JPH0476747B2 - - Google Patents

Info

Publication number
JPH0476747B2
JPH0476747B2 JP11456888A JP11456888A JPH0476747B2 JP H0476747 B2 JPH0476747 B2 JP H0476747B2 JP 11456888 A JP11456888 A JP 11456888A JP 11456888 A JP11456888 A JP 11456888A JP H0476747 B2 JPH0476747 B2 JP H0476747B2
Authority
JP
Japan
Prior art keywords
weight
parts
vinyl chloride
plastisol
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11456888A
Other languages
Japanese (ja)
Other versions
JPH01288367A (en
Inventor
Yoshio Hayashi
Tetsuo Nakamoto
Takaaki Okamura
Katsumi Kanda
Yoshikazu Kondo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Kohan Co Ltd
Original Assignee
Toyo Kohan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co Ltd filed Critical Toyo Kohan Co Ltd
Priority to JP11456888A priority Critical patent/JPH01288367A/en
Publication of JPH01288367A publication Critical patent/JPH01288367A/en
Publication of JPH0476747B2 publication Critical patent/JPH0476747B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高硬度で耐圧痕性、耐ブリード性
(可塑剤)にすぐれかつ、加工性および表面の艶
消し効果にすぐれた塩化ビニル被覆鋼板の製造方
法に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention provides a vinyl chloride coating with high hardness, excellent indentation resistance, and bleed resistance (plasticizer), as well as excellent workability and matte surface effect. This invention relates to a method for manufacturing steel plates.

〔従来の技術〕[Conventional technology]

塩化ビニル被覆鋼板は、加工性、耐食性、耐候
性および意匠性などの特性にすぐれているため、
従来より、内装建材、外装建材、電機機器、車輌
および雑貨用途などに広く用いられている。
PVC-coated steel sheets have excellent properties such as workability, corrosion resistance, weather resistance, and design, so
It has been widely used for interior and exterior building materials, electrical equipment, vehicles, and miscellaneous goods.

塩化ビニル被覆鋼板の製造方法には、大別して
プラスチゾル法とラミネート法があるが、ユーザ
ーに対して短納期で対応が可能であり、かつ少量
多品種の製品を効率よく生産できるプラスチゾル
法が広く適用されている。プラスチゾル法におい
ては、ポリ塩化ビニル樹脂、可塑剤、安定剤、顔
料および各種添加剤を含有するプラスチゾルを接
着剤層を介して鋼板に塗装した後、加熱すること
によつて塗膜をゲル化した後、所定のエンボス加
工を施して製造されている。
There are two main methods for manufacturing PVC-coated steel sheets: the plastisol method and the lamination method. However, the plastisol method is widely used because it can quickly deliver to users and efficiently produce a wide variety of products in small quantities. has been done. In the plastisol method, plastisol containing polyvinyl chloride resin, plasticizers, stabilizers, pigments, and various additives is applied to a steel plate via an adhesive layer, and then heated to gel the coating. After that, it is manufactured by applying a predetermined embossing process.

しかし、プラスチゾル法で製造された塩化ビニ
ル被覆鋼板は、一般的に皮膜が軟質であり、皮膜
の硬度、耐圧痕性、耐ブリード性などの特性が劣
り、表面の艶消し効果が十分でない。すなわち、
プラスチゾル法の塩化ビニル被覆鋼板は、製造に
おいて、加熱によつてゲル化皮膜を形成した直後
に皮膜表面に希望するエンボス加工を施すことが
可能であるため、その意匠性が高く評価されてい
るが、コイル状態あるいは切り板状態で積載され
てユーザーに出荷される間に皮膜表面に大きな圧
力がかかるとエンボス模様がつぶれやすい傾向に
あつて耐圧痕性に問題があり、また皮膜中の可塑
剤が表面に移行しやすい傾向があり、耐ブリード
性に問題がある。
However, vinyl chloride-coated steel sheets manufactured by the plastisol method generally have a soft film, and the film has poor properties such as hardness, indentation resistance, and bleed resistance, and the surface matting effect is not sufficient. That is,
PVC-coated steel sheets produced using the plastisol method are highly praised for their design, as it is possible to apply desired embossing to the surface of the film immediately after forming a gel film by heating. If a large amount of pressure is applied to the surface of the coating while it is loaded in a coiled state or a cut plate state and shipped to the user, the embossed pattern tends to be crushed, causing problems in indentation resistance, and the plasticizer in the coating is It tends to migrate to the surface and has problems with bleed resistance.

これらのプラスチゾル法の欠点を改良する方法
として低可塑剤で塗装可能な粘度を有するプラス
チゾルの検討が、使用される塩化ビニル樹脂粉末
あるいは可塑剤の選択ならびに希釈剤の使用など
の面からなされてきた。しかし、特性の改善には
限界がある。端に低可塑剤のプラスチゾルを用い
ると、粘度が高くなり塗装性が低下し、皮膜の硬
度は上がるがもろくなり加工性が低下する傾向を
示す。また、可塑剤の代わりにミネラルスピリツ
ト、ソルベツソ等の希釈剤を多量に用いると、皮
膜の硬度は上がるが加工性が低下し皮膜表面に希
釈剤の揮発に起因するふくれが発生し好ましくな
い。また、加工性を低下させずに皮膜硬度をする
方法として、第一層に軟質の皮膜を形成するプラ
スチゾルを塗装し、続いて第二層として硬質の皮
膜を形成するプラスチゾルを塗装し(ウエツト・
オン・ウエツトの2回塗装)、第一層と第二層を
一度でゲル化する方法が提案されているが、この
方法は経済的に高くなり、また、皮膜硬度ににも
限界がある。そこで、プラスチゾルの中に常温で
液状の重合性可塑剤を配合し、ゲル化時の加熱に
よつて硬化する方法あるいはその後、紫外線を照
射することによつて硬化する方法(特公昭44−
31818、特公昭50−22580、特公昭57−9593)が提
案されているが、これらの方法では得られた皮膜
の硬度、耐圧痕性、耐ブリード性が十分ではなく
加工性などの特性に問題がある。また、塩化ビニ
ル皮膜の艶消しを行うために、従来よりシリカ粉
末をプラスチゾル中に含有させる方法が取られて
いるが、シリカ粉末を添加するとプラスチゾル粘
度の上昇が大きく、塗装作業が困難になり、得ら
れた皮膜がもろくなつて機械的強度が低下する傾
向を示し問題となつていた。また、特定の塩化ビ
ニル系重合体粉末とアクリル系重合体粉末を主成
分とするプラスチゾルを用いて高硬度塩化ビニル
被覆鋼板を製造する方法(特開昭63−185630)が
提案されているが、この方法では耐圧痕性、耐ブ
リード性などの特性が十分でない。
As a way to improve the shortcomings of these plastisol methods, studies have been conducted on plastisols with a viscosity that allows coating with low plasticizers, from the viewpoint of selecting the vinyl chloride resin powder or plasticizer used, and using diluents. . However, there are limits to the improvement of characteristics. If a plastisol with a low plasticizer is used at the end, the viscosity increases and paintability decreases, and although the hardness of the film increases, it becomes brittle and tends to decrease processability. Furthermore, if a large amount of diluent such as mineral spirits or sorbetso is used instead of a plasticizer, the hardness of the film will increase, but workability will decrease and blistering will occur on the surface of the film due to volatilization of the diluent, which is undesirable. In addition, as a method to increase the hardness of the film without reducing workability, a plastisol that forms a soft film is applied as the first layer, and then a plastisol that forms a hard film is applied as the second layer (wet coating).
A method has been proposed in which the first layer and the second layer are gelled at once (on-wet coating), but this method is economically expensive and also has a limit in film hardness. Therefore, there is a method in which a polymerizable plasticizer that is liquid at room temperature is mixed into plastisol and cured by heating during gelation, or a method in which it is then cured by irradiation with ultraviolet rays (Japanese Patent Publication No.
31818, Japanese Patent Publication No. 50-22580, Japanese Patent Publication No. 57-9593), but these methods do not provide sufficient hardness, indentation resistance, or bleed resistance of the film obtained, and there are problems with properties such as processability. There is. In addition, in order to make the vinyl chloride film matte, a method of incorporating silica powder into plastisol has traditionally been used, but adding silica powder greatly increases the viscosity of plastisol, making painting work difficult. The obtained film tends to become brittle and its mechanical strength decreases, which has been a problem. In addition, a method for manufacturing high-hardness vinyl chloride-coated steel sheets using plastisol whose main components are a specific vinyl chloride polymer powder and acrylic polymer powder has been proposed (Japanese Patent Laid-Open No. 185630/1983). This method does not provide sufficient properties such as indentation resistance and bleed resistance.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

以上記載したように、プラスチゾル法において
製造された塩化ビニル被覆鋼板の皮膜は一般に軟
質であり、種々な特性面での欠点を有している。
これらの課題を解決するため、製造方法に起因す
るプラスチゾル粘度面からの制約を克服して高硬
度で耐圧痕性、耐ブリード性にすぐれ、かつ加工
性および表面の艶消し硬化にすぐれた塩化ビニル
被覆鋼板を製造する技術の確立が必要である。
As described above, the coating of vinyl chloride-coated steel sheets produced by the plastisol method is generally soft and has drawbacks in various properties.
In order to solve these problems, we have overcome the constraints of plastisol viscosity caused by the manufacturing method to develop vinyl chloride, which has high hardness, excellent indentation resistance, and bleed resistance, as well as excellent workability and matte hardening of the surface. It is necessary to establish a technology to manufacture coated steel sheets.

〔課題を解決するための手段〕[Means to solve the problem]

本発明はこのような課題に対して、プラルチゾ
ル法により高硬度で耐圧痕性、耐ブリード性にす
ぐれかつ加工性および表面の艶消し効果に優れた
塩化ビニル被覆鋼板を連続的に効率よく製造する
方法を提供せんとするものであり、このため本発
明は鋼板表面に公知の接着剤を塗布し加熱により
焼付けを行つた後、2ピークの粒子径分布を有す
る塩化ビニル系重合体粉末とアクリル系重合体粉
末および加熱硬化あるいは紫外線硬化可能なモノ
マーあるいはオリゴマーを主成分とし可塑剤、安
定剤、顔料、希釈剤および各種添加剤を含有する
プラスチゾルを塗装し、続いて加熱することによ
つてゲル化皮膜を形成した直後に皮膜表面にエン
ボス加工を施す方法、あるいは、エンボス加工後
さらに紫外線を照射し、皮膜を2層構造化する方
法により高硬度で耐圧痕性にすぐれた塩化ビニル
被覆鋼板を製造することを基本的特徴とする。
In order to solve these problems, the present invention uses the praltisol method to continuously and efficiently produce vinyl chloride-coated steel sheets with high hardness, excellent indentation resistance and bleed resistance, and excellent workability and surface matte effect. Therefore, the present invention aims to provide a method for applying a known adhesive to the surface of a steel plate, baking it by heating, and then applying a vinyl chloride polymer powder having a two-peak particle size distribution and an acrylic adhesive to the surface of the steel plate. Plastisol containing polymer powder and heat-curable or UV-curable monomers or oligomers as main components, plasticizers, stabilizers, pigments, diluents, and various additives is coated, and then gelled by heating. PVC-coated steel sheets with high hardness and excellent indentation resistance are manufactured by applying embossing to the coating surface immediately after the coating is formed, or by irradiating ultraviolet rays after embossing to create a two-layer coating. The basic feature is that

以下、本発明を詳細に説明する。 The present invention will be explained in detail below.

本発明の方法において、鋼板としては、冷延鋼
板、亜鉛めつき鋼板、クロムめつき鋼板、すずめ
つき鋼板、ニツケルめつき鋼板、鉛めつき鋼板、
各種合金めつきあるいは複合めつき鋼板および多
層めつき鋼板ならびにこれらのめつき鋼板にクロ
メート処理、リン酸塩処理等の化成処理を施した
鋼板を使用することが可能であり、その目的、用
途に応じて任意に選択できる。
In the method of the present invention, the steel sheets include cold-rolled steel sheets, galvanized steel sheets, chrome-plated steel sheets, tin-plated steel sheets, nickel-plated steel sheets, lead-plated steel sheets,
It is possible to use various alloy plated or composite plated steel plates, multilayer plated steel plates, and steel plates that have undergone chemical conversion treatments such as chromate treatment and phosphate treatment on these plated steel plates, depending on the purpose and application. You can choose as you like.

本発明の方法で、鋼板と塩化ビニル塗膜の接着
のために、アクリル樹脂、ポリエステル樹脂、エ
ポキシ樹脂あるいはアクリルゴムなどを主成分と
する公知の接着剤を用いることができ、鋼板表面
に塗膜厚3〜10μm塗装した後160〜250℃で1分
間加熱することによつて焼き付けを行い続いてプ
ラスチゾルを塗布する。
In the method of the present invention, a known adhesive containing acrylic resin, polyester resin, epoxy resin, acrylic rubber, etc. as a main component can be used to bond the steel plate and the vinyl chloride coating, and the coating can be applied to the surface of the steel plate. After coating to a thickness of 3 to 10 μm, baking is performed by heating at 160 to 250° C. for 1 minute, followed by application of plastisol.

本発明の方法で使用される塩化ビニル系重合体
粉末は平均重合度500〜2500で乳化重合法あるい
はマイクロサスペンジヨン法により製造されたポ
リ塩化ビニル樹脂のホモポリマーの粉末をはじめ
として、塩化ビニルと共重合可能なモノマー、例
えば、エチレン、プロピレン、酢酸ビニルプロピ
オン酸ビニル、ステアリン酸ビニル、アルキルビ
ニルエーテル、塩化ビニリデン、ジエチルフマレ
ート、メタアクリル酸エステル等を共重合してな
る塩化ビニル系重合体粉末、あるいは架橋ポリ塩
化ビニル樹脂粉末などが使用できる。塩化ビニル
系重合体粉末の粒子径は、95重量%以上が0.5〜
40μmであり、かつ20〜60重量%が0.5〜5μm未満
であつて35〜75重量%が5〜40μmの2ピークタ
イプの粒子径分布を有することが好ましく、さら
に、1〜3μmと8〜15μmにピークを有すること
が好ましい。一般にプラスチゾル法で塩化ビニル
被覆鋼板を製造する場合、第2図に示す平均粒子
径1〜2μmで1ピーク(単分散)の粒子径分布の
ものが使用されているが、本発明においては第1
図に示す2ピークの粒子径分布を有する塩化ビニ
ル共重合体粉末が好ましい。粒子径40μm以上の
粉末が5重量%を越えるとプラスチゾル塗装表面
の仕上がりが悪くなつて好ましくない。粒子径
0.5〜5μmの粉末が20重量%未満で、粒子径5〜
40μmの粉末が75重量%を越えるとプラスチゾル
のゲル化性能が低下し、未溶融の塩化ビニル径重
合体粉末が皮膜中に多量に残存して特性の低下を
もたらすので好ましくない。また、粒子径0.5〜
5μmの粉末が60重量%を越え、粒子径5〜40μm
の粉末が35重量%未満になると、プラスチゾル粘
度が高くなり塗装可能な粘度にするため多量の可
塑剤、希釈剤等を必要とし高硬度塩化ビニル被覆
鋼板が得られないので好ましくない。
The vinyl chloride polymer powder used in the method of the present invention includes homopolymer powder of polyvinyl chloride resin produced by an emulsion polymerization method or a microsuspension polymerization method with an average degree of polymerization of 500 to 2,500. Vinyl chloride polymer powder obtained by copolymerizing copolymerizable monomers such as ethylene, propylene, vinyl acetate, vinyl propionate, vinyl stearate, alkyl vinyl ether, vinylidene chloride, diethyl fumarate, methacrylate, etc. Alternatively, crosslinked polyvinyl chloride resin powder can be used. The particle size of vinyl chloride polymer powder is 0.5 to 95% by weight or more.
40 μm, and preferably has a two-peak type particle size distribution in which 20 to 60% by weight is less than 0.5 to 5 μm and 35 to 75% by weight is 5 to 40 μm, and furthermore, 1 to 3 μm and 8 to 15 μm. It is preferable to have a peak at Generally, when producing vinyl chloride-coated steel sheets by the plastisol method, a particle size distribution with an average particle size of 1 to 2 μm and a single peak (monodisperse) as shown in Fig. 2 is used.
A vinyl chloride copolymer powder having a two-peak particle size distribution as shown in the figure is preferred. If the amount of powder with a particle size of 40 μm or more exceeds 5% by weight, the finish of the plastisol coating surface will deteriorate, which is not preferable. Particle size
Less than 20% by weight of powder of 0.5-5μm, particle size 5-5μm
If the 40 μm powder exceeds 75% by weight, the gelling performance of the plastisol will deteriorate, and a large amount of unmelted vinyl chloride diameter polymer powder will remain in the film, resulting in a decrease in properties, which is not preferable. Also, particle size 0.5~
More than 60% by weight of 5μm powder, particle size 5-40μm
If the powder content is less than 35% by weight, the viscosity of the plastisol becomes high and a large amount of plasticizer, diluent, etc. is required to make the viscosity suitable for coating, and a high hardness vinyl chloride coated steel sheet cannot be obtained, which is not preferable.

また、本発明の方法で使用されるアクリル系重
合体粉末は乳化重合法あるいはマイクロサスペン
ジヨン法で製造した微粒子の粉末であり、ポリメ
チルメタクリレートのホモポリマー粉末をはじめ
として、エポキシ基、カルボキシル基、水酸基、
メチロール基、アルキルアミノ基あるいはアミド
基などの官能基を有するビニルモノマーとメタア
クリル酸との共重合体粉末、あるいはジビニルベ
ンゼン、エチレングリコールジメタクリレート、
トリメチルロールプロパントリアクリレートなど
の多官能ビニル化合物との共重合により架橋構造
を持つポリメチルメタクリレート共重合体粉末等
を用いることができる。アクリル系重合体粉末の
重合度は500〜30000が好ましい。平均重合度が
500未満になると、得られる塩化ビニル皮膜の低
温時の加工性が低下し、艶消し効果も認められな
くなり好ましくない。また平均重合度が30000を
越えると加熱工程において溶融が不十分となり塩
化ビニル皮膜がもろくなり好ましくない。アクリ
ル系重合体粉末の粒子径は0.1〜40μmが好まし
い。粒子系が40μmを越えるとゲル化の時に未溶
融で残存するので好ましくない。粒子径が0.1μm
未満になるとプラスチゾル粘度が上昇するので好
ましくない。
In addition, the acrylic polymer powder used in the method of the present invention is a fine particle powder produced by an emulsion polymerization method or a microsuspension method, and includes homopolymer powder of polymethyl methacrylate, epoxy groups, carboxyl groups, etc. hydroxyl group,
A copolymer powder of methacrylic acid and a vinyl monomer having a functional group such as a methylol group, alkylamino group or amide group, or divinylbenzene, ethylene glycol dimethacrylate,
A polymethyl methacrylate copolymer powder or the like having a crosslinked structure by copolymerization with a polyfunctional vinyl compound such as trimethylolpropane triacrylate can be used. The degree of polymerization of the acrylic polymer powder is preferably 500 to 30,000. The average degree of polymerization is
If it is less than 500, the processability of the resulting vinyl chloride film at low temperatures will decrease and the matting effect will not be observed, which is not preferable. Moreover, if the average degree of polymerization exceeds 30,000, melting will be insufficient in the heating step, resulting in a brittle vinyl chloride film, which is not preferable. The particle size of the acrylic polymer powder is preferably 0.1 to 40 μm. If the particle size exceeds 40 μm, it is not preferable because it remains unmelted during gelation. Particle size is 0.1μm
If it is less than this, the plastisol viscosity will increase, which is not preferable.

また、本発明の方法で使用される加熱硬化ある
いは紫外線硬化可能なモノマーあるいはオリゴマ
ーは、官能基としてアクリロイル基、メタクリロ
イル基あるいはビニル基を1分子あたり1個以上
有する常温で液状の物質であり、ゲル化時の加熱
あるいは紫外線の照射によつて硬化皮膜を形成す
る。加熱硬化あるいは紫外線硬化可能なモノマー
としては、例えば、2−エチルヘキシルアクリレ
ート、テトラヒドロフルアリルアクリレート等の
単官能アクリレートをはじめとして、ネオペンチ
ルグリコールジアクリレート、トリメチロールプ
ロパントリアクリレート、ペンタエリストールテ
トラアクリレート等の各種多官能アクリレートを
使用することができる。加熱硬化あるいは紫外線
硬化可能なオリゴマーとしては、ポリオールアク
リレートをはじめとして、ポリエステルアクリレ
ート、エポキシアクリレート、ウレタンアクリレ
ートなどの各種アクリレートを使用することがで
きる。また目的に応じてこれらのモノマーおよび
オリゴマーを混合して使用することもできる。ま
た、これらのモノマーおよびオリゴマーの紫外線
硬化触媒としては、例えば、ベンゾイン、ベンゾ
インエチルエーテルなどのベンゾイン化合物、ベ
ンジル、ベンゾフエノンなどのカルボニル化合物
等を用いることができ、その配合量は、モノマー
あるいはオリゴマー100重量部に対して0.1〜5重
量部が望ましい。また、これらのモノマーおよび
オリゴマーの加熱硬化触媒としては各種有機過酸
化物を用いることができ、その配合量は、モノマ
ーあるいはオリゴマー100重量部に対して0.1〜5
重量部が望ましい。また、目的によつてこれらの
紫外線硬化触媒と加熱硬化触媒を混合して用いる
ことができる。
Further, the heat-curable or ultraviolet-curable monomer or oligomer used in the method of the present invention is a substance that is liquid at room temperature and has one or more acryloyl group, methacryloyl group, or vinyl group per molecule as a functional group, and is a gelatinous substance. A cured film is formed by heating during curing or by irradiation with ultraviolet rays. Examples of heat-curable or ultraviolet-curable monomers include monofunctional acrylates such as 2-ethylhexyl acrylate and tetrahydrofurallyl acrylate, as well as neopentyl glycol diacrylate, trimethylolpropane triacrylate, and pentaerythol tetraacrylate. Various polyfunctional acrylates can be used. As the heat-curable or ultraviolet-curable oligomer, various acrylates such as polyol acrylate, polyester acrylate, epoxy acrylate, and urethane acrylate can be used. Moreover, these monomers and oligomers can be used in combination depending on the purpose. Further, as the ultraviolet curing catalyst for these monomers and oligomers, for example, benzoin compounds such as benzoin and benzoin ethyl ether, carbonyl compounds such as benzyl and benzophenone, etc. can be used, and the blending amount is 100% by weight of the monomer or oligomer. It is desirable to use 0.1 to 5 parts by weight. In addition, various organic peroxides can be used as heat curing catalysts for these monomers and oligomers, and the blending amount is 0.1 to 5 parts by weight per 100 parts by weight of monomers or oligomers.
Parts by weight are preferred. Further, depending on the purpose, these ultraviolet curing catalysts and heat curing catalysts can be used in combination.

本発明において、プラスチゾル中の塩化ビニル
系重合体粉末とアクリル系重合体粉末およびモノ
マーあるいはオリゴマーの割合は、塩化ビニル系
重合体粉末100重量部に対して、アクリル系重合
体粉末5〜60重量部、紫外線硬化型のモノマーあ
るいはオリゴマー5〜60重量部配合することが好
ましい。アクリル系重合体粉末およびモノマーあ
るいはオリゴマーが5重量部未満になると配合す
る効果が得られず、また、アクリル系重合体粉末
およびモノマーあるいはオリゴマーがそれぞれ60
重量部および60重量部を越えて配合してもその効
果は向上せず、むしろ塩化ビニル系重合体粉末の
効果が低下し、エンボス加工性が低下するので好
ましくない。
In the present invention, the ratio of vinyl chloride polymer powder, acrylic polymer powder, and monomer or oligomer in plastisol is 5 to 60 parts by weight of acrylic polymer powder to 100 parts by weight of vinyl chloride polymer powder. It is preferable to mix 5 to 60 parts by weight of an ultraviolet curable monomer or oligomer. If the amount of the acrylic polymer powder and monomer or oligomer is less than 5 parts by weight, the effect of blending it will not be obtained;
If the amount exceeds 60 parts by weight, the effect will not be improved, but rather the effect of the vinyl chloride polymer powder will be reduced, and embossing properties will be reduced, which is not preferable.

また、本発明の方法において、プラスチゾル中
に可塑剤、安定剤、顔料および各種添加剤を配合
することができる。可塑剤としては、各種フタル
酸エステル、各種フオスフエート類、多塩基酸エ
ステル等一般に用いられている一次可塑剤および
二次可塑剤を用いることができる。また、顔料、
安定剤、各種添加剤も一般にプラスチゾルに使用
されているものを使用することができる。
Furthermore, in the method of the present invention, plasticizers, stabilizers, pigments, and various additives can be blended into the plastisol. As the plasticizer, commonly used primary plasticizers and secondary plasticizers such as various phthalate esters, various phosphophosphates, and polybasic acid esters can be used. Also, pigments,
Stabilizers and various additives that are generally used for plastisol can also be used.

本発明では、前述した特徴を持つプラスチゾル
を接着剤を介して鋼板に塗膜厚30〜500μmに塗布
を行い、210℃で1分間の加熱を行うことによつ
て該塗膜をゲル化した直後に塗膜表面に所定のエ
ンボス加工を施して塩化ビニル鋼板を製造する。
また、本発明では、エンボス加工後にさらに紫外
線を照射して塗膜の表面層を硬化させて塩化ビニ
ル鋼板を製造する。プラスチゾルの塗装は、ナイ
フコーター、ロールコーター、バーコーターいず
れの方法でも可能である。また、紫外線を照射す
る方法としては、200〜400μmの波長域の紫外線
を発生する水銀ランプ、キセノンランプ、カーボ
ンアーク灯等を用いることができる。また、紫外
線の照射は、塗膜をゲル化し所定のエンボス加工
を施した後に行う必要があり、塗膜をゲル化する
前あるいはエンボス加工を施す前に紫外線の照射
を行うと塗膜表面層が硬くなりエンボス加工性が
低下するので好ましくない。
In the present invention, plastisol having the above-mentioned characteristics is applied to a steel plate with a coating thickness of 30 to 500 μm via an adhesive, and immediately after the coating is gelled by heating at 210°C for 1 minute. A predetermined embossing process is applied to the surface of the coating film to produce a vinyl chloride steel sheet.
Further, in the present invention, after embossing, the surface layer of the coating film is further hardened by irradiating ultraviolet rays to produce a vinyl chloride steel sheet. Coating with plastisol can be done using a knife coater, roll coater, or bar coater. Further, as a method for irradiating ultraviolet rays, a mercury lamp, a xenon lamp, a carbon arc lamp, etc. that generate ultraviolet rays in a wavelength range of 200 to 400 μm can be used. In addition, irradiation with ultraviolet rays must be carried out after gelling the coating film and applying the specified embossing process; irradiating ultraviolet rays before gelling the coating film or embossing it may damage the surface layer of the coating film. This is not preferable because it becomes hard and embossability deteriorates.

〔作用〕[Effect]

本発明の方法において、2ピークの粒子径分布
を有する塩化ビニル系重合体粉末と粒子径0.1〜
40μmのアクリル系重合体粉末と加熱硬化あるい
は紫外線硬化可能なモノマーあるいはオリゴマー
を主成分とするプラスチゾルを、接着剤を介して
鋼板に塗装し加熱することによつてゲル化皮膜を
形成した直後に皮膜表面にエンボス加工を施す方
法、あるいは、エンボス加工後にさらに紫外線を
照射する方法によつて、高硬度で耐圧痕性、耐ブ
リード性にすぐれ、かつ加工性および表面の艶消
し効果にすぐれた塩化ビニル被覆鋼板を得ること
ができる。
In the method of the present invention, a vinyl chloride polymer powder having a two-peak particle size distribution and a particle size of 0.1 to
Plastisol, which is mainly composed of 40μm acrylic polymer powder and heat-curable or ultraviolet-curable monomers or oligomers, is applied to a steel plate via adhesive and heated to form a gelatinized film. By applying embossing to the surface or by irradiating it with ultraviolet rays after embossing, vinyl chloride can be produced with high hardness, excellent indentation resistance, and bleed resistance, as well as excellent workability and a matte surface effect. A coated steel plate can be obtained.

このように特性が向上する理由は、前述した2
ピークの粒子径分布を有する塩化ビニル系重合体
粉末とアクリル系重合体粉末、紫外線硬化あるい
は加熱硬化可能なモノマーあるいはオリゴマーが
プラスチゾル中で可塑剤と適度に親和し、いわゆ
る細密充填状態となり低可塑剤で塗装可能な粘度
のプラスチゾルを形成し、かつ、該プラスチゾル
が鋼板上に塗装され加熱されるときに塩化ビニル
系重合体粉末とアクリル系重合体粉末が溶融し、
モノマーあるいはオリゴマーが重合反応を起こし
て、塩化ビニル系重合体粉末とアクリル系重合体
粉末が適度に相溶した強固な皮膜を形成するため
と考えられる。さらに、エンボス加工後に紫外線
を照射することによつて皮膜の上層部の紫外線硬
化型のモノマーあるいはオリゴマーが重合反応を
起こし、皮膜表面のエンボス加工層を強化するこ
とが考えられる。すなわち、エンボス加工後に紫
外線を照射すると、紫外線の一部は皮膜中の顔料
などで反射されたり吸収されたりするため、皮膜
内部にゆくほどその到達する線量が少なくなるた
め、重合反応を引き起こすモノマーあるいはオリ
ゴマーは皮膜表面から数μmないし数十μmの範囲
に限られ、その結果、皮膜表面層が皮膜内部に比
べて強固である2層構造を有する皮膜を形成し
て、耐圧痕性、耐ブリード性などの特性をさらに
向上させているものと考えられる。
The reason for this improvement in characteristics is the two factors mentioned above.
Vinyl chloride polymer powder and acrylic polymer powder with peak particle size distribution, UV-curable or heat-curable monomers or oligomers have an appropriate affinity with plasticizers in plastisol, resulting in a so-called close-packed state, resulting in low plasticizers. to form a plastisol with a viscosity that can be coated, and when the plastisol is coated on a steel plate and heated, the vinyl chloride polymer powder and the acrylic polymer powder are melted,
This is thought to be because the monomer or oligomer undergoes a polymerization reaction to form a strong film in which the vinyl chloride polymer powder and the acrylic polymer powder are appropriately compatible. Furthermore, it is conceivable that by irradiating ultraviolet rays after embossing, the ultraviolet curable monomer or oligomer in the upper layer of the film undergoes a polymerization reaction, thereby strengthening the embossed layer on the surface of the film. In other words, when ultraviolet rays are irradiated after embossing, some of the ultraviolet rays are reflected or absorbed by the pigments in the film, so the amount of radiation that reaches the film decreases as it goes deeper into the film. The oligomer is limited to a range of several micrometers to several tens of micrometers from the surface of the film, and as a result, it forms a film with a two-layer structure in which the surface layer is stronger than the inside of the film, improving indentation resistance and bleed resistance. It is thought that these characteristics are further improved.

〔実施例〕〔Example〕

以下、本発明を実施例により説明する。 The present invention will be explained below using examples.

実施例 1 30重量%が粒子径0.5〜5μmで2μmにピークを
有し、70重量%が5〜40μmで10μmにピークを有
する2ピークタイプの粒子径分布をもつ重合度
1650のポリ塩化ビニル樹脂粉末(東ソー(株)製)
100重量部に対し95重量%が粒子径0.5〜5μmで平
均重合度20000のポリメチルメタクリレート樹脂
粉末15重量部配合した混合物を100重量部、アク
リル系オリゴマー(東亜合成化学(株)製、アロニク
スM−8060)15重量部、有機過酸化物(日本油脂
(株)製、パーヘキサ3M)0.30重量部、ジオクチル
フタレート30重量部、2次可塑剤(チツソ(株)製
CS−16)10重量部、Pb系安定剤2重量部および
カーボンブラツク1.5重量部を石川式攪拌機で10
分間混練した後、さらに10分間脱泡を行つてプラ
スチゾルを作製した。得られたプラスチゾルの粘
度を粘度計(東京計器(株)製、BM型粘度計ロータ
ーNo.4、6rpm)で測定した結果、260ポイズであ
り低粘度であつた。
Example 1 Degree of polymerization with a two-peak type particle size distribution in which 30% by weight has a particle size of 0.5-5 μm with a peak at 2 μm, and 70% by weight has a particle size of 5-40 μm with a peak at 10 μm
1650 polyvinyl chloride resin powder (manufactured by Tosoh Corporation)
To 100 parts by weight, 100 parts by weight of a mixture containing 15 parts by weight of polymethyl methacrylate resin powder with a particle size of 0.5 to 5 μm and an average degree of polymerization of 20,000, 100 parts by weight of an acrylic oligomer (manufactured by Toagosei Kagaku Co., Ltd., Aronix M) -8060) 15 parts by weight, organic peroxide (NOF
Co., Ltd., Perhexa 3M) 0.30 parts by weight, dioctyl phthalate 30 parts by weight, secondary plasticizer (Chitsuso Co., Ltd.)
CS-16) 10 parts by weight, 2 parts by weight of Pb-based stabilizer, and 1.5 parts by weight of carbon black were mixed into 10 parts by weight using an Ishikawa stirrer.
After kneading for a minute, defoaming was performed for an additional 10 minutes to produce plastisol. The viscosity of the obtained plastisol was measured with a viscometer (manufactured by Tokyo Keiki Co., Ltd., BM type viscometer rotor No. 4, 6 rpm) and found to be 260 poise, indicating a low viscosity.

次に、板厚0.5mm、めつき量10g/m2の亜鉛を
主成分としコバルト、モリブデンを含む複合電気
亜鉛めつき鋼板の上に市販のアクリル樹脂を主成
分とする接着剤を塗装厚3μmにるように塗装して
230℃で1分間加熱し焼き付けを行つた後、前述
したプラスチゾルをロールコーター法で塗膜厚
150μmに塗装し、210℃で1分間加熱してゲル化
したあと直ちに彫刻ロール(砂目立ロール、表面
粗度:Ra;7.1μm、Rmax;45.0μm)を用いて
塗膜表面層にエンボス加工を施して塩化ビニル被
覆鋼板を作製した。
Next, a commercially available acrylic resin-based adhesive was applied to a thickness of 3 μm on a composite electrogalvanized steel sheet with a thickness of 0.5 mm and a plating amount of 10 g/m 2 containing zinc as the main component and cobalt and molybdenum. Paint it to look like it
After baking at 230℃ for 1 minute, apply the plastisol described above to the coating thickness using a roll coater method.
Paint to a thickness of 150μm, heat at 210℃ for 1 minute to gel, and then immediately emboss the surface layer of the paint using an engraving roll (grained roll, surface roughness: Ra: 7.1μm, Rmax: 45.0μm). A vinyl chloride-coated steel sheet was prepared by applying the following steps.

得られた塩化ビニル被覆鋼板の塗膜外観は良好
であり、塗膜の硬度をデユロメーター((株)島津製
作所、タイプA)により測定した結果、94で硬膜
であつた。また、デユポン衝撃加工試験(1/2イ
ンチφ×1Kg×50cm)により加工性を評価した結
果、−5℃においても塗膜の割れは見られず、良
好な加工性を示した。また、塗膜表面の光沢度
(60度鏡面反射率、スガ試験機(株)製変角光沢計、
UGV−5による)を測定した結果、6であり良
好な艶消し効果を示した。また、塗膜表面のエン
ボス状態を表面あらさ計((株)東京精密製、サーフ
コム60A)で評価した結果、Ra;3.3μm、
Rmax;29.6μmであり、良好なエンボス状態で
あつた。また、得られた塩化ビニル被覆鋼板を15
cm×15cmのサイズに切断した後数枚を積み重ね
て、その上から加重(3Kg/cm2)を加えた状態で
10日間放置(40℃)した後、試験板を取り出して
塗膜表面のエンボス状態を観察することによつて
耐圧痕性を評価した結果、エンボスの異常は見ら
れず、良好な耐圧痕性を示した。また、得られた
塩化ビニル被覆鋼板を15×15cmのサイズに切断し
た後、塩化ビニル被覆鋼板と塩化ビニル被覆鋼板
の間に2軸延伸ポリエステルフイルム(厚さ
20μm)をはさんで数枚を積み重ねて、その上か
ら加重(10Kg/cm2)を加えた状態で10日間放置
(50℃)した後、試験板の塗膜表面と接している
ポリエステルフイルムを観察した結果、ポリエス
テルフイルム面に可剤などの液状物質は認められ
ず、すぐれた耐ブリード性を示した。
The appearance of the coating film on the obtained vinyl chloride-coated steel sheet was good, and the hardness of the coating film was measured with a durometer (Shimadzu Corporation, Type A) and was found to be 94, indicating a hard film. Further, as a result of evaluating the workability by a Dupont impact processing test (1/2 inch diameter x 1 kg x 50 cm), no cracking of the coating film was observed even at -5°C, indicating good workability. In addition, the glossiness of the coating surface (60 degree specular reflectance, variable angle gloss meter manufactured by Suga Test Instruments Co., Ltd.,
As a result of measuring UGV-5), it was 6, indicating a good matting effect. In addition, as a result of evaluating the embossed state of the coating film surface using a surface roughness meter (Surfcom 60A manufactured by Tokyo Seimitsu Co., Ltd.), Ra: 3.3 μm.
Rmax: 29.6 μm, indicating a good embossed state. In addition, the obtained vinyl chloride coated steel plate was
After cutting the pieces to a size of cm x 15 cm, stack several pieces and apply a weight (3 kg/cm 2 ) on top of them.
After leaving it for 10 days (at 40℃), the test plate was taken out and the indentation resistance was evaluated by observing the embossed state of the coating surface. As a result, no abnormalities in the embossment were observed, indicating good indentation resistance. Indicated. In addition, after cutting the obtained vinyl chloride-coated steel plate into a size of 15 x 15 cm, a biaxially stretched polyester film (thickness
After stacking several sheets with 20μm) on top and applying a load (10Kg/cm 2 ) for 10 days (at 50℃), remove the polyester film in contact with the coating surface of the test plate. As a result of observation, no liquid substances such as additives were observed on the surface of the polyester film, indicating excellent bleed resistance.

実施例 2 実施例1に示したポリ塩化ビニル樹脂粉末100
重量部に対して実施例1に示したポリメチルメタ
クリレート樹脂粉末10重量部配合した混合物を
100重量部、実施例1に示したアクリル系オリゴ
マーを15重量部、紫外線硬化触媒(Darcure No.
1116)0.45重量部、ジオクチルフタレート30重量
部、実施例1に示した2次可塑剤10重量部、Pb
系安定剤2重量部およびカーボンブラツク1.5重
量部を実施例1と同様な方法によつて混練してプ
ラスチゾルを作製した。得られたプラスチゾルの
粘度は250ポイズであり低粘度であつた。
Example 2 Polyvinyl chloride resin powder 100 shown in Example 1
A mixture containing 10 parts by weight of the polymethyl methacrylate resin powder shown in Example 1 was added to the parts by weight.
100 parts by weight, 15 parts by weight of the acrylic oligomer shown in Example 1, and an ultraviolet curing catalyst (Dacure No.
1116) 0.45 parts by weight, 30 parts by weight of dioctyl phthalate, 10 parts by weight of the secondary plasticizer shown in Example 1, Pb
Plastisol was prepared by kneading 2 parts by weight of the system stabilizer and 1.5 parts by weight of carbon black in the same manner as in Example 1. The obtained plastisol had a low viscosity of 250 poise.

次に、実施例1と同様な方法によつて、前述し
たプラツスチゾルを塗膜厚150μmに塗装し、210
℃で1分間加熱してゲル化したあと直ちに実施例
1と同様な方法によつて彫刻ロールを用いて塗膜
表面層にエンボス加工を施し、つづいて紫外線の
照射(東芝電材(株)製H2000L/6)を0.5秒間行つ
て、塩化ビニル被覆鋼板を作製した。
Next, by the same method as in Example 1, the above-mentioned Platustisol was applied to a coating thickness of 150 μm, and 210 μm thick was applied.
Immediately after gelling by heating at ℃ for 1 minute, the surface layer of the coating was embossed using an engraving roll in the same manner as in Example 1, and then irradiated with ultraviolet light (H2000L manufactured by Toshiba Electric Materials Co., Ltd.). /6) for 0.5 seconds to produce a vinyl chloride coated steel plate.

得られた塩化ビニル被覆鋼板の塗膜外観は良好
であり、塗膜の硬度は95で硬膜であつた。またデ
ユポン衝撃加工試験(1/2インチφ×1Kg×50cm)
により加工性を評価した結果、−5℃においても
塗膜の割れは見られず、良好な加工性を示した。
また、塗膜表面の光沢度を測定した結果、6であ
り良好な艶消し効果を示した。また、表面のエン
ボス状態を実施例1と同様な方法で評価した結
果、Ra;3.5μm、Rmax;30.5μmで良好なエン
ボス状態であつた。また、得られた塩化ビニル被
覆鋼板の耐圧痕性を実施例1と同様な方法で評価
した結果、エンボスの異常は見られず、良好な耐
圧痕性を示した。また、得られた塩化ビニル被覆
鋼板の耐ブリード性を実施例1と同様な方法で評
価した結果、ポリエステルフイルム面に可塑剤な
どの液状物質は認められず、すぐれた耐ブリード
性を示した。
The coating film appearance of the obtained vinyl chloride-coated steel sheet was good, and the coating film had a hardness of 95 and was a hard film. Also, Dupont impact processing test (1/2 inch φ x 1Kg x 50cm)
As a result of evaluating the workability, no cracks were observed in the coating film even at -5°C, indicating good workability.
Further, as a result of measuring the glossiness of the coating film surface, it was 6, indicating a good matting effect. Furthermore, as a result of evaluating the embossed state of the surface using the same method as in Example 1, the embossed state was good with Ra: 3.5 μm and Rmax: 30.5 μm. Furthermore, the indentation resistance of the obtained vinyl chloride-coated steel sheet was evaluated in the same manner as in Example 1, and as a result, no abnormalities in embossing were observed, indicating good indentation resistance. Furthermore, the bleed resistance of the obtained vinyl chloride coated steel sheet was evaluated in the same manner as in Example 1, and as a result, no liquid substances such as plasticizers were observed on the polyester film surface, indicating excellent bleed resistance.

一方、前述した本発明の方法において、プラス
チゾルを塗装した直後あるいは塗膜をゲル化した
直後に(エンボス加工を施す前)紫外線照射を行
つた場合、塗膜表面のエンボス状態を表面あらさ
計で評価した結果、それぞれ、Ra;2.0μm、
1.9μm、Rmax;20.5μm、19.0μmとなり、エンボ
ス加工性が劣つた。
On the other hand, in the method of the present invention described above, when UV irradiation is performed immediately after applying plastisol or gelling the paint film (before embossing), the embossed state of the paint film surface is evaluated using a surface roughness meter. As a result, Ra; 2.0μm,
1.9 μm, Rmax: 20.5 μm, 19.0 μm, and the embossing property was poor.

実施例 3 実施例1に示したポリ塩化ビニル樹脂粉末100
重量部に対し実施例1に示したポリメチルメタク
リレート粉末を25重量部配合した混合物100重量
部、アクリル系モノマー(新中村化学(株)製、
TMPT)10重量部、実施例2に示した紫外線硬
化触媒0.35重量部、実施例1に示した有機過酸化
物0.05重量部、ジオクチルフタレート30重量部、
実施例1に示した2次可塑剤10重量部、Pb系安
定剤2重量部およびカーボンブラツク1.5重量部
を実施例1と同様な方法により混練してプラスチ
ゾルを作製した。得られたプラスチゾル粘度は
260ポイズであり低粘度であつた。
Example 3 Polyvinyl chloride resin powder 100 shown in Example 1
100 parts by weight of a mixture containing 25 parts by weight of the polymethyl methacrylate powder shown in Example 1, acrylic monomer (manufactured by Shin Nakamura Chemical Co., Ltd.,
TMPT) 10 parts by weight, 0.35 parts by weight of the ultraviolet curing catalyst shown in Example 2, 0.05 parts by weight of the organic peroxide shown in Example 1, 30 parts by weight of dioctyl phthalate,
Plastisol was prepared by kneading 10 parts by weight of the secondary plasticizer shown in Example 1, 2 parts by weight of Pb-based stabilizer, and 1.5 parts by weight of carbon black in the same manner as in Example 1. The obtained plastisol viscosity is
It had a low viscosity of 260 poise.

次に、前述したプラスチゾルを実施例1と同様
な方法により塗膜厚150μmに塗装し、210℃で1
分間加熱してゲル化したあと直ちに実施例2と同
様な方法によりエンボス加工、紫外線の照射を行
つて塩化ビニル被覆鋼板を作製した。
Next, the plastisol described above was coated to a film thickness of 150 μm in the same manner as in Example 1, and the coating was heated to 150 μm at 210°C.
Immediately after gelling by heating for a minute, embossing and ultraviolet ray irradiation were performed in the same manner as in Example 2 to produce a vinyl chloride-coated steel sheet.

得られた塩化ビニル被覆鋼板の塗膜外観は良好
であり、塗膜の硬度を測定した結果、97で硬膜で
あつた。また、デユポン衝撃加工試験(1/2イン
チφ×1Kg×50cm)により加工性を評価した結
果、5℃においても塗膜の割れは見られず、良好
な加工性を示した。また、塗膜表面の光沢度は5
で良好な艶消し効果を示した。また、塗膜表面の
エンボス状態を実施例1と同様な方法で評価した
結果、Ra;3.3μm、Rmax;29.5μmであり、良
好なエンボス状態であつた。また、耐圧痕性を実
施例1と同様な方法で評価した結果、エンボスの
異常は見られず、良好な耐圧痕性を示した。ま
た、実施例1と同様な方法により耐ブリード性を
評価した結果、塗膜表面と接しているポリエステ
ルフイルム面に可塑剤などの液状物質は認められ
ず、すぐれた耐ブリード性を示した。
The appearance of the coating film on the obtained vinyl chloride-coated steel sheet was good, and the hardness of the coating film was measured to be 97, indicating that it was a hard film. Further, as a result of evaluating the workability by Dupont impact processing test (1/2 inch diameter x 1 kg x 50 cm), no cracking of the coating film was observed even at 5°C, indicating good workability. In addition, the gloss level of the coating film surface is 5
It showed a good matting effect. Furthermore, the embossed state of the coating film surface was evaluated in the same manner as in Example 1, and the result was Ra: 3.3 μm, Rmax: 29.5 μm, indicating a good embossed state. Furthermore, as a result of evaluating the indentation resistance in the same manner as in Example 1, no abnormalities in embossing were observed, indicating good indentation resistance. Furthermore, as a result of evaluating the bleed resistance using the same method as in Example 1, no liquid substances such as plasticizers were observed on the polyester film surface in contact with the coating surface, indicating excellent bleed resistance.

実施例 4 実施例1に示したポリ塩化ビニル樹脂粉末100
重量部に対して95重量%が粒子径3〜20μmで平
均粒子径8μmであつて平均重合度7000のポリメチ
ルメタクリレート粉末を30重量部配合した混合物
100重量部、アクリル系オリゴマー(東亜合成化
学(株)製、アロニクスM−400)を15重量部、実施
例2に示した紫外線硬化触媒0.45重量部、ジオク
チルフタレート30重量部、実施例1に示した2次
可塑剤10重量部、Pb系安定剤2重量部およびカ
ーボンブラツク1.5重量部を実施例1と同様な方
法により混練してプラスチゾルを作製した。得ら
れたプラスチゾル粘度は250ポイズであり低粘度
であつた。
Example 4 Polyvinyl chloride resin powder 100 shown in Example 1
A mixture containing 30 parts by weight of polymethyl methacrylate powder, of which 95% by weight has a particle size of 3 to 20 μm, an average particle size of 8 μm, and an average degree of polymerization of 7000.
100 parts by weight, 15 parts by weight of acrylic oligomer (Aronix M-400, manufactured by Toagosei Kagaku Co., Ltd.), 0.45 parts by weight of the ultraviolet curing catalyst shown in Example 2, 30 parts by weight of dioctyl phthalate, shown in Example 1. Plastisol was prepared by kneading 10 parts by weight of the secondary plasticizer, 2 parts by weight of Pb stabilizer and 1.5 parts by weight of carbon black in the same manner as in Example 1. The obtained plastisol had a low viscosity of 250 poise.

次に、前述したプラスチゾルを実施例1と同様
な方法により塗膜厚150μmに塗装し、210℃で1
分間加熱してゲル化したあと直ちに実施例2と同
様な方法によりエンボス加工、紫外線の照射を行
つて塩化ビニル被覆鋼板を作製した。
Next, the plastisol described above was coated to a film thickness of 150 μm in the same manner as in Example 1, and the coating was heated to 150 μm at 210°C.
Immediately after gelling by heating for a minute, embossing and ultraviolet ray irradiation were performed in the same manner as in Example 2 to produce a vinyl chloride-coated steel plate.

得られた塩化ビニル被覆鋼板の塗膜外観は良好
であり、塗膜の硬度を測定した結果、95で硬膜で
あつた。また、デユポン衝撃加工試験(1/2イン
チφ×1Kg×50cm)により加工性を評価した結
果、−5℃においても塗膜の割れは見られず良好
な加工性を示した。また、塗膜表面の光沢度は7
で良好な艶消し効果を示した。また、塗膜表面の
エンボス状態を実施例1と同様な方法で評価した
結果、Ra;3.6μm、Rmax;31.5μmであり、良
好なエンボス状態であつた。また、耐圧痕性を実
施例1と同様な方法により評価した結果、エンボ
スの異常は見られず、良好な耐圧痕性を示した。
また、実施例1と同様な方法により耐ブリード性
を評価した結果、塗膜表面と接しているポリエス
テルフイルム面に可塑剤などの液状物質は認めら
れず、すぐれた耐ブリード性を示した。
The appearance of the coating film on the obtained vinyl chloride-coated steel sheet was good, and the hardness of the coating film was measured to be 95, indicating that it was a hard film. Further, as a result of evaluating the workability by a Dupont impact test (1/2 inch φ x 1 kg x 50 cm), no cracking of the coating film was observed even at -5°C, indicating good workability. In addition, the gloss level of the coating surface is 7
It showed a good matting effect. Furthermore, the embossed state of the coating film surface was evaluated in the same manner as in Example 1, and as a result, Ra: 3.6 μm, Rmax: 31.5 μm, indicating a good embossed state. Furthermore, as a result of evaluating the indentation resistance using the same method as in Example 1, no abnormalities in embossing were observed, indicating good indentation resistance.
Furthermore, as a result of evaluating the bleed resistance using the same method as in Example 1, no liquid substances such as plasticizers were observed on the polyester film surface in contact with the coating surface, indicating excellent bleed resistance.

実施例 5 実施例1に示したポリ塩化ビニル樹脂粉末100
重量部に対して95重量%が粒子径3〜30μmで平
均粒子径10μmの架橋ポリメチルメタクリレート
粉末を30重量部配合した混合物100重量部、アク
リル系オリゴマー(東亜合成化学(株)製、アロニク
スM−400)を15重量部、実施例2に示した紫外
線硬化触媒0.45重量部、ジオクチルフタレート30
重量部、実施例1に示した2次可塑剤10重量部、
Pb系安定剤2重量部およびカーボンブラツク1.5
重量部を実施例1と同様な方法によつて混練して
プラスチゾルを作製した。得られたプラスチゾル
粘度は200ポイズであり低粘度であつた。
Example 5 Polyvinyl chloride resin powder 100 shown in Example 1
100 parts by weight of a mixture containing 30 parts by weight of cross-linked polymethyl methacrylate powder with a particle size of 3 to 30 μm and an average particle size of 10 μm, 95% by weight of acrylic oligomer (manufactured by Toagosei Kagaku Co., Ltd., Aronix M) -400), 0.45 parts by weight of the ultraviolet curing catalyst shown in Example 2, and 30 parts by weight of dioctyl phthalate.
parts by weight, 10 parts by weight of the secondary plasticizer shown in Example 1,
2 parts by weight of Pb stabilizer and 1.5 parts by weight of carbon black
Parts by weight were kneaded in the same manner as in Example 1 to prepare plastisol. The obtained plastisol had a low viscosity of 200 poise.

次に、前述したプラスチゾルを実施例1と同様
な方法により塗膜厚150μmに塗装し、210℃で1
分間加熱してゲル化したあと直ちに実施例2と同
様な方法によりエンボス加工、紫外線の照射を行
つて塩化ビニル被覆鋼板を作製した。
Next, the plastisol described above was coated to a film thickness of 150 μm in the same manner as in Example 1, and the coating was heated to 150 μm at 210°C.
Immediately after gelling by heating for a minute, embossing and ultraviolet ray irradiation were performed in the same manner as in Example 2 to produce a vinyl chloride-coated steel sheet.

得られた塩化ビニル被覆鋼板の塗膜外観は良好
であり、塗膜の硬度を測定した結果、92で硬膜で
あつた。また、デユポン衝撃加工試験(1/2イン
チφ×1Kg×50cm)により加工性を評価した結
果、−5℃においても塗膜の割れは見られず良好
な加工性を示した。また、塗膜表面の光沢度は4
で良好な艶消し効果を示した。また、塗膜表面の
エンボス状態を実施例1と同様な方法で評価した
結果、Ra;3.8μm、Rmax;35.6μmであり、良
好なエンボス状態であつた。また、耐圧痕性を実
施例1と同様な方法により評価した結果、エンボ
スの異常は見られず良好な耐圧痕性を示した。ま
た、実施例1と同様な方法によつて耐ブリード性
を評価した結果、塗膜表面と接しているポリエス
テルフイルム面に可塑剤などの液状物質は認めら
れず、すぐれた耐ブリード性を示した。
The appearance of the coating film on the obtained vinyl chloride-coated steel sheet was good, and the hardness of the coating film was measured to be 92, indicating that it was a hard film. Further, as a result of evaluating the workability by a Dupont impact test (1/2 inch φ x 1 kg x 50 cm), no cracking of the coating film was observed even at -5°C, indicating good workability. In addition, the gloss level of the paint film surface is 4
It showed a good matting effect. Furthermore, the embossed state of the coating film surface was evaluated in the same manner as in Example 1, and the result was Ra: 3.8 μm, Rmax: 35.6 μm, indicating a good embossed state. Furthermore, as a result of evaluating the indentation resistance using the same method as in Example 1, no abnormalities in embossing were observed, indicating good indentation resistance. In addition, as a result of evaluating the bleed resistance using the same method as in Example 1, no liquid substances such as plasticizers were observed on the surface of the polyester film in contact with the coating surface, indicating excellent bleed resistance. .

実施例 6 45重量%が粒子径0.5〜5μmで1.5μmにピークを
有し、55重量%が5〜40μmで15μmにピークを有
する2ピークタイプの粒子径分布をもつ酢酸ビニ
ルの含有量が5重量%で平均重合度1300のポリ塩
化ビニル−酢酸ビニル共重合体粉末100重量部に
対し実施例1に示したポリメチルメタクリレート
粉末を30重量部配合した混合物を100重量部、実
施例1に示したアクリル系オリゴマーを15重量
部、実施例2に示した紫外線硬化触媒0.45重量
部、ジオクチルフタレート45重量部、有機すず系
安定剤2重量部およびチンタ白5重量部を実施例
1と同様な方法により混練してプラスチゾルを作
製した。得られたプラスチゾル粘度は300ポイズ
であり低粘度であつた。
Example 6 The content of vinyl acetate was 5% with a two-peak type particle size distribution in which 45% by weight had a particle size of 0.5-5 μm with a peak at 1.5 μm and 55% by weight had a particle size of 5-40 μm with a peak at 15 μm. 100 parts by weight of a mixture prepared by blending 30 parts by weight of the polymethyl methacrylate powder shown in Example 1 with 100 parts by weight of polyvinyl chloride-vinyl acetate copolymer powder having an average degree of polymerization of 1300 in weight%, In the same manner as in Example 1, 15 parts by weight of the acrylic oligomer, 0.45 parts by weight of the ultraviolet curing catalyst shown in Example 2, 45 parts by weight of dioctyl phthalate, 2 parts by weight of the organotin stabilizer and 5 parts by weight of tinta white were added. Plastisol was prepared by kneading. The obtained plastisol had a low viscosity of 300 poise.

次に、前述したプラスチゾルを実施例1と同様
な方法により塗膜厚150μmに塗装し、210℃で1
分間加熱してゲル化したあと直ちに実施例2と同
様な方法によりエンボス加工、紫外線の照射を行
つて塩化ビニル被覆鋼板を作製した。
Next, the plastisol described above was coated to a film thickness of 150 μm in the same manner as in Example 1, and the coating was heated to 150 μm at 210°C.
Immediately after gelling by heating for a minute, embossing and ultraviolet ray irradiation were performed in the same manner as in Example 2 to produce a vinyl chloride-coated steel sheet.

得られた塩化ビニル被覆鋼板の塗膜外観は良好
であり、塗膜の硬度を測定した結果、87であつ
た。また、塗膜表面の光沢度は10で良好な艶消し
効果を示した。また、塗膜表面のエンボス状態を
実施例1と同様な方法で評価した結果、Ra;
3.6μm、Rmax;32.5μmであり、良好なエンボス
状態であつた。また、耐圧痕性を実施例1と同様
な方法により評価した結果、エンボスの異常は見
られず、良好な耐圧痕性を示した。また、実施例
1と同様な方法により耐ブリード性を評価した結
果、塗膜表面と接しているポリエステルフイルム
面に可塑剤などの液状物質は認められず、すぐれ
た耐ブリード性を示した。
The coating film appearance of the obtained vinyl chloride-coated steel sheet was good, and the hardness of the coating film was measured to be 87. Furthermore, the gloss level of the coating film surface was 10, showing a good matting effect. In addition, as a result of evaluating the embossed state of the coating film surface using the same method as in Example 1, Ra;
It was 3.6 μm, Rmax: 32.5 μm, and had a good embossed state. Furthermore, as a result of evaluating the indentation resistance using the same method as in Example 1, no abnormalities in embossing were observed, indicating good indentation resistance. Furthermore, as a result of evaluating the bleed resistance using the same method as in Example 1, no liquid substances such as plasticizers were observed on the surface of the polyester film in contact with the coating surface, indicating excellent bleed resistance.

比較例 1 実施例1に示したポリ塩化ビニル樹脂粉末100
重量部、ジオクチルフタレート30重量部、実施例
1に示した2次可塑剤15重量部、Pb系安定剤2
重量部およびカーボンブラツク1.5重量部を実施
例1と同様な方法により混練してプラスチゾルを
作製した。得られたプラスチゾル粘度は300ポイ
ズであつた。
Comparative Example 1 Polyvinyl chloride resin powder 100 shown in Example 1
parts by weight, 30 parts by weight of dioctyl phthalate, 15 parts by weight of the secondary plasticizer shown in Example 1, Pb-based stabilizer 2
Part by weight and 1.5 parts by weight of carbon black were kneaded in the same manner as in Example 1 to prepare plastisol. The viscosity of the plastisol obtained was 300 poise.

次に、前述したプラスチゾルを実施例1と同様
な方法により塗膜厚150μmに塗装し、210℃で1
分間加熱してゲル化した直後に実施例1と同様な
方法によりエンボス加工を施して塩化ビニル被覆
鋼板を作製した。
Next, the plastisol described above was coated to a film thickness of 150 μm in the same manner as in Example 1, and the coating was heated to 150 μm at 210°C.
Immediately after gelling by heating for a minute, embossing was performed in the same manner as in Example 1 to produce a vinyl chloride-coated steel plate.

得られた塩化ビニル被覆鋼板の塗膜外観は良好
であり、塗膜の硬度を測定した結果、90であつ
た。また、デユポン衝撃加工試験(1/2インチφ
×1Kg×50cm)により加工性を評価した結果、−
5℃において塗膜の割れが認められた。また、光
沢度は10であつた。また、塗膜表面のエンボス状
態を実施例1と同様な方法で評価した結果、
Ra3.5μm、Rmax30.3μmであつた。耐圧痕性を
実施例1と同様な方法で評価した結果、エンボス
が押し潰されており、耐圧痕性が不良であつた。
また、実施例1と同様な方法によつて耐ブリード
性を評価した結果、塗膜表面と接しているポリエ
ステルフイルム面に可塑剤などの液状物質が顕著
に認められ、耐ブリード性が劣つた。
The coating film appearance of the obtained vinyl chloride coated steel sheet was good, and the hardness of the coating film was measured to be 90. In addition, Dupont impact processing test (1/2 inch φ
×1Kg×50cm) As a result of evaluating the workability, -
Cracks in the coating film were observed at 5°C. Moreover, the gloss level was 10. In addition, as a result of evaluating the embossed state of the coating film surface using the same method as in Example 1,
Ra was 3.5 μm and Rmax was 30.3 μm. As a result of evaluating the indentation resistance in the same manner as in Example 1, the embossing was crushed and the indentation resistance was poor.
Furthermore, as a result of evaluating the bleed resistance using the same method as in Example 1, liquid substances such as plasticizers were significantly observed on the surface of the polyester film in contact with the coating surface, and the bleed resistance was poor.

比較例 2 実施例1に示したポリ塩化ビニル樹脂粉末100
重量部、実施例1に示したアクリル系オリゴマー
を20重量部、実施例2に示した紫外線硬化触媒
0.60重量部、ジオクチルフタレート35重量部、Pb
系安定剤2重量部およびカーボンブラツク1.5重
量部を実施例1と同様な方法により混練してプラ
スチゾルを作製した。得られたプラスチゾル粘度
は280ポイズであつた。
Comparative Example 2 Polyvinyl chloride resin powder 100 shown in Example 1
20 parts by weight of the acrylic oligomer shown in Example 1, the ultraviolet curing catalyst shown in Example 2
0.60 parts by weight, 35 parts by weight of dioctyl phthalate, Pb
Plastisol was prepared by kneading 2 parts by weight of the system stabilizer and 1.5 parts by weight of carbon black in the same manner as in Example 1. The viscosity of the plastisol obtained was 280 poise.

次に、前述したプラスチゾルを実施例1と同様
な方法により塗膜厚150μmに塗装し、210℃で1
分間加熱してゲル化したあと直ちに実施例2と同
様な方法によりエンボス加工、紫外線の照射を行
つて塩化ビニル被覆鋼板を作製した。
Next, the plastisol described above was coated to a film thickness of 150 μm in the same manner as in Example 1, and the coating was heated to 150 μm at 210°C.
Immediately after gelling by heating for a minute, embossing and ultraviolet ray irradiation were performed in the same manner as in Example 2 to produce a vinyl chloride-coated steel plate.

得られた塩化ビニル被覆鋼板の塗膜外観は良好
であり、塗膜の硬度を測定した結果、92であつ
た。塗膜表面の光沢度は12であつた。デユポン衝
撃加工試験(1/2インチφ×1Kg×50cm)により
加工性を評価した結果、5℃において塗膜の割れ
が認められ、加工性が劣つた。また、塗膜表面の
エンボス状態を実施例1と同様な方法によつて測
定して評価した結果、Ra;3.4μm、Rmax;
30.0μmであつた。また、耐圧痕性を実施例1と
同様な方法で評価した結果、エンボスが押し潰さ
れており、耐圧痕性が不良であつた。また、実施
例1と同様な方法によつて耐ブリード性を評価し
た結果、塗膜表面と接しているポリエステルフイ
ルム面に可塑剤などの液状物質がわずかに認めら
れ、耐ブリード性が劣つた。
The coating film appearance of the obtained vinyl chloride-coated steel sheet was good, and the hardness of the coating film was measured to be 92. The gloss level of the coating film surface was 12. As a result of evaluating the workability by Dupont impact processing test (1/2 inch φ x 1Kg x 50cm), cracking of the coating film was observed at 5°C, and the workability was poor. In addition, as a result of measuring and evaluating the embossed state of the coating film surface using the same method as in Example 1, Ra: 3.4 μm, Rmax;
It was 30.0μm. Furthermore, as a result of evaluating the indentation resistance in the same manner as in Example 1, the embossment was crushed and the indentation resistance was poor. Furthermore, as a result of evaluating the bleed resistance using the same method as in Example 1, a slight amount of liquid substance such as a plasticizer was observed on the surface of the polyester film in contact with the coating surface, and the bleed resistance was poor.

一方、前述した比較例において、プラスチゾル
を塗装した直後あるいは塗膜をゲル化した直後に
(エンボス加工を施す前)紫外線の照射を行つた
場合、表面のエンボス状態を表面あらさ計で評価
した結果、それぞれ、Ra;1.8μm、1.7μm、
Rmax;18.6μm、18.0μmとなりエンボス加工性
が劣つた。
On the other hand, in the comparative example described above, when UV irradiation was performed immediately after coating the plastisol or gelling the coating (before embossing), the embossed state of the surface was evaluated using a surface roughness meter. Ra: 1.8μm, 1.7μm, respectively
Rmax: 18.6 μm, 18.0 μm, resulting in poor embossing properties.

比較例 3 実施例1に示したポリ塩化ビニル樹脂粉末100
重量部、実施例3に示したアクリル系モノマーを
20重量部、実施例1に示した有機過酸化物0.6重
量部、ジオクチルフタレート30重量部、Pb系安
定剤2重量部およびカーボンブラツク1.5重量部
を実施例1と同様な方法により混練してプラスチ
ゾルを作製した。得られたプラスチゾル粘度は
260ポイズであつた。
Comparative Example 3 Polyvinyl chloride resin powder 100 shown in Example 1
parts by weight, the acrylic monomer shown in Example 3
20 parts by weight, 0.6 parts by weight of the organic peroxide shown in Example 1, 30 parts by weight of dioctyl phthalate, 2 parts by weight of Pb stabilizer and 1.5 parts by weight of carbon black were kneaded in the same manner as in Example 1 to obtain plastisol. was created. The obtained plastisol viscosity is
It was hot at 260 poise.

次に、前述したプラスチゾルを実施例1と同様
な方法により塗膜厚150μmに塗装し、210℃で1
分間加熱してゲル化したあと直ちに実施例2と同
様な方法によりエンボス加工を行つて塩化ビニル
被覆鋼板を作製した。
Next, the plastisol described above was coated to a film thickness of 150 μm in the same manner as in Example 1, and the coating was heated to 150 μm at 210°C.
Immediately after gelling by heating for a minute, embossing was performed in the same manner as in Example 2 to produce a vinyl chloride-coated steel plate.

得られた塩化ビニル被覆鋼板の塗膜外観は良好
であり、塗膜の硬度を測定した結果、91であつ
た。塗膜表面の光沢度は11であつた。デユポン衝
撃加工試験(1/2インチφ×1Kg×50cm)により
加工性を評価した結果、0℃において塗膜の割れ
が認められ、加工性が劣つた。また、塗膜表面の
エンボス状態を実施例1と同様な方法により測定
して評価した結果、Ra;1.7μm、Rmax;
17.5μmであり、エンボス状態は不良であつた。
また、耐圧痕性を実施例1と同様な方法で評価し
た結果、エンボスが押し潰されており、耐圧痕性
が不良であつた。また、実施例1と同様な方法に
より耐ブリード性を評価した結果、塗膜表面と接
しているポリエステルフイルム面に可塑剤などの
液状物質がわずかに認められ、耐ブリード性が劣
つた。
The coating film appearance of the obtained vinyl chloride coated steel sheet was good, and the hardness of the coating film was measured to be 91. The gloss level of the coating film surface was 11. As a result of evaluating the workability by Dupont impact processing test (1/2 inch φ x 1Kg x 50cm), cracking of the coating film was observed at 0°C, and the workability was poor. In addition, as a result of measuring and evaluating the embossed state of the coating film surface using the same method as in Example 1, Ra: 1.7 μm, Rmax;
It was 17.5 μm, and the embossed state was poor.
Furthermore, as a result of evaluating the indentation resistance in the same manner as in Example 1, the embossing was crushed and the indentation resistance was poor. Furthermore, as a result of evaluating the bleed resistance using the same method as in Example 1, a slight amount of liquid substance such as a plasticizer was observed on the surface of the polyester film in contact with the coating surface, and the bleed resistance was poor.

比較例 4 実施例1に示したポリ塩化ビニル樹脂粉末100
重量部に対し実施例1に示したポリメチルメタク
リレート粉末を25重量部配合した混合物100重量
部、ジオクチルフタレート30重量部、実施例1に
示した2次可塑剤10重量部、Pb系安定剤2重量
部およびカーボンブラツク1.5重量部を実施例1
と同様な方法で混練してプラスチゾルを作製し
た。得られたプラスチゾル粘度は290ポイズであ
つた。
Comparative Example 4 Polyvinyl chloride resin powder 100 shown in Example 1
100 parts by weight of a mixture containing 25 parts by weight of the polymethyl methacrylate powder shown in Example 1, 30 parts by weight of dioctyl phthalate, 10 parts by weight of the secondary plasticizer shown in Example 1, Pb-based stabilizer 2 Part by weight and 1.5 parts by weight of carbon black in Example 1
Plastisol was prepared by kneading in the same manner as above. The viscosity of the plastisol obtained was 290 poise.

次に、前述したプラスチゾルを実施例1と同様
な方法により塗膜厚150μmに塗装し、210℃で1
分間加熱してゲル化したあと直ちに実施例1と同
様な方法によりエンボス加工を行つて塩化ビニル
被覆鋼板を作製した。
Next, the plastisol described above was coated to a film thickness of 150 μm in the same manner as in Example 1, and the coating was heated to 150 μm at 210°C.
Immediately after gelling by heating for a minute, embossing was performed in the same manner as in Example 1 to produce a vinyl chloride-coated steel plate.

得られた塩化ビニル被覆鋼板の塗膜外観は良好
であり、塗膜の硬度を測定した結果、92であつ
た。塗膜表面の光沢度は6であつた。デユポン衝
撃加工試験(1/2インチφ×1Kg×50cm)により
加工性を評価した結果、−5℃において塗膜の割
れが認められらなかつた。また、塗膜表面のエン
ボス状態を実施例1と同様な方法で測定して評価
した結果、Ra;2.6μm、Rmax;26.5μmであり、
エンボス状態はやや不良であつた。また、耐圧痕
性を実施例1と同様な方法で評価した結果、エン
ボスの一部が押し潰されており、耐圧痕性がやや
不良であつた。また、実施例1と同様な方法によ
り耐ブリード性を評価した結果、塗膜表面と接し
ているポリエステルフイルム面に可塑剤などの液
状物質がわずかに認められ、耐ブリード性が劣つ
た。
The appearance of the coating film on the obtained vinyl chloride-coated steel sheet was good, and the hardness of the coating film was measured to be 92. The gloss level of the coating film surface was 6. As a result of evaluating the workability by Dupont impact processing test (1/2 inch diameter x 1 kg x 50 cm), no cracking of the coating film was observed at -5°C. In addition, as a result of measuring and evaluating the embossed state of the coating film surface using the same method as in Example 1, Ra: 2.6 μm, Rmax: 26.5 μm,
The embossed condition was somewhat poor. Furthermore, as a result of evaluating the indentation resistance in the same manner as in Example 1, it was found that a part of the embossing was crushed, and the indentation resistance was somewhat poor. Furthermore, as a result of evaluating the bleed resistance using the same method as in Example 1, a slight amount of liquid substance such as a plasticizer was observed on the surface of the polyester film in contact with the coating surface, and the bleed resistance was poor.

比較例 5 実施例6に示したポリ塩化ビニル−酢酸ビニル
共重合体粉末100重量部、ジオクチルフタレート
45重量部、有機すず系安定剤2重量部およびチン
タ白5重量部を実施例1と同様な方法により混練
してプラスチゾルを作製した。得られたプラスチ
ゾル粘度は330ポイズであつた。
Comparative Example 5 100 parts by weight of the polyvinyl chloride-vinyl acetate copolymer powder shown in Example 6, dioctyl phthalate
Plastisol was prepared by kneading 45 parts by weight, 2 parts by weight of an organotin stabilizer, and 5 parts by weight of tinta white in the same manner as in Example 1. The plastisol viscosity obtained was 330 poise.

次に、前述したプラスチゾルを実施例1と同様
な方法により塗膜厚150μmに塗装し、210℃で1
分間加熱してゲル化したあと直ちに実施例1と同
様な方法によりエンボス加工を行つて塩化ビニル
被覆鋼板を作製した。
Next, the plastisol described above was coated to a film thickness of 150 μm in the same manner as in Example 1, and the coating was heated to 150 μm at 210°C.
Immediately after gelling by heating for a minute, embossing was performed in the same manner as in Example 1 to produce a vinyl chloride-coated steel plate.

得られた塩化ビニル被覆鋼板の塗膜外観は良好
であり、塗膜の硬度を測定した結果、76であり、
塗膜表面の光沢度は13であつた。デユポン衝撃加
工試験(1/2インチφ×1Kg×50cm)により加工
性を評価した結果、−5℃において塗膜の割れが
認められらなかつた。また、塗膜表面のエンボス
状態を実施例1と同様な方法により測定して評価
した結果、Ra;3.7μm、Rmax;32.7μmであつ
た。また、耐圧痕性を実施例1と同様な方法で評
価した結果、エンボスの面のほとんどの部分が押
し潰されており、耐圧痕性が著しく不良であつ
た。また、実施例1と同様な方法により耐ブリー
ド性を評価した結果、塗膜表面と接しているポリ
エステルフイルム面に可塑剤などの液状物質が大
量に認められ、耐ブリード性が劣つた。
The coating film appearance of the obtained vinyl chloride coated steel sheet was good, and the hardness of the coating film was measured to be 76.
The gloss level of the coating film surface was 13. As a result of evaluating the workability by Dupont impact processing test (1/2 inch diameter x 1 kg x 50 cm), no cracking of the coating film was observed at -5°C. Further, the embossed state of the coating film surface was measured and evaluated using the same method as in Example 1, and as a result, Ra: 3.7 μm, Rmax: 32.7 μm. Furthermore, as a result of evaluating the indentation resistance in the same manner as in Example 1, most of the embossed surface was crushed, and the indentation resistance was extremely poor. In addition, as a result of evaluating the bleed resistance using the same method as in Example 1, a large amount of liquid substances such as plasticizers were observed on the surface of the polyester film in contact with the coating surface, and the bleed resistance was poor.

〔発明の効果〕〔Effect of the invention〕

実施例1〜6に示したように、本発明の方法に
よつて、プラスチゾルの粘度面での制約を解決し
て、高硬度で耐圧痕性、耐ブリード性にすぐれか
つ加工性および表面の艶消し効果にすぐれた塩化
ビニル被覆鋼板を製造することができた。
As shown in Examples 1 to 6, the method of the present invention solves the limitations of plastisol in terms of viscosity, and produces a plastisol with high hardness, excellent indentation resistance, and bleed resistance, as well as workability and surface gloss. We were able to produce a vinyl chloride coated steel sheet with excellent erasing effects.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はコールターカウンター法で測定した塩化
ビニル系重合体粉末の粒子径分布図であり、第1
図は本発明の方法による2ピークタイプ塩化ビニ
ル系重合体粉末であり、第2図は従来例の1ピー
クタイプ塩化ビニル系重合体粉末である。
The drawing is a particle size distribution diagram of vinyl chloride polymer powder measured by the Coulter counter method.
The figure shows a two-peak type vinyl chloride polymer powder obtained by the method of the present invention, and FIG. 2 shows a conventional one-peak type vinyl chloride polymer powder.

Claims (1)

【特許請求の範囲】 1 95重量%以上が粒子径0.5〜40μmであり、か
つ20〜60重量%が0.5〜5μm未満で1〜3μmにピ
ークを有し、かつ35〜75重量%が5〜40μmで8
〜15μmにピークを有する2ピークタイプの粒子
径分布を持つ塩化ビニル系重合体粉末100重量部
に対し、95重量%以上が粒子径0.1〜40μmであつ
て平均重合度が500〜30000のアクリル系重合体粉
末を5〜60重量部、加熱硬化可能なモノマーある
いはオリゴマー5〜60重量部配合したプラスチゾ
ルを塗装し、該塗膜を加熱によつてゲル化するこ
とを特徴とする高硬度で耐圧痕性にすぐれた塩化
ビニル被覆鋼板の製造方法。 2 95重量%以上が粒子系0.5〜40μmであり、か
つ20〜60重量%が0.5〜5μm未満で1〜3μmにピ
ークを有し、かつ35〜75重量%が5〜40μmで8
〜15μmにピークを有する2ピークタイプの粒子
径分布を持つ塩化ビニル系重合体粉末100重量部
に対し、95重量%以上が粒子径0.1〜40μmであつ
て平均重合度が500〜30000のアクリル系重合体粉
末を5〜60重量部、紫外線硬化可能なモノマーあ
るいはオリゴマー5〜60重量部配合したプラスチ
ゾルを塗装し、該塗膜を加熱によりゲル化した
後、直ちにエンボス加工を施し、引き続いて紫外
線を照射することを特徴とする高硬度で耐圧痕性
にすぐれた塩化ビニル被覆鋼板の製造方法。
[Claims] 1. 95% by weight or more have a particle size of 0.5 to 40 μm, 20 to 60% by weight have a particle size of less than 0.5 to 5 μm with a peak at 1 to 3 μm, and 35 to 75% by weight have a particle size of 5 to 40 μm. 8 at 40μm
For 100 parts by weight of vinyl chloride polymer powder with a two-peak particle size distribution with a peak at ~15 μm, 95% by weight or more is an acrylic polymer with a particle size of 0.1 to 40 μm and an average degree of polymerization of 500 to 30,000. High hardness and indentation resistance characterized by coating a plastisol containing 5 to 60 parts by weight of polymer powder and 5 to 60 parts by weight of a heat-curable monomer or oligomer, and gelling the coating film by heating. A method for manufacturing a vinyl chloride coated steel sheet with excellent properties. 2 95% by weight or more of the particle size is 0.5-40μm, 20-60% by weight is less than 0.5-5μm and has a peak at 1-3μm, and 35-75% by weight is 5-40μm and has a peak of 8
For 100 parts by weight of vinyl chloride polymer powder with a two-peak particle size distribution with a peak at ~15 μm, 95% by weight or more is an acrylic polymer with a particle size of 0.1 to 40 μm and an average degree of polymerization of 500 to 30,000. A plastisol containing 5 to 60 parts by weight of polymer powder and 5 to 60 parts by weight of an ultraviolet curable monomer or oligomer is applied, and after the coating film is gelled by heating, it is immediately embossed and then exposed to ultraviolet rays. A method for manufacturing a vinyl chloride-coated steel sheet with high hardness and excellent indentation resistance, characterized by irradiation.
JP11456888A 1988-05-13 1988-05-13 Preparation of vinyl chloride coated steel plate having high hardness and excellent dent resistance Granted JPH01288367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11456888A JPH01288367A (en) 1988-05-13 1988-05-13 Preparation of vinyl chloride coated steel plate having high hardness and excellent dent resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11456888A JPH01288367A (en) 1988-05-13 1988-05-13 Preparation of vinyl chloride coated steel plate having high hardness and excellent dent resistance

Publications (2)

Publication Number Publication Date
JPH01288367A JPH01288367A (en) 1989-11-20
JPH0476747B2 true JPH0476747B2 (en) 1992-12-04

Family

ID=14641079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11456888A Granted JPH01288367A (en) 1988-05-13 1988-05-13 Preparation of vinyl chloride coated steel plate having high hardness and excellent dent resistance

Country Status (1)

Country Link
JP (1) JPH01288367A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5679721A (en) * 1995-02-27 1997-10-21 Domco Industries Ltd. Curable coating composition for sheet goods
WO1999020700A1 (en) * 1997-10-22 1999-04-29 Alan Lennox Lythgoe Resin reinforced cross-linkable printing inks and coatings
JP2001115097A (en) * 1999-05-11 2001-04-24 Tosoh Corp Additive for treating surface, composition for treating surface, comprising the same, and use thereof
JP4547517B2 (en) * 1999-12-27 2010-09-22 綜研化学株式会社 PLASTISOL COMPOSITION AND MOLDED ARTICLE USING SAME
JP5572982B2 (en) * 2009-04-06 2014-08-20 東洋インキScホールディングス株式会社 Active energy ray-curable coating varnish composition and printed matter thereof
CN104277382A (en) * 2014-11-07 2015-01-14 安徽省三乐门窗幕墙工程有限公司 Antifouling heat preservation door and window plastic steel profile and preparation method thereof

Also Published As

Publication number Publication date
JPH01288367A (en) 1989-11-20

Similar Documents

Publication Publication Date Title
EP0134958B1 (en) Formable metal-plastic-metal structural laminates
JPS5921909B2 (en) Radiation curable coating composition
JP2006091847A (en) Acrylic film for lens substrate, lens film using the same and lens sheet
JPWO2013051239A1 (en) Acrylic resin film with excellent resistance to whitening and cracking
JPH0476747B2 (en)
JPH0531467B2 (en)
JP2971382B2 (en) Method for producing PVC steel sheet having high hardness coating
EP1332165A1 (en) Chlorine-free polyolefin-based plastisol or organosol and method for producing the same
JP2004076216A5 (en)
JP2730434B2 (en) Sheet-like support
JP2813429B2 (en) Manufacturing method of electron beam curing type pre-coated steel sheet
JP4604333B2 (en) Vinyl chloride resin sheet with excellent surface quality and method for producing the same
JPS59178450A (en) Manufacture of photographic support
JPS621660B2 (en)
DE10048055A1 (en) Chlorine-free plastisol or polyolefin-based organosol and process for the preparation thereof
JP2001059048A (en) Acrylic resin film and laminate
JP2556315B2 (en) Method for producing scratch-resistant matte material
JPS62104739A (en) Manufacture of laminated body
JPH0653770B2 (en) Curable resin composition
JPS60184573A (en) Electron beam-curable paint composition
JPH0639142B2 (en) Composite type vibration control metal plate
WO2002057373A1 (en) Photosetting resin composition, metal laminates having layers made from the composition, metal members made from the laminates and having high-hardness protecting layers and process for production thereof
JPS60139765A (en) Electron beam-curing, thermosetting paint composition
JP3471080B2 (en) Lens sheet
JPH0516305A (en) Polyvinyl chloride film laminate and manufacture thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees