 그 후 TPS 방식 (Transient plane source method)을 사용한 열전도도 분석기(TPS500S, Hot Disk , Sweden)를 이용하여 시편의 열전도도를 측정하였다. 각 시편들의 압축강도는 ASTM C109에 따라 압축강도 측정기(PL-9700H, Woojin Precision Co., South Korea)를 사용하여 측정하였다. 압축강도 측정으로 파괴된 시편의 내부 일부를 골라내어 막자와 막자사발을 사용해 곱게 분쇄한 후, No. 100의 표준 체(mesh 150 ㎛)로 걸러서 통과한 샘플 분말을 진밀도(powder density) 측정에 사용하였다. 진밀도는 Gas pycnometer(AccuPyc 켒icromeritics, USA)와 H2 가스를 이용해 측정되었으며, 측정된 진밀도와 샘플의 부피 밀도로부터 다음 식을 이용해 공극률(porosity)을 계산하였다.The bulk density was calculated by measuring the mass of the specimens sufficiently cooled at room temperature, and then a thermal conductivity analyzer (TPS500S, Hot Disk) using the TPS method (Transient plane source method) , Sweden) was used to measure the thermal conductivity of the specimen. The compressive strength of each specimen was measured using a compressive strength tester (PL-9700H, Woojin Precision Co., South Korea) according to ASTM C109. After picking out the inner part of the specimen destroyed by measuring the compressive strength and finely pulverizing it using a mortar and pestle, the No. The sample powder passed through a 100 standard sieve (mesh 150 μm) was used for measuring the powder density. The true density was measured using a Gas pycnometer (AccuPyc Micromeritics, USA) and H 2 gas, and the porosity was calculated using the following formula from the measured true density and the bulk density of the sample.
Figure PCTKR2022017134-appb-img-000001
Figure PCTKR2022017134-appb-img-000001
또한, SEM (Scanning electron microscopy, SU8010, HITACHI, Japan), 그리고 표면 사진을 이용하여 폼 구조를 분석하였다.In addition, the foam structure was analyzed using SEM (Scanning electron microscopy, SU8010, HITACHI, Japan) and surface photographs.
1. 마이크로파 조사에 따른 열적 거동 및 공극 구조1. Thermal behavior and pore structure under microwave irradiation
상기 실시예 1에서 제조한 시편들에 대하여 마이크로파 조사에 따른 열적 거동 및 공극 구조를 조사하였다. 도 1은 마이크로파 조사에 따른 지오폴리머 폼 시편의 온도를 나타낸 그래프이다. 마이크로파 조사 시간이 증가함에 따라 시편의 온도는 급격하게 상승하였다. 이와 같은 온도 상승으로 인해 시편 내 수분의 기화가 진행되고, 이로 인해 발생한 증기는 시편 내에 공극을 형성한다. 마이크로파 조사 시간이 8분과 9분인 시편은 최고 온도가 100~130℃ 사이에서 형성되어 자유수의 기화가 진행되었고, 이보다 긴 시간의 마이크로파 조사를 거친 시편은 최고 온도가 150~300℃ 사이에서 형성되어 T-OH 그룹의 결합에 의한 탈하이드로실화(dihydroxylation) 또는 중축합(polycondensation) 반응에 의한 증기가 발생한다.The thermal behavior and pore structure of the specimens prepared in Example 1 according to microwave irradiation were investigated. 1 is a graph showing the temperature of geopolymer foam specimens according to microwave irradiation. As the microwave irradiation time increased, the temperature of the specimen increased rapidly. Due to this temperature rise, vaporization of moisture in the specimen proceeds, and the resulting vapor forms pores in the specimen. The specimens with microwave irradiation times of 8 and 9 minutes had the highest temperature formed between 100 and 130 ° C, and free water vaporization proceeded. Vapor is generated by dihydroxylation or polycondensation reaction by combining T-OH groups.
도 2는 마이크로파 조사를 통해 제작된 지오폴리머 폼 시편의 단면 사진이다. 마이크로파 조사 시간이 증가함에 따라 시편의 전반적인 크기는 큰 변화가 없었으나, 시편 내부의 폼 구조는 변화하였다. 즉, 마이크로파 조사 시간이 짧은 시편에서는 시편 중심을 기점으로 큰 공극이 나타났다. 이는 마이크로파 가열의 특징 때문인데, 마이크로파 침투에 의한 가열은 시편 전체를 고르게 가열하지만 외부로의 열 손실이 발생하기 때문에, 마이크로파 가열은 중심의 온도가 높고 외부의 온도가 낮은 온도 분포가 형성되고, 온도가 높은 중심부에서는 수분의 기화가 활발하게 일어나기 때문에 큰 공극이 자리잡게 된다. 이러한 구조는 마이크로파 조사 시간이 증가하면서 변화하였다. 즉, 시편의 페이스트 내에서 발생한 증기는 공극을 형성하는데, 이 공극은 기존에 형성된 큰 크기의 공극을 대체하기 때문에 전체적으로 공극의 크기가 감소하는 효과를 발생시켰고 비교적 균일한 공극 분포를 형성하였다. 2 is a cross-sectional photograph of a geopolymer foam specimen prepared through microwave irradiation. As the microwave irradiation time increased, the overall size of the specimen did not change significantly, but the foam structure inside the specimen changed. That is, in the specimen with a short microwave irradiation time, large voids appeared from the center of the specimen. This is due to the characteristics of microwave heating. Heating by microwave penetration heats the entire specimen evenly, but heat loss to the outside occurs, so microwave heating forms a temperature distribution with a high center temperature and a low external temperature, In the center with high , since moisture vaporization occurs actively, large pores are established. This structure changed with increasing microwave irradiation time. That is, the steam generated in the paste of the specimen forms pores, and since these pores replace the previously formed large-sized pores, the effect of reducing the size of the pores as a whole and forming a relatively uniform pore distribution.
2. 마이크로파 조사에 따른 시편 구조 및 부피밀도 변화2. Changes in specimen structure and bulk density under microwave irradiation
상기 실시예 1에서 제조한 시편들에 대하여 마이크로파 조사에 따른 시편 구조 및 부피밀도 변화를 조사하였다. 도 3은 10분간 마이크로파 조사했을 경우의 SS100, SS90, 그리고 SS80 지오폴리머 폼 시편의 단면 사진이다. SS100 시편의 팽창도가 가장 컸으며, SS90 시편의 팽창도가 가장 적었다. 이는 사용한 알칼리 용액에 따라 지오폴리머 페이스트의 점성과 반응성이 달라지기 때문이다. 수산화나트륨 수용액은 물유리 용액에 비해 물의 함량이 높기 때문에 낮은 점도를 가지고 있어 지오폴리머 페이스트의 점도를 크게 낮출 수 있다. 이러한 지오폴리머 페이스트의 점도 하락은 시편 내 증기의 이동을 용이하게 하여 더 큰 공극이 형성되게 하거나, 증기가 시편 밖으로 방출되는 것을 용이하게 하여 시편 팽창을 방해한다. 따라서, 높은 점도를 갖춘 SS100 시편은 큰 팽창이 일어나지만, 상대적으로 낮은 점도를 갖춘 시편들인 SS80, SSS90는 팽창 정도가 감소한다. With respect to the specimens prepared in Example 1, changes in specimen structure and bulk density according to microwave irradiation were investigated. 3 is a cross-sectional photograph of SS100, SS90, and SS80 geopolymer foam specimens when irradiated with microwaves for 10 minutes. The SS100 specimen had the greatest expansion, and the SS90 specimen had the least expansion. This is because the viscosity and reactivity of the geopolymer paste vary depending on the alkali solution used. Since aqueous sodium hydroxide solution has a higher water content than water glass solution, it has a low viscosity and can greatly reduce the viscosity of geopolymer paste. The decrease in viscosity of the geopolymer paste facilitates the movement of vapor within the specimen, resulting in the formation of larger pores, or facilitates the release of vapor to the outside of the specimen, hindering specimen expansion. Therefore, the SS100 specimen with high viscosity has a large expansion, but the expansion degree is decreased in SS80 and SSS90 specimens with relatively low viscosity.
반면, SS80 시편은 수산화나트륨 수용액의 함량이 SS90 시편에 비해 상대적으로 높아 지오폴리머 페이스트의 점도를 더 낮출 수 있으나 SS90 시편에 비해 팽창도가 높았다. 수산화나트륨 수용액은 pH가 높아 반응성이 뛰어나기 때문에 SS90 시편보다 SS80 시편의 지오폴리머 반응성이 더 크다. 지오폴리머 반응은 수분을 발생시키기 때문에 지오폴리머 반응이 증가하는 SS80 시편은 SS90 시편에 비해 더 큰 팽창을 나타낸다.On the other hand, the SS80 sample had a relatively higher sodium hydroxide solution content than the SS90 sample, so the viscosity of the geopolymer paste could be lowered, but the expansion rate was higher than that of the SS90 sample. The reactivity of the geopolymer of the SS80 specimen is greater than that of the SS90 specimen because the aqueous sodium hydroxide solution is highly reactive due to its high pH. Because the geopolymer reaction generates moisture, the SS80 specimen with increased geopolymer reaction exhibits greater expansion than the SS90 specimen.
도 4는 마이크로파 조사에 따른 지오폴리머 폼 시편의 부피 밀도 변화를 나타낸 것이다. 마이크로파 조사 시간이 증가할수록 부피 밀도는 하락하였다. SS100 시편에서 0.56~0.53 g/cm3의 가장 낮은 부피 밀도를 나타냈고 SS90 시편에서 0.69~0.64 g/cm3의 가장 높은 부피 밀도를 나타내었다. SS80 시편에서는 0.62~0.66 g/cm3의 부피 밀도를 나타내었다.Figure 4 shows the change in bulk density of geopolymer foam specimens according to microwave irradiation. As the microwave irradiation time increased, the bulk density decreased. SS100 specimen showed the lowest bulk density of 0.56~0.53 g/cm 3 and SS90 specimen showed the highest bulk density of 0.69~0.64 g/cm 3 . The SS80 specimen showed a bulk density of 0.62~0.66 g/cm 3 .
3. 마이크로파 조사에 따른 압축 강도 변화3. Compressive strength change according to microwave irradiation
상기 실시예 1에서 제조한 시편들에 대하여 마이크로파 조사에 따른 압축 강도 변화를 조사하였다. 도 5는 마이크로파 조사에 따른 지오폴리머 폼 시편들의 압축강도 변화를 나타낸 그래프이다. 도 5에 나타낸 바와 같이, 지오폴리머 폼 시편의 압축 강도는 마이크로파 조사 시간이 8분인 시점에서 가장 높았으며, 마이크로파 조사 시간이 증가할수록 지오폴리머 폼 시편의 압축 강도는 하락하였다. 이는 마이크로파 조사 시간의 증가함에 따라 시편 내에 공극이 지속적으로 형성됨과 동시에 일정 이상의 온도에서는 시편 내에 균열이 발생하기 때문이다. SS90 시편은 가장 높은 압축 강도 (8.23~4.40 MPa)를 나타냈고, SS100 시편은 가장 낮은 압축 강도 (3.53~2.14 MPa)를 나타냈다. 이는 사용된 알칼리 용액의 조성에 따라 시편 팽창에 차이가 발생하였기 때문이다. SS90 시편은 높은 부피 밀도로 인해 높은 강도를 나타내고, 이에 반해 SS100 시편은 낮은 부피 밀도로 인해 낮은 강도를 나타낸다.With respect to the specimens prepared in Example 1, the change in compressive strength according to microwave irradiation was investigated. 5 is a graph showing the change in compressive strength of geopolymer foam specimens according to microwave irradiation. As shown in FIG. 5, the compressive strength of the geopolymer foam specimens was highest when the microwave irradiation time was 8 minutes, and the compressive strength of the geopolymer foam specimens decreased as the microwave irradiation time increased. This is because voids are continuously formed in the specimen as the microwave irradiation time increases, and cracks occur in the specimen at a temperature above a certain level. The SS90 specimen showed the highest compressive strength (8.23~4.40 MPa), and the SS100 specimen showed the lowest compressive strength (3.53~2.14 MPa). This is because a difference occurred in the expansion of the specimen depending on the composition of the alkali solution used. The SS90 specimen exhibits high strength due to its high bulk density, whereas the SS100 specimen exhibits low strength due to its low bulk density.
또한, 마이크로파 조사 시간에 따른 지오폴리머 폼 시편에 대한 SEM 분석을 수행하여 그 이미지를 도 6에 나타내었다. 마이크로파 조사 시간이 8분과 9분인 시편에서는 별다른 차이가 발견되지 않았다. 하지만, 하얀색 화살표가 가리키는 균열은 마이크로파 조사가 10분인 시점에서 형성되었으며, 마이크로파 조사 시간이 증가할수록 균열은 점차 심해졌다. 이러한 미세 균열은 마이크로파 조사 결과 과도하게 높아진 온도로 인해 지오폴리머 구조를 유지하는 역할을 하는 수분의 증발이 발생하여 내부에 열적 수축이 발생하거나, 고온에 도달하면서 지오폴리머 매트릭스 내에서 발생한 증기의 압력이 상승하여 매트릭스에 균열을 발생시킨 것으로 보여진다.In addition, SEM analysis was performed on the geopolymer foam specimens according to the microwave irradiation time, and the images are shown in FIG. 6 . No significant difference was found in the specimens with microwave irradiation times of 8 and 9 minutes. However, the crack indicated by the white arrow was formed at the time of 10 minutes of microwave irradiation, and the crack gradually got worse as the microwave irradiation time increased. As a result of microwave irradiation, these microcracks result in evaporation of moisture that maintains the geopolymer structure due to an excessively high temperature, resulting in thermal shrinkage inside, or the pressure of steam generated in the geopolymer matrix as it reaches a high temperature. It appears to have risen and caused cracks in the matrix.
4. 마이크로파 조사에 따른 열전도도의 변화4. Changes in thermal conductivity according to microwave irradiation
상기 실시예 1에서 제조한 시편들을 수직방향으로 잘라 중심부 부분의 열전도도를 측정하여 그 결과를 도 7에 나타내었다.The specimens prepared in Example 1 were cut vertically and the thermal conductivity of the center portion was measured, and the results are shown in FIG. 7 .
도 7에서 보는 바와 같이, 마이크로파 조사 시간이 증가할수록 지오폴리머 폼 시편의 열전도도는 하락하였다. 즉, SS100 시편은 0.202~0.167 W/mK, SS90 시편은 0.223~0.166 W/mK, 그리고 SS80 시편은 0.222~0.154 W/mK로 열전도도가 감소하였다. 이와 같은 열전도도 하락은 마이크로파 조사에 의해 시편 내부에 공극이 증가하기 때문이다.As shown in FIG. 7, as the microwave irradiation time increased, the thermal conductivity of the geopolymer foam specimens decreased. That is, the thermal conductivity decreased to 0.202~0.167 W/mK for SS100 specimen, 0.223~0.166 W/mK for SS90 specimen, and 0.222~0.154 W/mK for SS80 specimen. This decrease in thermal conductivity is due to the increase of voids inside the specimen by microwave irradiation.
지오폴리머 폼 시편의 공극률과 열전도도 사이의 관계를 도 8에 나타내었다. 도 8에서 볼 수 있듯이, 지오폴리머 폼 시편의 팽창도가 가장 큰 SS100 시편에서 가장 높은 공극률을 나타내었다. SS100 시편은 공극률에 비해 높은 열전도도를 보이는 것으로 나타났다. 반면, S80 시편은 공극률에 비해 낮은 열전도도를 보였다. 즉, 지오폴리머 폼 시편의 공극률과 열전도도 간에는 일정한 상관관계는 없는 것으로 보인다. 알칼리 활성화제에 따라 형성되는 물질의 차이가 발생할 수 있고, 공극 구조와 크기 그리고 분포가 열전도도에 영향을 미치기 때문으로 판단된다. 일 례로 시편 내 작은 공극의 수가 증가할수록 열전도도가 낮아지는 것으로 조사된 바 있다. 따라서, 작은 공극이 많은 S80 시편은 낮은 공극률에도 낮은 열전도도를 보이는 것으로 추정된다.The relationship between porosity and thermal conductivity of geopolymer foam specimens is shown in FIG. 8 . As can be seen in FIG. 8, the highest porosity was shown in the SS100 specimen, which had the highest degree of expansion of the geopolymer foam specimen. The SS100 specimen showed high thermal conductivity compared to the porosity. On the other hand, the S80 specimen showed low thermal conductivity compared to the porosity. That is, there does not seem to be a certain correlation between the porosity and the thermal conductivity of the geopolymer foam specimens. It is believed that the difference in the material formed may occur depending on the alkali activator, and the pore structure, size, and distribution affect the thermal conductivity. For example, it has been investigated that as the number of small pores in a specimen increases, the thermal conductivity decreases. Therefore, it is estimated that the S80 specimen with many small pores shows low thermal conductivity even with low porosity.
<실시예 3> 석탄 비산재 기반 지오폴리머 폼의 L/S 비율에 따른 물성 변화 <Example 3> Physical property change according to L/S ratio of coal fly ash-based geopolymer foam
지오폴리머 폼 시편의 L/S 비율에 따른 부피 밀도, 압축 강도 및 열전도도 변화를 확인하였다.Changes in bulk density, compressive strength, and thermal conductivity according to the L/S ratio of the geopolymer foam specimens were confirmed.
도 9은 지오폴리머 폼 시편의 L/S 비율에 따른 부피 밀도를 나타낸 그래프이다. 지오폴리머 폼 시편의 부피 밀도는 L/S 비율이 증가함에 따라 감소하였는데, 지오폴리머 폼 시편 제작에 사용된 알칼리화제 용액의 증가는 시편을 팽창시킬 수 있는 수분이 더 많이 함유되어 있기 때문이다. 또한, L/S 비율이 0.60에서 0.65로 감소하면서 부피 밀도는 11.4%가 감소하였으나, 이후 L/S 비율의 증가에 따라 부피 밀도는 4.7~3.5%가 감소하였다. L/S 비율이 증가하면서 지오폴리머 폼 시편의 점도가 감소하고 증기를 가두는 능력이 감소하기 때문에 부피 밀도의 하락이 점차 줄어든 것으로 판단된다.9 is a graph showing the bulk density according to the L / S ratio of geopolymer foam specimens. The bulk density of the geopolymer foam specimens decreased as the L/S ratio increased, because the increase in the alkalizing agent solution used to fabricate the geopolymer foam specimens contained more moisture that could expand the specimens. In addition, the bulk density decreased by 11.4% as the L/S ratio decreased from 0.60 to 0.65, but the bulk density decreased by 4.7 to 3.5% as the L/S ratio increased. As the L/S ratio increases, the decrease in bulk density is thought to be gradually reduced because the viscosity of the geopolymer foam specimen decreases and the ability to trap vapor decreases.
도 10은 지오폴리머 폼 시편의 L/S 비율에 따른 시편의 압축 강도를 나타낸 그래프이다. 지오폴리머 폼 시편의 압축 강도는 L/S 비율이 0.65일 때 8.43MPa의 가장 높은 값을 나타냈고, L/S 비율이 증가하면서 압축 강도는 점차 감소하여 L/S 비율이 0.75일 때 5.65MPa을 나타냈다. 이러한 현상과는 달리 L/S 비율이 0.60에서 0.65로 늘어나면서 압축 강도는 7.74MPa에서 8.43MPa로 증가하였다. 이 현상은 L/S 비율이 일정 이하로 감소하면 마이크로파에 의한 온도 상승이 빠르게 발생하여 시편의 양생에 악영향을 미쳐 압축 강도가 감소하는 것으로 보여진다. 10 is a graph showing the compressive strength of geopolymer foam specimens according to the L/S ratio. The compressive strength of the geopolymer foam specimen showed the highest value of 8.43 MPa when the L/S ratio was 0.65, and as the L/S ratio increased, the compressive strength gradually decreased to 5.65 MPa when the L/S ratio was 0.75. showed up Contrary to this phenomenon, as the L/S ratio increased from 0.60 to 0.65, the compressive strength increased from 7.74 MPa to 8.43 MPa. This phenomenon is shown to be that when the L/S ratio decreases below a certain level, the temperature rise due to microwaves occurs rapidly, adversely affecting the curing of the specimen and reducing the compressive strength.
도 11은 지오폴리머 폼 시편의 L/S 비율에 따른 시편의 열전도도를 나타낸 그래프이다. SS90 지오폴리머 폼 시편의 열전도도는 L/S 비율이 증가함에 따라 감소하였다. 지오폴리머 폼 시편의 L/S 비율 증가는 내부 공극 구조를 증가시키기 때문이다. L/S 비율이 0.60일 때 0.251W/mK의 값을 나타냈으나, L/S 비율이 0.75인 시편에서 0.187W/mK의 값을 나타내었다.11 is a graph showing the thermal conductivity of geopolymer foam specimens according to the L/S ratio. The thermal conductivity of the SS90 geopolymer foam specimens decreased as the L/S ratio increased. The increase in the L/S ratio of the geopolymer foam specimens is due to the increase in the internal pore structure. When the L/S ratio was 0.60, a value of 0.251 W/mK was shown, but when the L/S ratio was 0.75, a value of 0.187 W/mK was shown.

Claims (7)

  1. (a) 물유리(Na2SiO3 용액) 및 수산화나트륨(NaOH)을 혼합하여 알칼리 활성화제 용액을 제조하는 단계; (a) preparing an alkaline activator solution by mixing water glass (Na 2 SiO 3 solution) and sodium hydroxide (NaOH);
    (b) 상기 알칼리 활성화제 용액에 석탄 비산재를 첨가하여 반죽 시료를 제조하는 단계; (b) preparing a dough sample by adding coal fly ash to the alkali activator solution;
    (c) 상기 반죽 시료를 몰드에 충진하고 마이크로파를 조사하여 성형체를 제조하는 단계; 및 (c) preparing a molded body by filling the dough sample into a mold and irradiating microwaves; and
    (d) 상기 성형체를 탈형하는 단계;를 포함하는 (d) demolding the molded body; comprising
    마이크로파를 이용한 석탄 비산재 기반 지오폴리머 폼의 제조방법.Manufacturing method of geopolymer foam based on coal fly ash using microwave.
  2. 제1항에 있어서,According to claim 1,
    상기 단계 a)는, 물유리(Na2SiO3 용액)와 수산화나트륨(NaOH)를 10 : 2.5~0의 비율(중량비)로 혼합하는 단계인 것인, 제조방법.Step a) is a step of mixing water glass (Na 2 SiO 3 solution) and sodium hydroxide (NaOH) in a ratio (weight ratio) of 10: 2.5 to 0, the manufacturing method.
  3. 제1항에 있어서, According to claim 1,
    상기 단계 b)는, 알칼리 활성화제와 석탄 비산재를 석탄 비산재 1(중량비)에 대해 알칼리 활성화제를 0.60 내지 0.80의 비율(중량비)로 혼합하는 단계인 것인, 제조방법.The step b) is a step of mixing the alkali activator and the coal fly ash at a ratio (weight ratio) of 0.60 to 0.80 to 1 coal fly ash (weight ratio).
  4. 제1항에 있어서,According to claim 1,
    상기 단계 b)에서, 석탄 비산재는 반죽 시료의 총 중량을 기준으로 50 중량% 내지 65 중량%의 함량으로 첨가되는 것인, 제조방법.In step b), the coal fly ash is added in an amount of 50% to 65% by weight based on the total weight of the dough sample.
  5. 제1항에 있어서,According to claim 1,
    상기 단계 c)는, 300 내지 1000 W 출력의 마이크로파를 5분 내지 15분 동안 조사하는 단계인 것인, 제조방법.The step c) is a step of irradiating microwaves with an output of 300 to 1000 W for 5 minutes to 15 minutes, the manufacturing method.
  6. 제1항 내지 제5항 중 어느 한 항의 제조방법으로 제조된 석탄 비산재 기반 지오폴리머 폼.Coal fly ash-based geopolymer foam prepared by the manufacturing method of any one of claims 1 to 5.
  7. 제6항에 있어서,According to claim 6,
    상기 석탄 비산재 기반 지오폴리머 폼은 부피 밀도가 0.530 내지 0.688 g/cm3, 열전도도가 0.166 내지 0.361 W/mK, 압축강도가 2.14 내지 8.23 MPa인 것인, 지오폴리머 폼.The coal fly ash-based geopolymer foam has a bulk density of 0.530 to 0.688 g/cm 3 , a thermal conductivity of 0.166 to 0.361 W/mK, and a compressive strength of 2.14 to 8.23 MPa.
PCT/KR2022/017134 2021-11-05 2022-11-03 Method for manufacturing coal fly ash-based geopolymer foam by using microwaves WO2023080676A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0151287 2021-11-05
KR20210151287 2021-11-05

Publications (1)

Publication Number Publication Date
WO2023080676A1 true WO2023080676A1 (en) 2023-05-11

Family

ID=86241806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/017134 WO2023080676A1 (en) 2021-11-05 2022-11-03 Method for manufacturing coal fly ash-based geopolymer foam by using microwaves

Country Status (1)

Country Link
WO (1) WO2023080676A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2809197C1 (en) * 2023-05-19 2023-12-07 федеральное государственное бюджетное образовательное учреждение высшего образования "Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова" Charge for production of porous geopolymer material based on coal generation waste

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120053411A (en) * 2010-11-17 2012-05-25 이동희 Manufacture method of inorganic foam using geopolymer
KR20120129320A (en) * 2011-05-19 2012-11-28 이동희 Manufacture method of inorganic foam using geopolymer as binder
KR20130004533A (en) * 2010-11-17 2013-01-11 이동희 Manufacture method of inorganic foam using geopolymer silica sol.gel method
KR20180000052A (en) * 2016-06-22 2018-01-02 그렉 조 Method of light-weight foaming acoustic absorbent panel uasing a fly-ash, and the light-weight foaming acoustic absorbent panel manufactured by the method
KR102279744B1 (en) * 2021-02-24 2021-07-21 흥국산업 주식회사 Manufacturing method of coal ash-based geopolymer foams by addition of silica fume as pore generating agent

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120053411A (en) * 2010-11-17 2012-05-25 이동희 Manufacture method of inorganic foam using geopolymer
KR20130004533A (en) * 2010-11-17 2013-01-11 이동희 Manufacture method of inorganic foam using geopolymer silica sol.gel method
KR20120129320A (en) * 2011-05-19 2012-11-28 이동희 Manufacture method of inorganic foam using geopolymer as binder
KR20180000052A (en) * 2016-06-22 2018-01-02 그렉 조 Method of light-weight foaming acoustic absorbent panel uasing a fly-ash, and the light-weight foaming acoustic absorbent panel manufactured by the method
KR102279744B1 (en) * 2021-02-24 2021-07-21 흥국산업 주식회사 Manufacturing method of coal ash-based geopolymer foams by addition of silica fume as pore generating agent

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2809197C1 (en) * 2023-05-19 2023-12-07 федеральное государственное бюджетное образовательное учреждение высшего образования "Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова" Charge for production of porous geopolymer material based on coal generation waste
RU2817480C1 (en) * 2023-11-23 2024-04-16 федеральное государственное бюджетное образовательное учреждение высшего образования "Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова" Composition based on industrial wastes for producing geopolymer material

Similar Documents

Publication Publication Date Title
Hussin et al. Performance of blended ash geopolymer concrete at elevated temperatures
Villaquirán-Caicedo et al. Thermal properties of novel binary geopolymers based on metakaolin and alternative silica sources
Zhang et al. Mechanical, thermal insulation, thermal resistance and acoustic absorption properties of geopolymer foam concrete
Thokchom et al. Performance of fly ash based geopolymer mortars in sulphate solution
Seo et al. Thermal behavior of alkali-activated fly ash/slag with the addition of an aerogel as an aggregate replacement
CN107721358B (en) Baking-free ceramsite prepared by mixing slag micro powder with perlite tailings and preparation method of baking-free ceramsite
CN112661429B (en) Preparation method of non-combustible polystyrene particle composite insulation board and product prepared by same
CN115286278B (en) Composite additive for fly ash-based concrete and preparation method and application thereof
Lahoti et al. Influence of mix design parameters on geopolymer mechanical properties and microstructure
Zawrah et al. Fabrication and characterization of non-foamed and foamed geopolymers from industrial waste clays
CN112251057A (en) Indoor thick steel structure fireproof coating and preparation method thereof
CN112456941A (en) Autoclaved aerated concrete plate and preparation method thereof
CN111892353A (en) Fireproof flame-retardant thermal insulation mortar and preparation method thereof
KR101390132B1 (en) high strength concrete composition using rapid hardening type portland cement
CN113480270B (en) Lightweight aggregate concrete and preparation method thereof
Pereira et al. Porcelain waste from electrical insulators in self-leveling mortar: Materials characterization and properties
Kearsley et al. The use of foamed concrete in refractories
WO2023080676A1 (en) Method for manufacturing coal fly ash-based geopolymer foam by using microwaves
WO2019050138A1 (en) Method for wet-manufacturing waterproof aerated concrete block
CN112521058A (en) Honeycomb structure ceramic thermal insulation composite material and manufacturing method thereof
Ibrahim et al. Influence of foaming agent/water ratio and foam/geopolymer paste ratio to the properties of fly ash-based lightweight geopolymer for brick application
JP2001226166A (en) Calcium silicate formed plate
KR20160137716A (en) Porous, ultra light ceramic insulator for building external insulation system using waste glass and coal ash and manufacturing method thereof
KR20200134566A (en) Light Weight And Heat Insulation Mortar Composition Based on Industrial By-products
KR102279744B1 (en) Manufacturing method of coal ash-based geopolymer foams by addition of silica fume as pore generating agent

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22890407

Country of ref document: EP

Kind code of ref document: A1