JPH0476472B2 - - Google Patents

Info

Publication number
JPH0476472B2
JPH0476472B2 JP23955285A JP23955285A JPH0476472B2 JP H0476472 B2 JPH0476472 B2 JP H0476472B2 JP 23955285 A JP23955285 A JP 23955285A JP 23955285 A JP23955285 A JP 23955285A JP H0476472 B2 JPH0476472 B2 JP H0476472B2
Authority
JP
Japan
Prior art keywords
layer
light
atoms
receiving member
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP23955285A
Other languages
English (en)
Other versions
JPS6299758A (ja
Inventor
Mitsuru Honda
Keiichi Murai
Kyosuke Ogawa
Atsushi Koike
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP23955285A priority Critical patent/JPS6299758A/ja
Priority to CN 86107585 priority patent/CN1012852B/zh
Priority to US06/923,108 priority patent/US4834501A/en
Priority to CA000521521A priority patent/CA1288271C/en
Priority to AU64419/86A priority patent/AU581543B2/en
Priority to DE8686308376T priority patent/DE3676957D1/de
Priority to EP86308376A priority patent/EP0223448B1/en
Publication of JPS6299758A publication Critical patent/JPS6299758A/ja
Publication of JPH0476472B2 publication Critical patent/JPH0476472B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/10Bases for charge-receiving or other layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08221Silicon-based comprising one or two silicon based layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08221Silicon-based comprising one or two silicon based layers
    • G03G5/08228Silicon-based comprising one or two silicon based layers at least one with varying composition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08235Silicon-based comprising three or four silicon-based layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08235Silicon-based comprising three or four silicon-based layers
    • G03G5/08242Silicon-based comprising three or four silicon-based layers at least one with varying composition

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Photoreceptors In Electrophotography (AREA)

Description

【発明の詳細な説明】
〔発明の属する技術分野〕 本発明は、光(ここでは広義の光で紫外線、可
視光線、赤外線、X線、γ線等を示す)の様な電
磁波に感受性のある光受容部材に関する。さらに
詳しくは、レーザー光などの可干渉性光を用いる
のに適した光受容部材に関する。 〔従来技術の説明〕 デジタル画像情報を画像として記録する方法と
して、デジタル画像情報に応じて変調したレーザ
ー光で光受容部材を光学的に走査することにより
静電潜像を形成し、次いで該潜像を現像するか、
更に必要に応じて転写、定着などの処理を行な
う、画像を記録する方法が知られており、中でも
電子写真法による画像形成法では、レーザーとし
て、小型で安価なHe−Neレーザーあるいは半導
体レーザー(通常は650〜820nmの発光波長を有
する)を使用して像記録を行なうのが一般的であ
る。 ところで、半導体レーザーを用いる場合に適し
た電子写真用の光受容部材としては、その光感度
領域の整合性が他の種類の光受容部材と比べて優
れているのに加えて、ビツカース硬度が高く、公
害の問題が少ない等の点から評価され、例えば特
開昭54−86341号公報や特開昭56−86746号公報に
みられるようなシリコン原子を含む非晶質材料
(以後「a−Si」と略記する)から成る光受容部
材が注目されている。 しかしながら、前記光受容部材については、光
受容層を単層構成のa−Si層とすると、その高光
感度を保持しつつ、電子写真用として要求される
1012Ωcm以上の暗抵抗を確保するには、水素原子
やハロゲン原子、或いはこれ等に加えてボロン原
子とを特定の量範囲で層中に制御された形で構造
的に含有させる必要性があり、ために層形成に当
つて各種条件を厳密にコントロールすることが要
求される等、光受容部材の設計についての許容度
に可成りの制限がある。そしてそうした設計上の
許容度の問題をある程度低暗抵抗であつても、そ
の高光感度を有効に利用出来る様にする等して改
善する提案がなされている。即ち、例えば、特開
昭54−121743号公報、特開昭57−4053号公報、特
開昭57−4172号公報にみられるように光受容層を
伝導特性の異なる層を積層した二層以上の層構成
として、光受容層内部に空乏層を形成したり、或
いは特開昭57−52178号、同52179号、同52180号、
同58159号、同58160号、同581601号の各公報にみ
られるように支持体と光受容層の間、又は/及び
光受容層の上部表面に障壁層を設た多層構造とし
たりして、見掛け上の暗抵抗を高めた光受容部材
が提案されている。 ところがそうした光受容層が多層構造を有する
光受容部材は、各層の層厚にばらつきがあり、こ
れを用いてレーザー記録を行う場合、レーザー光
が可干渉性の単色光であるので、光受容層のレー
ザー光照射側自由表面、光受容層を構成する各層
及び支持体と光受容層との層界面(以後、この自
由表面及び層界面の両者を併せた意味で「界面」
と称する。)より反射して来る反射光の夫々が干
渉を起してしまうことがしばしばある。 この干渉現像は、形成される可視画像に於い
て、所謂、干渉縞模様となつて現われ、画像不良
の原因となる。殊に階調性の高い中間調の画像を
形成する場合にあつては、識別性の著しく劣つた
阻画像を与えるところとなる。 また重要な点として、使用する半導体レーザー
光の波長領域が長波長になるにつれて光受容層に
於ける該レーザー光の吸収が減少してくるので、
前記の干渉現象が顕著になるという問題がある。 即ち、例えば2若しくはそれ以上の層(多層)
構成のものであるものにおいては、それらの各層
について干渉効果が起り、それぞれの干渉が相乗
的に作用し合つて干渉縞模様を呈するところとな
り、それがそのまゝ転写部材に影響し、該部材上
に前記干渉縞模様に対応した干渉縞が転写、定着
され可視画像に現出して不良画像をもたらしてし
まうといつた問題がある。 こうした問題を解消する策として、(a)支持体表
面をダイヤモンド切削して、±500Å〜±10000Å
の凹凸を設けて光散乱面を形成する方法(例えば
特開昭58−162975号公報参照)、(b)アルミニウム
支持体表面を黒色アルマイト処理したり、或い
は、樹脂中にカーボン、着色顔料、染料を分散し
たりして光吸収層を設ける方法(例えば特開昭57
−165845号公報参照)、(c)アルミニウム支持体表
面を梨地状のアルマイト処理したり、サンドブラ
ストにより砂目状の微細凹凸を設けたりして、支
持体表面に光散乱反射防止層を設ける方法(例え
ば特開昭57−16554号公報参照)等が提案されて
はいる。 これ等の提案方法は、一応の結果はもたらすも
のの、画像上の現出する干渉縞模様を完全に解消
するに十分なものではない。 即ち、(a)の方法については、支持体表面に特定
の凹凸を多数設けていて、それにより光散乱効果
による干渉縞模様の現出が一応それなりに防止は
されるものの、光散乱としては依然として正反射
光成分が残存するため、該正反射光による干渉縞
模様が残存してしまうことに加えて、支持体表面
での光散乱効果により照射スポツトに拡がりが生
じ、実質的に解像度低下をきたしてしまう。 (b)の方法については、黒色アルマイト処理で
は、完全吸収は不可能であり、支持体表面での反
射光は残存してしまう。また、着色顔料分散樹脂
層を設ける場合は、a−Si層を形成する際、樹脂
層より脱気現象が生じ、形成される光受容層の層
品質が著しく低下すること、樹脂層がa−Si層形
成の際のプラズマによつてダメージを受けて、本
来の吸収機能を低減させると共に、表面状態の悪
化によるその後のa−Si層の形成に悪影響を与え
ること等の問題点を有する。 (c)の方法については、例えば入射光についてみ
れば光受容層の表面でその一部が反射されて反射
光となり、残りは、光受容層の内部に進入して透
過光となる。透過光は、支持体の表面に於いて、
その一部は、光散乱されて拡散光となり、残りが
正反射されて反射光となり、その一部が出射光と
なつて外部に出ては行くが、出射光は、反射光と
干渉する成分であつて、いずれにしろ残留するた
め依然として干渉縞模様が完全に消失はしない。 ところで、この場合の干渉を防止するについ
て、光受容層内部での多重反射が起らないよう
に、支持体の表面の拡散性を増加させる試みもあ
が、そうしたところでかえつて光受容層内で光が
拡散してハレーシヨンを生じてしまい結局は解像
度が低下してしまう。 特に、多層構成の光受容部材においては、支持
体表面を不規則的に荒しても、第1層表面での反
射光、第2層での反射光、支持体面での正反射光
の夫々が干渉して、光受容部材の各層厚にしたが
つた干渉縞模様が生じる。従つて、多層構成の光
受容部材においては、支持体表面を不規則に荒す
ことでは、干渉縞を完全に防止することは不可能
である。 又、サンドブラスト等の方法によつて支持体表
面を不規則に荒す場合は、その粗面度がロツト間
に於いてバラツキが多く、且つ同一ロツトに於い
ても粗面度に不均一があつて、製造管理上問題が
ある。加えて、比較的大きな突起がランダムに形
成される機会が多く、斯かる大きな突起が光受容
層の局所的ブレークダウンをもたらしてしまう。 又、支持体表面を単に規則的に荒したところ
で、通常、支持体の表面の凹凸形状に沿つて、光
受容層が堆積するため、支持体の凹凸の傾斜面と
光受容層の凹凸の傾斜面とが平行になり、その部
分では入射光は、明部、暗部をもたらすところと
なり、また、光受容層全体では光受容層の層厚の
不均一性があるため明暗の縞模様が現われる。従
つて、支持体表面を規則的に荒しただけでは、干
渉縞模様の発生を完全に防ぐことはできない。 又、表面を規則的に荒した支持体上に多層構成
の光の光受容層を堆積させた場合にも、支持体表
面での正反射光と、光受容層表面での反射光との
干渉の他に、各層間の界面での反射光による干渉
が加わるため、一層構成の光受容部材の干渉縞模
様発現度合より一層複雑となる。 〔発明の目的〕 本発明は、主としてa−Siで構成された光受容
層を有する光受容部材について、上述の諸問題を
排除し、各種要求を満たすものにすることを目的
とするものである。 すなわち、本発明の主たる目的は、電気的、光
学的、光導電的特性が使用環境に殆んど依存する
ことなく実質的に常時安定したり、耐光疲労に優
れ、繰返し使用に際しても劣化現象を起こさず耐
久性、耐湿性に優れ、残留電位が全く又は殆んど
観測されなく、製造管理が容易である、a−Siで
構成された光受容層を有する光受容部材を提供す
ることにある。 本発明の別の目的は、全可視光域において光感
度が高く、とくに半導体レーザーとのマツチング
性に優れ、且つ光応答の速い、a−Siで構成され
た光受容層を有する光受容部材を提供することに
ある。 本発明の更に別の目的は、高光感度性、高SN
比特性及び高電気的耐圧性を有する、a−Siで構
成された光受容層を有する光受容部材を提供する
ことにある。 本発明の他の目的は、支持体上に設けられる層
と支持体との間や積層される層の各層間に於ける
密着性に優れ、構造配列的に緻密で安定的であ
り、層品質の高い、a−Siで構成された光受容層
を有する光受容部材を提供することにある。 本発明の更に他の目的は、可干渉性単色光を用
いる画像形成に適し、長期の繰り返し使用にあつ
ても、干渉縞模様と反転現像時の斑点の現出がな
く、且つ画像欠陥や画像のボオが全くなく、濃度
が高く、ハーフトーンが鮮明に出て且つ解像度の
高い、高品質画像を得ることができる、a−Siで
構成された光受容層を有する光受容部材を提供す
ることにある。 〔発明の構成〕 本発明者らは、従来の光受容部材についての前
述の諸問題を克服して、上述の目的を達成するべ
く鋭意研究を重ねた結果、下述する知見を得、該
知見に基づいて本発明を完成するに至つた。 即ち、本発明は、支持体上に、シリコン原子
と、ゲルマニウム原子又はスズ原子の少なくとも
いずれか一方とを含有する非晶質材料で構成され
た層と、シリコン原子を含有し、ゲルマニウム原
子及びスズ原子のいずれも含有しない非晶質材料
で構成された層とを支持体側から順に有する多層
構成の光受容層を備えた光受容部材であつて、前
記支持体の表面が複数の球状痕跡窪みによる凹凸
形状を有し、かつ、該球状痕跡窪み内に更に微小
な複数の凹凸形状を有していることを骨子とする
光受容部材に関する。 ところで、本発明者らが鋭意研究に重ねた結果
得た知見は、概要、支持体上に複数の層を有する
光受容部材において、前記支持体表面に、複数の
球状痕跡窪みによる凹凸を設け、かつ、該球状痕
跡窪み内に更に微小な複数の凹凸形状を設けるこ
とにより、画像形成時に現われる干渉縞模様の問
題が著しく解消されるというものである。 この知見は、本発明者らが試みた各種の実験に
より得た無実関係に基づくものである。 このところを、理解を容易にするため、図面を
用いて以下に説明する。 第1図は、本発明に係る光受容部材100の層
構成を示す模式図であり、微小な複数の球状痕跡
窪みによる凹凸形状を有し、かつ、該球状痕跡窪
み内に更に微小な複数の凹凸形状を有する支持体
101上に、その凹凸の傾斜面に沿つて、第一の
層102′及び第二の層102″とからなる光受容
層102を備えた光受容部材を示している。 第2及び4図は、本発明の光受容部材において
干渉縞模様の問題が解消されるところを説明する
ための図である。 第3図は、表面を規則的に荒した支持体上に、
多層構成の光受容層を堆積させた従来の光受容部
材の一部を拡大して示した図である。該図におい
て、301は第一の層、302は第二の層、30
3は自由表面、304は第一の層と第二の層の界
面をそれぞれ示している。第3図に示すごとく、
支持体表面を切削加工等の手段により単に規則的
に荒しだけの場合、通常は、支持体の表面の凹凸
形状に沿つて光受容層が形成されるため、支持体
表面の凹凸の傾斜面と光受容層の凹凸の傾斜面と
が平行関係をなすところとなる。 このことが原因で、例えば、光受容層が第一の
層301と、第二の層302との2つの層からな
る多層構成のものである光受容部材においては、
例えば次のような問題が定常的に惹起される。即
ち、第一の層と第二の層との界面304及び自由
表面303とが平行関係にあるため、界面304
での反射光R1と自由表面での反射光R2とは方向
が一致し、第二の層の層厚に応じた干渉縞が生じ
る。 第2図は、複数の球状痕跡窪びによる凹凸形状
を有する支持体上に、多層構成の光受容層を堆積
させた光受容部材の一部を拡大して示した図であ
る。該図において、201は第一の層、202は
第二の層、203は自由表面、204は第一の層
と第二の層との界面をそれぞれ示している。第2
図に示すごとく、支持体表面に複数の微小な球状
痕跡窪みによる凹凸形状を設けた場合、該支持体
上に設けられる光受容層は、該凹凸形状に沿つて
堆積するため、第一の層201と第二の層202
との界面204、及び自由表面203は、各各、
前記支持体表面の凹凸形状に沿つて、球状痕跡窪
みによる凹凸形状に形成される。界面204に形
成される球状痕跡窪みの曲率をR1、自由表面に
形成される球状痕跡窪みの曲率をR2とすると、
R1とR2とはR1≠R2となるため、界面204での
反射光と、自由表面203での反射光とは、各々
異なる反射角度を有し、即ち、第2図における
θ1、θ2がθ1≠θ2であつて、方向が異なるうえ、第
2図に示すl1、l2、l3を用いてl1+l2−l3で表わさ
れるところの波長のいずれも一定とはならずに変
化するため、いわゆるニユートンリング現象に相
当するシエアリング干渉が生起し、干渉縞は窪み
内で分散されるところとなる。これにより、こう
した光受容部材を介して現出される画像は、ミク
ロ的には干渉縞が仮に現出されていたとしても、
それらは視覚にはとられられない程度のものとな
る。 即ち、かくなる表面形状を有する支持体の使用
は、その上に多層構成の光受容層を形成してなる
光受容部材にあつて、該光受容層を通過した光
が、層界面支持体表面で反射し、それらが干渉す
ることにより、形成される画像が縞模様となるこ
とを効率的に防止し、優れた画像を形成しうる光
受容部材を得ることにつながる。 第4図は、第1図に示す本発明の光受容部材に
おける支持体表面の一部を拡大した図である。第
4図に示すごとく、本発明の光受容部材における
支持体表面は、球状痕跡窪み401内の表面の一
部分乃至全体に、更に微小な凹凸乃至凹凸群40
2が形成されている。この様な更に微小な凹凸乃
至凹凸群402を設けた場合、第2図を用いて記
述したところの干渉防止効果に加えて、該微小凹
凸402による散乱効果がもたらされて、これに
より干渉縞模様の発生がより一層確実に防止され
る。 ところで、従来技術においては、前述したごと
く、支持体表面をランダムに荒らすことで乱反射
させ、干渉縞模様の発生を防止していた。しか
し、この様な場合充分な干渉縞模様の発生を防止
する効果が得られないばかりでなく、画像転写後
のクリーニングにおいて、例えばブレードを用い
てクリーニングする場合にも問題が生ずる。即
ち、光受容層の表面は、支持体上に設けられた凹
凸に沿つた凹凸が生ずるため、ブレードが光受容
層の凹凸の凸部に主としてあたり、クリーニング
性が悪く、また、光受容層の凸部とブレード表面
の摩耗が大きくなり、結果的に両者の耐久性がよ
くなく問題がある。 これに対し、本発明の光受容部材においては、
散乱効果をもたらす微小な凹凸形状が、球状痕跡
窪み(凹部)内に存在するため、クリーニング時
において、ブレードが光受容層の凹部に接触する
ということがなくなり、ブレードや光受容層表面
に大きな負荷がかからないという利点も有してい
る。 さて、本発明の光受容部材の支持体表面に設け
られる球状痕跡窪みによる凹凸形状の曲率、幅、
及び球状痕跡窪み内の更に微小な凹凸の高さは、
こうした本発明の光受容部材における干渉縞の発
生を防止する作用効果を効率的に得るについて重
要である。本発明者らは、各種実験を重ねた結果
以下のところを究明した。 即ち、球状痕跡窪みによる凹凸形状の曲率を
R、幅をDとした場合、次式: D/R≧0.035 を満足する場合には、各々の痕跡窪み内にシエア
リング干渉によるニユートンリングが0.5本以上
存在することとなる。さらに次式: D/R≧0.055 を満足する場合には、各々の痕跡窪み内にシエア
リング干渉によるニユートンリングが1本以上存
在することとなる。 こうしたことから、光受容部材の全体に発生す
る干渉縞は、各々の痕跡窪み内に分散せしめ、光
受容部材における干渉縞の発生を防止するために
は、前記D/Rを0.035、好ましくは0.055以上とす ることが望ましい。 また、D/Rの上限は、望ましくは0.5とされる。 というのは、D/Rが0.5より大きくなると、窪みの 幅Dが相対的に大きくなり、画像ムラ等を派生し
易い状況となるためである。 また、痕跡窪みによる凹凸の幅Dは、大きくと
も500μm程度、好ましくは20μm以下、より好ま
しくは100μm以下とするのが望ましい。Dが
500μmを超えると、画像ムラを派生しやすくな
るとともに、解像力をこえてしまうおそれがあ
り、こうした場合には、効率的な干渉縞防止効果
が得られにくくなる。 球状痕跡窪み内に形成される微小凹凸の高さ、
即ち、球状痕跡窪み内の表面粗さγmaxは、0.5〜
20μmの範囲であることが好ましい。γmamが
0.5μm以下である場合には散乱効果が十分に得ら
れず、また、20μmをこえると、球状痕跡窪みに
よる凹凸と比較して、球状痕跡窪み内の微小凹凸
が大きくなりすぎ、痕跡窪みが球状をなさなくな
つたりすて、干渉縞模様の発生を防止する効果が
充分に得られなくなる。また、こうした支持体上
に設けられる光受容層の不均一性を増長すること
ともなり、画像欠陥を生じやすくなるため、好ま
しくない。 本発明は、上記の究明した事実に基くものであ
り、本発明により提供される光受容部材は、下述
する構成を骨子とするものである。 即ち、支持体上に、シリコン原子と、ゲルマニ
ウム原子またはスズ原子の少なくともいずれか一
方とを含有する非晶質材料で構成された層(イ)と、
シリコン原子を含有し、ゲルマニウム原子及びス
ズ原子のいずれも含有しない非晶質材料で構成さ
れた層(ロ)とを支持体側から順に有する多層構成の
光受容層を備えた光受容部材であつて、前記支持
体の表面が、窪みの幅Dが500μm以下で窪みの
曲率半径Rと幅Dとが0.035≦D/Rとされた複
数の球状痕跡窪みによる凹凸を有し、かつ前記球
状痕跡窪み内に更に0.5〜20μmの微小な凹凸が形
成されていることを特徴とする光受容部材であ
る。 上記構成の本発明の光受容部材における支持体
の表面の前記複数の球状痕跡窪みによる凹凸は、
同一の曲率半径のものであつても、或いは、ほぼ
同一の曲率半径及び幅の窪みにより形成されたも
のであつてもよい。 上記構成の本発明の光受容部材における光受用
層は、周期律表第族または第族に属する原子
を含有してもよい。この場合、光受容層に含有さ
れる周期律表第族または第族に属する原子に
ついて、それら原子の分布濃度が支持体側で比較
的高濃度であり、該光受容部材層の表面側でかな
り低いかあるいは実質的にゼロに近い濃度である
ように層厚方向に不均一に分布するようにするこ
とができる。 上記構成の本発明の光受容部材においては、前
記層(イ)に含有されるゲルマニウム原子又はスズ原
子について、それら原子の分布濃度が支持体側で
比較的高濃度とされ、前記層(ロ)(即ち、ゲムマニ
ウム原子及びスズ原子のいずれも含有しない層)
側で支持体側に較べかなり低い濃度で層厚方向に
不均一に分布するようにすることができる。 上記構成の本発明の光受容部材における光受容
層は、周期律表第族または第族に属する原子
を含有する電荷注入防止層を構成層の1つとして
有することができる。 上記構成の本発明の光受容部材における光受容
層は、構成層の1つとして障壁層を有することが
できる。 本発明の光受容部材の光受容層の作成について
は、本発明の前述の目的を効率的に達成するため
に、その層厚を光学的レベルで正確に制御する必
要があることから、グロー放電法、スパツタリン
グ法、イオンプレーテイング法等の真空堆積法が
通常使用されるが、これらの他、光CVD法、熱
CVD法等を採用することもできる。 以下、図示の実施例にしたがつて本発明の光受
容部材の具体的内容を説明するが、本発明の光受
容部材はそれら実施例により限定されるものでは
ない。 第1図は、本発明の光受容部材の層構成を説明
するための模式的に示した図であり、図中、10
0は光受容部材、101は支持体、102は光受
容層、102′はゲルマニウム原子又はスズ原子
の少なくともいずれか一方を含有する層、10
2″はゲルマニウム原子及びスズ原子のいずれも
含有しない層、103は自由表面をそれぞれ示し
ている。 支持体 本発明の光受容部材における支持体101は、
その表面が光受容部材に要求される解像力よりも
微小な凹凸を有し、しかも該凹凸は、複数の球状
痕跡窪みによるものであり、かつ、該球状痕跡窪
み内には更に微小な複数の凹凸が形成されている
ものである。 以下に、本発明の光受容部材における支持体の
表面の形状及びその好適な製造例を、第4及び5
図により説明するが、本発明の光受容部材におけ
る支持体の表面形状及びその製造法は、これらに
よつて限定されるものではない。 第4図は、本発明の光受容部材における支持体
の表面の形状の典型的一例を、その凹凸形状の一
部を部分的に拡大して模式的に示すものである。 第4図において401は支持体、402は支持
体表面、403は球状痕跡窪みによる凹凸形状、
404は該球状痕跡窪み内に設けられた更に微小
な凹凸形状を有している。 さらに第4図は、該支持体表面形状を得るのに
好ましい製造方法の1例をも示すものであり、4
03′は、表面に微小な凹凸形状404′を有する
剛体球を示しており、該剛体球403′を支持体
表面402より所定高さの位置より自然落下させ
て支持体表面402に衝突させることにより、窪
み内に微小な凹凸形状404を有する、球状痕跡
窪みによる凹凸形状403を形成しうることを示
している。そして、ほぼ同一径R′の剛体球40
3′を複数個用い、それらを同一の高さhより、
同時あるいは逐時、落下させることにより、支持
体表面402に、ほゞ同一の曲率R及びほゞ同一
の幅Dを有する複数の球状痕跡窪み403を形成
することができる。 第5図は、前述のごとくして表面に、複数の球
状痕跡窪みによる凹凸形状の形成された支持体の
いくつかの典型例を示すものである。該図におい
て、501は支持体、502は支持体表面、50
3は、窪み内に複数の更に微小な凹凸形状を有す
る球状痕跡窪み(なお、第5図においては球状痕
跡窪み内に形成される更に微小な複数の凹凸形状
は図示していないが、球状痕跡窪み503内には
各々更に微小な凹凸形状を有しているものとす
る。)、503′は表面に微小な凹凸形状を有する
剛体球(同様にして、表面の微小な凹凸形状は図
示していないが、剛体球の表面には、微小な凹凸
形状を有しているものとする。)をそれぞれ示し
ている。 第5A図に示す例では、支持体501の表面5
02の異なる部位に、ほぼ同一の径の複数の球体
503′,503′,…をほぼ同一の高さより規則
的に落下させてほぼ同一の曲率及びほぼ同一の幅
の複数の痕跡窪み503,503,…を互いに重
複し合うように密に生じせしめて規則的に凹凸形
状を形成したものである。なおこの場合、互いに
重複する窪み503,503,…を形成するに
は、球体503′の支持体表面502への衝突時
期が、互いにずれるように球体503′,50
3′,…を自然落下せしめる必要のあることはい
うまでもない。 また、第5B図に示す例では、異なる径を有す
る二種類の球体503′,503′,…をほぼ同一
の高さ又は異なる高さから落下させて、支持体5
01の表面502に、二種の曲率及び二種の幅の
複数の窪み503,503,…を互いに重複し合
うように密に生じせしめて、表面の凹凸の高さが
不規則な凹凸を形成したものである。 更に、第5C図(支持体表面の正面図および断
面図)に示す例では、支持体501の表面502
に、ほぼ同一の径の複数の球体503′,50
3′,…をほぼ同一の高さより不規則に落下させ、
ほぼ同一の曲率及び複数種の幅を有する複数の窪
み503,503,…を互いに重複し合うように
生じせしめて、不規則な凹凸を形成したものであ
る。 以上のように、本発明の光受容部材の支持体の
表面の球状痕跡窪みによる凹凸形状を形成せし
め、かつ、該球状痕跡窪み内に更に微小な複数の
凹凸形状を形状せしめるについては、表面に微小
な凹凸形状を有する剛体球を支持体表面に落下さ
せる方法が、好ましい例として挙げられるが、こ
の場合、剛体球の径、落下させる高さ、剛体球と
支持体表面の硬度、剛体球の表面の凹凸の形状及
び大きさ、あるいは落下せしめる剛体球の量等の
諸条件を適宜選択することにより、支持体表面に
所望の平均曲率及び平均幅を有する球状痕跡窪
み、あるいは該球状痕跡窪み内に所望の大きさ及
び形状の凹凸を、所定の密度で形成することがで
きる。即ち、上記諸条件を選択することにより、
支持体表面に形成される凹凸形状の凹凸の高さや
凹凸のピツチ、あるいは凹凸形状の凹部に形成さ
れる更に微小な凹凸形状の凹凸の高さや凹凸のピ
ツチ等を、目的に応じて自在に調節することが可
能であり、所望の凹凸形状を有する支持体を得る
ことができる。 そして、光受容部材の支持体を凹凸形状表面の
ものにするについて、旋盤、フライス盤等を用い
たダイヤモンドバイトにより切削加工して作成す
る方法の提案がなされていてそれなりに有効な方
法ではあるが、該方法にあつては切削油の使用、
切削により不可避的に生ずる切粉の除去、切削面
に残存してしまう切削油の除去が不可欠であり、
結局は加工処理が煩雑であつて効率のよくない等
の問題を伴うところ、本発明にあつては、支持体
の凹凸表面形状を前述したように球状痕跡窪みに
より形成することから上述の問題は全くなくして
所望の凹凸形状表面の支持体を効率的且つ簡便に
作成できる。 本発明に用いる支持体101は、導電性のもの
であつても、また電気絶縁性のものであつてもよ
い。導電性支持体としては、例えば、NiCr、ス
テンレス、Al、Cr、Mo、Au、Nb、Ta、V、
Ti、Pt、Pb等の金属又はこれ等の合金が挙げら
れる。 電気絶縁性支持体としては、ポリエステル、ポ
リエチレン、ポリカーボネート、セルロース、ア
セテート、ポリプロピレン、ポリ塩化ビニル、ポ
リ塩化ビニリデン、ポリスチレン、ポリアミド等
の合成樹脂のフイルム又はシート、ガラス、セラ
ミツク、紙等が挙げられる。これ等の電気絶縁性
支持体は、好適には少なくともその一方の表面を
導電処理し、該導電処理された表面側に光受容層
を設けるのが望ましい。 例えば、ガラスであれば、その表面に、NiCr、
Al、Cr、Mo、Au、Ir、Nb、Ta、V、Ti、Pt、
Pd、In2O3、SnO2、ITO(In2O3+SnO2)等から
成る薄膜を設けることによつて導電性を付与し、
或いはポリエステルフイルム等の合成樹脂フイル
ムであれば、NiCr、Al、Ag、Pb、Zn、Ni、
Au、Cr、Mo、Ir、Nb、Ta、V、Tl、Pt等の金
属の薄膜を真空蒸着、電子ビーム蒸着、スパツタ
リング等でその表面に設け、又は前記金属でその
表面をラミネート処理して、その表面に導電性を
付与する。支持体の形状は、円筒状、ベルト状、
板状等任意の形状であることができるが、用途、
所望によつて、その形状は適宜に決めることので
きるものである。例えば、第1図の光受容部材1
00を電子写真用像形成部材として使用するので
あれば、連続高速複写の場合には、無端ベルト状
又は円筒状とするのが望ましい。支持体の厚さ
は、所望通りの光受容部材を形成しうる様に適宜
決定するが、光受容部材として可撓性が要求され
る場合には、支持体としての機能が充分発揮され
る範囲内で可能な限り薄くすることができる。し
かしながら、支持体の製造上及び取扱い上、機械
的強度等の点から、通常は、10μ以上とされる。 次に、本発明の光受容部材の電子写真用の光受
容部材として用いる場合について、その支持体表
面の製造装置の1例を第6A図及び第6B図を用
いて説明するが、本発明はこれによつて限定され
るものではない。 電子写真用光受容部材の支持体としては、アル
ミニウム合金等に通常の押出加工を施して、ボー
トホール管あるいはマンドレル管とし、更に引抜
加工して得られる引抜管に、必要に応じて熱処理
や調質等の処理を施した円筒状(シリンダー状)
基体を用い、該円筒状基体に第6A,B図に示し
た製造装置を用いて、支持体表面に凹凸形状を形
成せしめる。 支持体表面に前述のような凹凸形状を形成する
について用いる球体としては、例えばステンレ
ス、アルミニウム、鋼鉄、ニツケル、真鍮等の金
属、セラミツク、プラスチツク等の各種剛体球を
挙げることができ、とりわけ耐久性及び低コスト
化等の理由により、ステンレス及び鋼鉄の剛体球
が望ましい。そしてそうした剛体球の硬度は、支
持体の硬度よりも高くても、あるいは低くてもよ
いが、球体を繰返し使用する場合には、支持体の
硬度よりも高いものであることが望ましい。 本発明の支持体表面に前述のごとき特定形状を
形成するには、上述のような各種剛体球の表面に
凹凸を有するものを使用する必要があり、こうし
た表面に凹凸を有する剛体球は、例えばエンボ
ス、波付け等の塑性加工処理を応用する方法、地
荒し法(梨地法)等の粗面化方法など、機械的処
理により凹凸を形成する方法、酸やアルカリによ
る食刻処理等化学的法により凹凸を形成する方法
などを用いて剛体球を処理することにより作製す
ることができる。また更にこの様に凹凸を形成し
た剛体球表面に、電解研摩、化学研摩等、仕上げ
研摩、又は陽極酸化皮膜形成、化成皮膜形成、め
つき、ほうろう、途装、蒸着膜形成、CVD法に
よる膜形成などの表面処理を施して凹凸形状(高
さ)、硬度などを適宜調整することができる。 第6A,B図は、製造装置の一例を説明するた
めの模式的な断面図である。 図中、601は支持体作成用のアルミニウムシ
リンダーであり、該シリンダー601は、予め表
面を適宜の平滑度に仕上げられていてもよい。シ
リンダー601は、回転軸602に軸支されてお
り、モーター等の適宜の駆動手段603で駆動さ
れ、ほぼ軸芯のまわりで回転可能にされている。
604は、軸受602に軸支され、シリンダー6
01と同一の方向に回転する回転容器であり、該
容器604の内部には、表面に凹凸形状を有する
多数の剛体球605が収容されている。剛体球6
05は、回転容器604の内壁に設けられいる突
出した複数のリブ606によつて担持され、且
つ、回転容器604の回転によつて容器上部まで
輸送される。回転容器の回転速度がある適度の速
度の時に、容器壁について容器上部まで輸送され
た剛体球605は、シリンダー601上に向け落
下し、シリンダー表面に衝突し、表面に痕跡窪み
を形成する。 なお、回転容器604の壁に均一に孔を穿つて
おき、回転時に容器604の外部に設けたシヤワ
ー管607より洗浄液を噴射するようにし、シリ
ンダー601と剛体球605及び回転容器604
を洗浄しうる様にすることもできる。このように
した場合、剛体球どうし、又は剛体球と回転容器
との接触等により生ずる静電気によつて付着した
ゴミ等を、回転容器604外へ洗い出すこととな
り、ゴム等の付着がない所望の支持体を形成する
ことができる。該洗浄液としては、洗浄液の乾燥
むらや液だれのないものを用いる必要があり、こ
うしたことから不揮発性物質単独、又はトリクロ
ルエタン、トリクロルエチレン等の洗浄液との混
合物を用いるのが好ましい。 光受容層 本発明の光受容部材においては、光受容層10
2は前述の支持体101上に設けられ、該光受容
層は、支持体101側より、ゲルマニウム原子
(Ge)又はスズ原子(Sn)の少なくともいずれか
一方と、好ましくはさらに水素原子及びハロゲン
原子の少なくともいずれか一方を含有するa−Si
〔以下、「a−Si(Ge、Sn)(H、X)」と表記す
る。〕で構成された層102′と、必要に応じて水
素原子及びハロゲン原子の少なくともいずれか一
方を含有するa−Si〔以下、「a−Si(H、X)」と
表記する。〕で構成された層102″とが順に積層
された多層構造を有する。そして該光受容層10
2には、さらに必要に応じて伝導性を制御する物
質を含有せしめることができる。 光受容層中に含有せしめるハロゲン原子(X)
としては、具体的にはフツ素、塩素、臭素、ヨウ
素が挙げられ、特にフツ素、塩素を好適なものと
して挙げることができる。そして光受容層102
中に含有せしめる水素原子(H)の量又はハロゲン原
子(X)の量、あるいは水素原子とハロゲン原子
の量の和(H+X)は、通常1〜40atomic%、
好ましくは5〜30atomic%とするのが望ましい。 また、本発明の光受容部材において、光受容層
の層厚は、本発明の目的を効率的に達成するには
重要な要因の1つであつて、光受容部材に所望の
特性が与えられるように、光受容部材の設計の際
には充分な注意を払う必要があり、通常は1〜
100μとするが、好ましくは1〜80μ、より好まし
くは2〜50μとする。 ところで、本発明の光受容部材の光受容層にゲ
ルマニウム原子及び/又はスズ原子を含有せしめ
る目的は、主として該光受容部材の長波長側にお
ける吸収スペクトル特性を向上せしめることにあ
る。 即ち、前記光受容層中にゲルマニウム原子又
は/及びスズ原子を含有せしめることにより、本
発明の光受容部材は、各種の優れた特性を示すと
ころのものとなるが、中でも特に可視光領域をふ
くむ比較的短波長から比較的長波長迄の全領域の
波長の光に対して光感度が優れ光応答性の速いも
のとなる。そしてこのことは、半導体レーザを光
線とした場合に特に順著である。 本発明の光受容部材における光受容層において
は、ゲルマニウム原子又は/及びスズ原子は、支
持体101に接する層102′中に均一な分布状
態で含有せしめるか、あるいは不均一な分布状態
で含有せしめるものである。(ここで均一な分布
状態とは、ゲルマニウム原子又は/及びスズ原子
の分布濃度が、層102′の支持体表面と平行な
面方向において均一であり、層102′の層厚方
向にも均一であることをいい、又、不均一な分布
状態とは、ゲルマニウム原子又は/及びスズ原子
の分布濃度が、層102′の支持体表面と平行な
面方行には均一であるが、層102′の層厚方向
には不均一であることをいう。) そして本発明の層102′においては、特に、
ゲルマニウム原子及び/又はスズ原子は、層10
2″側よりも支持体側の方に多く分布した状態と
なるように含有せしめることが望ましく、こうし
た場合、支持体側の端部においてゲルマニウム原
子及び/又はスズ原子の分布濃度を極端に大きく
することにより、半導体レーザ等の長波長の光源
を用いた場合に、層102″においては殆んど吸
収しきれない長波長の光を、層102′において
実質的に完全に吸収することができ、支持体表面
からの反射光による干渉が防止されるようにな
る。 また、本発明の光受容部材においては、層10
2′と層102″とを構成する非晶質材料が各々、
シリコン原子という共通の構成要素を有している
ので積層界面において化学的な安定性が充分確保
されている。 以下、層102′に含有されるゲルマニウム原
子及び/又はスズ原子の層102′の層厚方向の
分布状態の典型的な例のいくつかを、ゲルマニウ
ム原子を例として第7乃至15図により説明す
る。 第7図乃至第15図において、横軸はゲルマニ
ウム原子の分布濃度Cを、縦軸は、層102′の
層厚を示し、tBは支持体側の層102′の端部の
位置を、tTは支持体側とは反対側の層102″側
の端面の位置を示す。即ち、ゲルマニウム原子の
含有される層102′はtB側よりもtT側に向つて
層形成がなされる。 尚、各図に於いて、層厚及び濃度の表示はその
ままの値で示すと各々の図の違いが明確でなくな
る為、極端な形で図示しており、これらの図はあ
くまでも理解を容易にするための説明のための模
式的なものである。 第7図には、層102′中に含有されるゲルマ
ニウム原子の層厚方向の分布状態の第1の典型例
が示される。 第7図に示される例では、ゲルマニウム原子の
含有される層102′が形成される支持体表面と
層102′とが接する界面位置tBよりt1の位置ま
では、ゲルマニウム原子の分布濃度Cが濃度C1
なる一定の値を取り乍らゲルマニウム原子が層1
02′に含有され、位置t1よりは濃度C2より界面
位置tTに至るまで徐々に連続的に減少されてい
る。界面位置tTにおいてはゲルマニウム原子の分
布濃度Cは実質的にゼロとされる。 (ここで実質的にゼロとは検出限界量未満の場合
である。) 第8図に示される例においては含有されるゲル
マニウム原子の分布濃度Cは位置tBより位置tT
至るまで濃度C3から徐々に連続的に減少して位
置tTにおいて濃度C4となる様な分布状態を形成し
ている。 第9図の場合には、位置tBより位置tTまでは、
ゲルマニウム原子の分布濃度Cは濃度C5と一定
位置とされ、位置t2と位置tTとの間において、
徐々に連続的に減少され、位置tTにおいて、分布
濃度Cは実質的にゼロとされている。 第10図の場合には、ゲルマニウム原子の分布
濃度Cは位置tBより位置tTに至るまで、濃度C6
り初め連続的に徐々に減少され、位置t3よりは急
速に連続的に減少されて位置tTにおいて実質的に
ゼロとされている。 第11図に示す例に於ては、ゲルマニウム原子
の分布濃度Cは、位置tBと位置t4間においては、
濃度C7と一定値であり、位置tTに於ては分布濃度
Cは零とされる。位置t4と位置tTとの間では、分
布濃度Cは一次関数的に位置t4より位置tTに至る
まで減少されている。 第12図に示される例においては、分布濃度C
は位置tBより位置t5までは濃度C8の一定値を取
り、位置t5より位置tTまでは濃度C9より濃度C10
まで一次関数的に減少する分布状態とされてい
る。 第13図に示す例においては、位置tBより位置
tTに至るまで、ゲルマニウム原子の分布濃度Cは
濃度C11より一次関数的に減少されて、ゼロに至
つている。 第14図においては、位置tBより位置t6に至る
まではゲルマニウム原子の分布濃度Cは、濃度
C12より濃度C13まで一次関数的に減少され、位置
t6と位置tTとの間においては、濃度C13の一定値と
された例が示されている。 第15図に示される例において、ゲルマニウム
原子の分布濃度Cは、位置tBにおいて濃度C14
あり、位置t7に至るまではこの濃度C14より初め
はゆつくりと減少され、t7の位置付近において
は、急激に減少されて位置t7では濃度C15とされ
る。 位置t7と位置t8との間においては、初め急激に
減少されて、その御は、緩やかに除々に減少され
て位置t8で濃度C16となり、位置t8と位置t9との間
では、徐々に減少されて位置t9において、濃度
C17に至る。位置t9と位置Tとの間においては濃度
C17より実質的にゼロになる様に図に示す如き形
状の曲線に従つて減少されている。 以上、第7図乃至第15図により、層102′
中に含有されるゲルマニウム原子又は/及びスズ
原子の層厚方向の分布状態の典型例の幾つかを説
明した様に、本発明の光受容部材においては、支
持体側において、ゲルマニウム原子又は/及びス
ズ原子の分布濃度Cの高い部分を有し、界面tT
においては、前記分布濃度Cは支持体側に比べて
かなり低くされた部分を有するゲルマニウム原子
又は/及びスズ原子の分布状態が構成層102′
に設けられているのが望ましい。 即ち、本発明における光受容部材を構成する層
102′は、好ましくは、上述した様に支持体側
の方にゲルマニウム原子又は/及びスズ原子が比
較的高濃度で含有されている局在領域を有するの
が望ましい。 本発明の光受容部材に於ては、局在領域は、第
7図乃至第15図に示す記号を用いて説明すれ
ば、界面位置tBより5μ以内に設けられるのが望ま
しい。 そして、上記局在領域は、界面位置tBより5μ厚
までの全層領域とされる場合もあるし、又、該層
領域の一部とされる場合もある。 局在領域を層102′の一部とするか又は全部
とするかは、形成される光受容層に要求される特
性に従つて適宜決められる。 局在領域はその中に含有されるゲルマニウム原
子又は/及びスズ原子の層厚方向の分布状態とし
てゲルマニウム原子又は/及びスズ原子の分布濃
度の最大値Cmaxがシリコン原子に対して、好ま
しくは1000atomic ppm以上、より好適には
5000atomic ppm以上、最適には1×104atomic
ppm以上とされる様な分布状態となり得る様に層
形成されるのが望ましい。 即ち、本発明の光受容部材においては、ゲルマ
ニウム原子又は/及びスズ原子の含有される層1
02′は、支持体側からの層厚で5μ以内(tBから
5μ層の層領域)に分布濃度の最大値Cmaxが存在
する様に形成させるのが好ましいものである。 本発明の光受容部材において、層102′中に
含有せしめるゲルマニウム原子又は/及びスズ原
子の含有量は、本発明の目的を効率的に達成しう
る様に所望に従つて適宜着れる必要があり、通常
は1〜6×105atomic ppmとするが、好ましく
は10〜3×105atomic ppm、より好ましくは1
×102〜2×105atomic ppmとする。 本発明の光受容部材においては光受容層に伝導
性を制御する物質を、全層領域又は一部の層領域
に均一又は不均一な分布状態で含有せしめること
ができる。 前記伝導性を制御する物質としては、半導体分
野においていういわゆる不純物を挙げることがで
き、P型伝導性を与える周期律表第族に属する
原子(以下単に「第族原子」と称す。)、又は、
n型伝導性を与える周期律表第族に属する原子
(以下単に「第族原子」と称す。)が使用され
る。具体的には、第族原子としては、B(硼
素)、Al(アルミニウム)、Ga(ガリウム)、In(イ
ンジウム)、Tl(タリウム)等を挙げることがで
きるが、特に好ましいものは、B、Gaである。
また第族原子としてはP(燐)、As(砒素)、Sb
(アンチモン)、Bi(ビスマン)等を挙げることが
できるが、特に好ましいものは、P、Sbである。 本発明の光受容部材の光受容層に伝導性を制御
する物質である第族原子又は第族原子を含有
せしめる場合、全層領域に含有せしめるか、ある
いは一部の層領域に含有せしめるかは、後述する
ように目的とするところ乃至期待する作用効果に
よつて異なり、含有せしめる量も異なるところと
なる。 すなわち、光受容層の伝導型又は/及び伝導率
を制御することを主たる目的にする場合には、光
受容層の全層領域中に含有せしめ、この場合、第
族原子又は第族原子の含有量は比較的わずか
でよく、通常は1×10-3〜1×103atomicppmで
あり、好ましくは5×10-2〜5×102atomic
ppm、最適には1×10-1〜2×102atomic ppmで
ある。 また、支持体と接する一部の層領域に第族原
子又は第族原子を均一な分布状態で含有せしめ
るか、あるいは層厚方向における第族原子又は
第族原子の分布濃度が、支持体と接する側にお
いて高濃度となるように含有せしめる場合には、
こうした第族原子又は第族原子を含有する構
成層あるいは第族原子又は第族原子を高濃度
に含有する層領域は、電荷注入阻止層として機能
するところとなる。即ち、第族原子を含有せし
めた場合には、光受容層の自由表面が極性に荷
電処理を受けた際に、支持体側から光受容層中へ
注入される電子の移動をより効率的に阻止するこ
とができ、又、第族原子を含有せしめた場合に
は、光受容層の自由表面が極性に帯電処理を受
けた際に、支持体側から光受容層中へ注入される
正孔の移動をより効率的に阻止することができ
る。そして、こうした場合の含有量は比較的多量
であつて、具体的には、30〜5×104atomic
ppm、好ましくは50〜1×104atomic ppm、最
適には1×102〜5×103taomic ppmとする。さ
らに、該電荷注入阻止層としての効果を効率的に
奏するためには、第族原子又は第族原子を含
有する支持体側の端部に設けられる層又は層領域
の層厚をtとし、光受容層の層厚をTとした場
合、t/T≦0.4の関係が成立することが望まし
く、より好ましくは該関係式の値が0.35以下、最
適には0.3以下となるようにするのが望ましい。
また、該層又は層領域の層厚tは、一般的には3
×10-3〜10μとするが、好ましくは4×10-3〜8μ、
最適には5×10-3〜5μとするのが望ましい。 次に光受容層に含有せしめる第族原子又は第
族原子の量が、支持体側においては比較的多量
であつて、支持体側から自由表面側に向つて減少
し、光受容層の自由表面側の端部付近において
は、比較的小量となるかあるいは実質的にゼロに
近くなるように第族原子又は第族原子を分布
させる場合の典型的例のいくつかを、第16図乃
至第24図によつて説明するが、本発明はこれら
の例によつて限定されるものではない。各図にお
いて、横軸は第族原子又は第族原子の分布濃
度Cを、縦軸は光受容層の層厚を示し、tBは支持
体と光受容層との界面位置を、tTは光受容層の自
由表面の位置を示す。 第16図は、光受容層中に含有せしめる第族
原子又は第族原子の層厚方向の分布状態の第一
の典型例を示している。該例では、第族原子又
は第族原子を含有する光受容層と支持体表面と
が接する界面位置tBより位置t1までは、第族原
子又は第族原子の分布濃度CがC1なる一定値
をとり、位置t1より自由表面位置tTまでは、第
族原子又は第族原子の分布濃度Cが濃度C2
ら連続的に減少し、位置tTにおいては第族原子
又は第族原子の分布濃度CがC3となる。 第17図は、他の典型例の1つを示している。
該例では、光受容層に含有せしめる第族原子又
は第族原子の分布濃度Cは、位置tBから位置tT
にいたるまで、濃度C4から連続的に減少し、位
置tTにおいて濃度C5となる。 第18図に示す例では、位置tBから位置t2まで
は第族原子又は第族原子の分布濃度Cが濃度
C6なる一定値を保ち、位置t2から位置tTにいたる
までは、第族原子又は第族原子の分布濃度C
は濃度C7から徐々に連続的に減少して位置tTにお
いては第族原子又は第族原子の分布濃度Cは
実質的にゼロとなる。但し、ここで実質的にゼロ
とは、検出限界量未満の場合をいう。 第19図に示す例では、第族原子又は第族
原子の分布濃度Cは位置tBより位置tTにいたるま
で、濃度C8から連続的に徐々に減少し、位置tT
おいては第族原子又は第族原子の分布濃度C
は実質的にゼロとなる。 第20図に示す例では、第族原子又は第族
原子の分布濃度Cは、位置tBより位置t3の間にお
いては濃度C9の一定値にあり、位置t3から位置tT
の間においては、濃度C9から濃度C10となるまで、
一次関数的に減少する。 第21図に示す例では、第族原子又は第族
原子の分布濃度Cは、位置tBより位置t4にいたる
までは濃度C11の一定値にあり、位置t4より位置tT
までは濃度C12から濃度C13となるまで一次関数的
に減少する。 第22図に示す例においては、第族原子又は
第族原子の分布濃度Cは、位置tBから位置tT
いたるまで、濃度C14から実質的にゼロとなるま
で一次関数的に減少する。 第23図に示す例では、第族原子又は第族
原子の分布濃度Cは、位置tBから位置t5にいたる
まで濃度C15から濃度C16となるまで一次関数的に
減少し、位置t5から位置tTまでは濃度C16の一定値
を保つ。 最後に、第24図に示す例では、第族原子又
は第族原子の分布濃度Cは、位置tBにおいて濃
度C17であり、位置tBから位置t6までは濃度C17
はじめはゆつくり減少して、位置t6付近では急激
に減少し、位置t6では濃度C18となる。次に、位
置t6から位置t7までははじめのうちは急激に減少
し、その後は緩かに徐々に減少し、位置t7におい
ては濃度C19となる。更に位置t7と位置t8の間では
極めてゆつくりと徐々に減少し、位置t8において
濃度C20となる。また更に、位置t8から位置tTにい
たるまでは、濃度C20から実質的にゼロとなるま
で徐々に減少する。 第16図〜第24図に示した例のごとく、光受
容層の支持体側に近い側に第族原子又は第族
原子の分布濃度Cの高い部分を有し、光受容層の
自由表面に近い側においては、該分布濃度Cがか
なり低い濃度の部分あるいは実質的にゼロに近い
濃度の部分を有する場合にあつては、支持体側に
近い部分に第族原子又は第族原子の分布濃度
が比較的高濃度である局在領域を設けること、好
ましくは該局在領域を支持体表面と接触する界面
位置から5μ以内に設けることにより、第族原
子又は第族原子の分布濃度が高濃度である層領
域が電荷注入阻止層を形成するという前述の作用
効果がより一層効率的に奏される。 以上、第族原子又は第族原子の分布状態に
ついて、個々に各々の作用効果を記述したが、所
望の目的に達成しうる特性を有する光受容部材を
得るについては、これらの第族原子又は第族
原子の分布状態および光受容層に含有せしめる第
族原子又は第族原子の量を、必要に応じて適
宜組み合わせて用いるものであることは、いうま
でもない。例えば、光受容層の支持体側の端部に
電荷注入阻止層を設けた場合、電荷注入阻止層以
外の光受容層中に、電荷注入阻止層に含有せしめ
た伝導性を制御する物質の極性とは別の極性の伝
導性を制御する物質を含有せしめてもよく、ある
いは、同極性の伝導性を制御する物質を、電荷注
入阻止層に含有される量よりも一段と少ない量に
して含有せしめてもよい。 さらに、本発明の光受容部材においては、支持
体側の端部に設ける構成層として、電荷注入阻止
層の代わりに、電気絶縁性材料から成るいわゆる
障壁層を設けることもでき、あるいは、該障壁層
と電荷注入阻止層との両方を構成層とすることも
できる。こうした障壁層を構成する材料として
は、Al2O3、SiO2、Si3N4等の無機電気絶縁材料
やポリカーボネート等の有機電気絶縁材料を挙げ
ることができる。 本発明の光受容部材は前記のごとき層構成とし
たことにより、前記したアモルフアスシリコンで
構成された光受容層を有する光受容部材の諸問題
の総てを解決でき、特に、可干渉性の単色光であ
るレーザー光を光源として用いた場合にも、干渉
現象による形成画像における干渉縞模様の現出を
顕著に防止し、きわめて良質な可視画像を形成す
ることができる。 また、本発明の光受容部材は、全可視光域に於
いて光感度が高く、また、特に長波長側の光感度
特性に優れているため殊に半導体レーザとのマツ
チングに優れ、且つ光応答が速く、さらに極めて
優れた電気的、光学的、光導電的特性、電気的耐
圧性及び使用環境特性を示す。 殊に、電子写真用光受容部材として適用させた
場合には、画像形成への残留電位の影響が全くな
く、その電気的特性が安定しており高感度で、高
SN比を有するものであつて、耐光疲労、繰返し
使用特性に長け、濃度が高く、ハーフトーンが鮮
明に出て、且つ解像度の高い高品質の画像を安定
して繰返し得ることができる。 次に本発明の光受容層の形成方法について説明
する。 本発明の光受容層を構成する非晶質材料はいず
れもグロー放電法、スパツタリング法、或いはイ
オンプレーテイング法等の放電現象を利用する真
空堆積法によつて行われる。これ等の製造法は、
製造条件、設備資本投下の負荷程度、製造規模、
作製される光受容部材に所望される特性等の要因
によつて適宜選択されて採用されるが、所望の特
性を有する光受容部材を製造するに当つての条件
の制御が比較的容易であり、シリコン原子と共に
炭素原子及び水素原子の導入を容易行い得る等の
ことからして、グロー放電法或いはスパツタリン
グ法が好適である。そして、グロー放電法とスパ
ツタリング法とを同一装置系内で併用して形成し
てもよい。 例えば、グロー放電法によつて、a−Si(H、
X)で構成される層を形成するには、基本的には
シリコン原子(Si)を供給し得るSi供給用の原料
ガスと共に、水素原子(H)導入用の又は/及びハロ
ゲン原子(X)導入用の原料ガスを、内部が減圧
にし得る堆積室内に導入して、該堆積室内にグロ
ー放電を生起させ、予め所定位置に設置した所定
の支持体表面上にa−Si(H、X)から成る層を
形成する。 前記Si供給用の原料ガスとしては、SiH4
Si2H6、Si3H8、Si4H10等のガス状態の又はガス
化し得る水素化硅素(シラン類)が挙げられ、特
に、層形成作業のし易さ、Si供給効率の良さ等の
点で、SiH4、Si2H6が好ましい。 また、前記ハロゲン原子導入用の原料ガスとし
ては、多くのハロゲン化合物が挙げられ、例えば
ハロゲンガス、ハロゲン化物、ハロゲン間化合
物、ハロゲンで置換されたシラン誘導体等のガス
状態の又はガス化しうるハロゲン化合物が好まし
い。具体的にはフツ素、塩素、臭素、ヨウ素のハ
ロゲンガス、BrF、ClF、ClF3、BrF5、BrF3
IF7、ICl、IBr等のハロゲン間化合物、および
SiF4、Si2F6、SiCl4、SiBr4等のハロゲン化硅素
等が挙げられる。上述のごときハロゲン化硅素の
ガス状態の又はガス化しうるものを用いる場合に
は、Si供給用の原料ガスを別途使用することなく
して、ハロゲン原子を含有するa−Siで構成され
た層が形成できるので、特に有効である。 また、前記水素原子供給用の原料ガスとして
は、水素ガス、HF、HCl、HBr、HI等のハロゲ
ン化物、SiH4、Si2H6、Si3H8、Si4H10等の水素
化硅素、あるいはSiH2F2、SiH2I2、SiH2Cl2
SiHCl3、SiH2Br2、SiHBr3等のハロゲン置換水
素化硅素等のガス状態の又はガス化しうるものを
用いることができ、これらの原料ガスを用いた場
合には、電気的あるいは光電的特性の制御という
点で極めて有効であるところの水素原子(H)の含有
量の制御を容易に行うことができるため、有効で
ある。そして、前記ハロゲン化水素又は前記ハロ
ゲン置換水素化硅素を用いた場合にはハロゲン原
子の導入と同時に水素原子(H)も導入されるので、
特に有効である。 反応スパツタリング法或いはイオンプレーテイ
ング法に依つてa−Si(H、X)から成る層を形
成するには、例えばスパツタリング法の場合に
は、ハロゲン原子を導入するについては、前記の
ハロゲン化合物又は前記のハロゲン原子を含む硅
素化合物のガスを堆積室中に導入して該ガスのプ
ラズマ雰囲気を形成してやればよい。 又、水素原子を導入する場合には、水素原子導
入用の原料ガス、例えば、H2或いは前記したシ
ラン類等のガスをスパツタリング用の堆積室中に
導入して該ガスのプラズマ雰囲気を形成してやれ
ばよい。 例えば、反応スパツタリング法の場合には、Si
ターゲツトを使用し、ハロゲン原子導入用のガス
及びH2ガスを必要に応じてHe、Ar等の不活性ガ
スも含めて堆積室内に導入してプラズマ雰囲気を
形成し、前記Siターゲツトをスパツタリングする
ことによつて、支持体上にa−Si(H、X)から
成る層を形成する。 グロー放電法によつてa−SiGe(H、X)で構
成される層を形成するには、シリコン原子(Si)
を供給しうるSi供給用の原料ガスと、ゲルマニウ
ム原子(Ge)を供給しうるGe供給用の原料ガス
と、水素原子(H)又は/及びハロゲン原子(X)を
供給しうる水素原子(H)又は/及びハロゲン原子
(X)供給用の原料ガスを、内部を減圧しうる堆
積室内に所望のガス圧状態で導入し、該堆積室内
にグロー放電を生起せしめて、予め所定位置に設
置してある所定の支持体表面上に、a−SiGe
(H、X)で構成される層を形成する。 Si供給用の原料ガス、ハロゲン原子供給用の原
料ガス、及び水素原子供給用の原料ガスとなりう
る物質としては、前述のa−Si(H、X)で構成
される層を形成する場合に用いたものがそのまま
用いられる。 また、前記Ge供給用の原料ガスとなりうる物
質としては、GeH4、Ge2H6、Ge3H8、Ge4H10
Ge5H12、Ge6H14、Ge7H16、Ge8H18、Ge9H20
のガス状態の又はガス化しうる水素化ゲルマニウ
ムを用いることができる。特に、層作成作業時の
取扱い易さ、Ge供給効率の良さ等の点から、
GeH4、Ge2H6、およびGe3H8が好ましい。 スパツタリング法によつてa−SiGe(H、X)
で構成される層を形成するには、シリコンから成
るターゲツトと、ゲルマニウムから成るターゲツ
トとの二枚を、あるいは、シリコンとゲルマニウ
ムからなるターゲツトを用い、これ等を所望のガ
ス雰囲気中でスパツタリングすることによつて行
なう。 イオンプレーテイング法を用いてa−SiGe
(H、X)で構成される層を形成する場合には、
例えば、多結晶シリコン又は単結晶シリコンと多
結晶ゲルマニウム又は単結晶ゲルマニウムとを
夫々蒸発源として蒸着ボートに収容し、この蒸発
源を抵抗加熱法あるいはエレクトロンビーム法
(E.B.法)等によつて加熱蒸発させ、飛翔蒸発物
を所望のガラスプラズマ雰囲気中を通過せしめる
ことで行ない得る。 スパツタリング法およびイオンプレーテイング
法のいずれの場合にも、形成する層中にハロゲン
原子を含有せしめるには、前述のハロゲン化物又
はハロゲン原子を含む硅素化合物のガスを堆積室
中に導入し、該ガスのプラズマ雰囲気を形成すれ
ばよい。又、水素原子を導入する場合には、水素
原子供給用の原料ガス、例えばH2あるいは前記
した水素化シラン類又は/及び水素化ゲルマニウ
ム等のガス類をスパツタリング用の堆積室内に導
入してこれ等のガス類のプラズマ雰囲気を形成す
ればよい。さらにハロゲン原子供給用の原料ガス
としては、前記のハロゲン化物或いはハロゲンを
含む硅素化合物が有効なものとして挙げられる
が、その他に、HF、HCl、HBr、HI等のハロゲ
ン化水素、SiH2F2、SiH2I2、SiH2Cl2、SiHCl3
SiH2Br2、SiHBr3等のハロゲン置換水素化硅素、
およびGeHF3、GeH2F2、GeH3F、GeHCl3
GeH2Cl2、GeH3Cl、GeHBr3、GeH2Br2
GeH3Br、GeHI3、GeH2I2、GeH3I等の水素化ハ
ロゲン化ゲルマニウム等、GeF4、GeCl4
GeBr4、GeI4、GeF2、GeCl2、GeBr2、GeI2等の
ハロゲン化ゲルマニウム等々のガス状態の又はガ
ス化しうる物質も有効な出発物質として使用でき
る。 グロー放電法、スパツタリング法あるいはイオ
ンプレーテイング法を用いて、スズ原子を含有す
るアモルフアスシリコン(以下、「a−SiSn(H、
X)と表記する。)で構成される光受容層を形成
するには、上述のa−SiGe(H、X)で構成され
る層の形成の際に、ゲルマニウム原子供給用の出
発物質を、スズ原子(Sn)供給用の出発物質に
かえて使用し、形成する層中へのその量を制御し
ながら含有せしめることによつて行なう。 前記スズ原子(Sn)供給用の原料ガスとなり
うる物質としては、水素化スズ(SnH4)や
SnF2、SnF4、SnCl2、SnCl4、SnBr2、SnBr4
SnI2、SnI4等のハロゲン化スズ等のガス状態の又
はガス化しうるものを用いることができ、ハロゲ
ン化スズを用いる場合には、所定の支持体上にハ
ロゲン原子を含有するa−Siで構成される層を形
成することができるので、特に有効である。なか
でも、層作成作業時の取扱い易さ、Sn供給効率
の良さ等の点から、SnCl4が好ましい。 そして、SnCl4をスズ原子(Sn)供給用の出発
物質として用いる場合、これをガス化するには、
固体状のSnCl4を加熱するとともに、Ar、He、
等の不活性ガスを吹き込み、該不活性ガスを用い
てパブリングするのが望ましく、こうして生成し
たガスを、内部を減圧にした堆積室内に所望のガ
ス圧状態で導入する。 グロー放電法、スパツタリング法、あるいはイ
オンプレーテイング法を用いて、a−Si(H、X)
又はa−Si(Ge、Sn)(H、X)にさらに第族
原子又は第族原子を含有せしめた非晶質材料で
構成された層を形成するには、a−Si(H、X)
又はa−Si(Ge、Sn)(H、X)の層の形成の際
に、第族原子又は第族原子導入用の出発物質
を、前述したa−Si(H、X)又はa−Si(Ge、
Sn)(H、X)形成用の出発物質と共に使用し
て、形成する層中へそれらの量を制御しながら含
有せしめてやることによつて行なう。 第族原子導入用の出発物質として具体的には
硼素原子導入用としては、B2H6、B4H10
B5H9、B5H11、B6H10、B6H12、B6H14等の水素
化硼素、BF3、BCl3、BBr3等のハロゲン化硼素
等が挙げられる。この他、AlCl3、GaCl3、Ga
(CH32、InCl3、TlCl3等も挙げることができる。 第族原子導入用の出発物質として、具体的に
は燐素原子導入用としてはPH3、P2H4等の水素
化燐、PH4I、PF3、PF5、PCl3、PCl5、PBr3
PBr5、Pi3等のハロゲン化燐が挙げられる。この
他、AsH3、AsF3、AsCl3、AsBr3、AsF5
SbH3、SbF3、SbF5、SbCl3、SbCl5、BiH3
BiCl3、BiBr5等も第族原子導入用の出発物質
の有効なものとして挙げることができる。 以上記述したように、本発明の光受容部材の光
受容層は、グロー放電法、スパツタリング法等を
用いて形成するが、光受容層に含有せしめるゲル
マニウム原子又は/及びスズ原子、第族原子又
は第族原子、あるいは水素原子又は/及びハロ
ゲン原子の各の含有量の制御は、堆積室内へ流入
する、各々の原子供給用出発物質のガス流量ある
いは各々の原子供給用出発物質間のガス流量比を
制御することにより行われる。 また、本発明の光受容層形成時の支持体温度、
堆積室内のガス圧、放電パワー等の条件は、所望
の特性を有する光受容部材を得るためには重要な
要因であり、形成する層の機能に考慮をはらつて
適宜選択されるものである。さらに、これらの層
形成条件は、光受容層に含有せしめる上記の各原
子の種類及び量によつても異なることもあること
から、含有せしめる原子の種類あるいはその量等
にも考慮をはらつて決定する必要もある。 具体的にはa−Si(H、X)からなる層、ある
いは第族原子又は第族原子を含有せしめたa
−Si(H、X)からなる光受容層を形成する場合
には、支持体温度は、通常50〜350℃とするが、
特に好ましくは50〜250℃とする。堆積室内のガ
ス圧は、通常0.01〜1Torrとするが、特に好まし
くは0.1〜0.5Torrとする。また、放電パワーは
0.005〜50W/cm2とするのが通常であるが、より
好ましくは0.01〜30W/cm2、特に好ましくは0.01
〜20W/cm2とする。 a/SiGe(H、X)からなる層を形成する場
合、あるいは第族原子又は第族原子を含有せ
しめたa−SiGe(H、X)からなる層を形成する
場合については、支持体温度は、通常50〜350℃
とするが、より好ましくは50〜300℃、特に好ま
しくは100〜300℃とする。そして、堆積室内のガ
ス圧は、通常0.01〜5Torrとするが、好ましく
は、0.001〜3Torrとし、特に好ましくは0.1〜
1Torrとする。また、放電パワーは0.005〜
50W/cm2とするのが通常であるが、好ましくは
0.01〜30W/cm2とし、特に好ましくは0.01〜
20W/cm2とする。 しかし、これらの、層形成を行うについての支
持体温度、放電パワー、堆積室内のガス圧の具体
的条件は、通常には個々に独立しては容易には決
め難いものである。したがつて、所望の特性の非
晶質材料層を形成すべく、相互的且つ有機的関連
性に基づいて、層形成の至適条件を決めるのが望
ましい。 ところで、本発明の光受容層に含有せしめるゲ
ルマニウム原子又は/及びスズ原子、第族原子
又は第族原子、あるいは水素原子又は/及びハ
ロゲン原子の分布状態を均一とするためには、感
光層を形成するに際して、前記の諸条件を一定に
保つことが必要である。 また、本発明において、光受容層の形成の際
に、該層中に含有せしめるゲルマニウム原子又
は/及びスズ原子、あるいは第族原子又は第
族原子の分布濃度を層厚方向に変化させて所望の
層厚方向の分布状態を有する層を形成するには、
グロー放電法を用いる場合であれば、ゲルマニウ
ム原子又は/及びスズ原子、あるいは第族原子
又は第族原子導入用の出発物質のガスの堆積室
内に導入する際のガス流量を、所望変化率に従つ
て適宜変化させ、その他の条件を一定に保ちつつ
形成する。そして、ガス流量を変化させるには、
具体的には、例えば手動あるいは外部駆動モータ
等の通常用いられている何らかの方法により、ガ
ス流路系の途中に設けられた所定のニードルバル
ブの開口を漸次変化させる操作を行えばよい。こ
のとき、流量の変化率は線型である必要はなく、
例えばマイコン等を用いて、あらかじめ設計され
た変化率曲線に従つて流量を制御し、所望の含有
率曲線を得ることもできる。 また、光受容層をスパツタリング法を用いて形
成する場合、ゲルマニウム原子又はスズ原子、あ
るいは第族原子又は第族原子の層厚方向の分
布濃度を層厚方向で変化させて所望の層厚方向の
分布状態を形成するには、グロー放電法を用いた
場合と同様に、ゲルマニウム原子又はスズ原子、
あるいは第族原子又は第族原子導入用の出発
物質をガス状態で使用し、該ガスを堆積室内へ導
入する際のガス流量を所望の変化率に従つて変化
させる。 〔実施例〕 以下、本発明を実施例1乃至11に従つて、より
詳細に説明するが、本発明はこれ等によつて限定
されるものではない。 各実施例においては、光受容層をグロー放電法
を用いて形成した。第25図はグロー放電法によ
る本発明の光受容部材の製造装置である。 図中の2502,2503,2504,250
5,2506のガスボンベには、本発明の夫々の
層を形成するための原料ガスが密封されており、
その1例として、たとえば、2502はSiF4ガス
(純度99.999%)ボンベ、2503はH2で稀釈さ
れたB2H4ガス(純度99.999%、以下B2H4/H2
略す。)ボンベ、2504はSiH4ガス(純度
99.999%)ボンベ、2505はGeF4ガス(純度
99.999%)ボンベ、2506は不活性ガス(He)
ボンベである。そして、2506′はSnCl4が入
つた密閉容器である。 これらのガスを反応室2501に流入させるに
はガスボンベ2502〜2506のバルブ252
2〜2526、リークバルブ2535が閉じられ
ていることを確認し又、流入バルブ2512〜2
516、流出バルブ2517〜2521、補助バ
ルブ2532,2533が開かれていることを確
認して、先じメインバルブ2534を開いて反応
室2501、ガス配管内を排気する。次に真空
Alシリンダー2537上に光受容層を形成する
場合の1例を以下に記載する。 まず、ガスボンベ2502よりSiF4ガス、ガス
ボンベ2503よりB2H6/H2ガス、ガスボンベ
2505よりGeF4ガスの夫々をバルブ2522,
2523,2525を開いて出口圧ゲージ252
7,2528,2530の圧を1Kg/cm2に調整
し、流入バルブ2512,2513,2515を
徐々に開けて、マスフロコントローラ、250
7,2508,2510内に流入させる。引き続
いて流出バルブ2517,2518,2520補
助バルブ2532を徐々に開いてガスを反応室2
501内に流入させる。このときのSiF4ガス流
量、GeF4ガス流量、B2H6/H2ガス流量の比が所
望の値になるように流出バルブ2517,251
8,2520を調整し、又、反応室2501内の
圧力が所望の値になるように真空計2536の読
みを見ながらメインバルブ2534の開口を調整
する。そして基体シリンダー2537の温度が加
熱ヒーター2538により50〜400℃の範囲の温
度に設定されていることを確認された後、電源2
540を所望の電力に設定して反応室2501内
にグロー放電を生起せしめるとともに、マイクロ
コンピユーター(図示せず)を用いて、あらかじ
め設計された流量変化率に従つて、SiF4ガス、
GeF4ガス及びB2H6/H2ガスのガス流量を制御し
ながら、基体シリンダー2537上に先ず、シリ
コン原子、ゲルマニウム原子及び硼素原子を含有
する層102′を形成する。所望の層厚に層10
2′が形成された段階において、流出バルブ25
18,2520を完全に閉じ、必要に応じて放電
条件をかえる以外は同様の手順に従つてグロー放
電を続けることにより層102′の上に、ゲルマ
ニウム原子を実質的に含有しない層102″を形
成することができる。 夫々の層を形成する際に必要なガスの流出バル
ブ以外の流出バルブは全て閉じることは言うまで
もなく、又夫々の層を形成する際、前層の形成に
使用したガスが反応室2501内、流出バルブ2
517〜2521から反応室2501内に至るガ
ス配管内に残留することを避けるために、流出バ
ルブ2517〜2521を閉じ補助バルブ253
2,2533を開いてメインバルブ2534を全
開して系内を一旦高真空に排気する操作を必要に
応じて行う。 また、光受容層中にスズ原子を含有せしめる場
合にあつて、原料ガスとしてSnCl4を出発物質と
したガスを用いる場合には、2506′に入れら
れた固体状SnCl4を加熱手段(図示せず)を用い
て加熱するとともに、該SnCl4中にAr、He等の
不活性ガスボンベ2506よりAr、He等の不活
性ガスを吹き込み、パブリングする。発生した
SnCl4のガスは、前述のSiF4ガス、GeF4ガス及び
B2H6/H2ガス等と同様の手順により反応室内に
流入させる。 試験例 1 径0.6mmのSUSステンレス製剛体球に化学的処
理を施して表面を食刻して凹凸を形成せしめた。
使用する処理剤としては、塩酸、フツ酸、硫酸、
クロム酸等の酸、苛性ソーダ等のアルカリを挙げ
ることができる。本試験例においては、濃塩酸1
に対して純粋1〜4の容量化で混合した塩酸溶液
を用い、剛体球の浸漬時間、酸濃度等を変化さ
せ、凹凸の形状を適宜調整した。 試験例 2 試験例1の方法によつて処理された剛体球(表
面凹凸の高さγmax=5μm)を用い、第6A,B
図に示した装置を用いて、アルミニウム合金製シ
リンダー(径60mm、長さ298mm)の表面を処理し、
凹凸を形成させた。 真球の径R′、落下高さhと痕跡窪みの曲率R、
幅rとの関係を調べたところ、痕跡窪みの曲率R
と幅rとは、真球の径R′と落下高さh等の条件
により決められることが確認された。また、痕跡
窪みのピツチ(痕跡窪みの密度、また凹凸のピツ
チ)は、シリンダーの回転速度、回転数乃至は剛
体真球の落下量等を制御して所望のピツチに調整
することができることが確認された。更に、Rお
よびDの大きさについて検討した結果、Rが、
0.1mm未満であると、剛体球を小さくし軽くして
落下高さを確保しなければならず、痕跡窪みの形
成をコントロールににくくなるため好ましくない
こと、Rが2.0mmを超えると、剛体球を大きく重
くして、落下高さを調節するため、例えばDを比
較的小さくしたい場合に落下高さを極端に低くす
る必要があるなど、痕跡窪みの形成をコントロー
ルしにくくなるため好ましくないこと、更に、D
が0.02mm未満であると剛体球を小さく軽くして落
下高さを確保しなければならず、痕跡窪みの形成
をコントロールしにくくなるため好ましくないこ
とが、夫々確認された。 更に、形成された痕跡窪みを試べたところ、痕
跡窪み内には、剛体球の表面凹凸形状に応じた微
小な凹凸が形成されていることが確認された。 実施例 1 試験例2と同様にアルミニウム合金製シリンダ
ーの表面を処理し、第1A表上欄に示すD、及び
D/Rを有するシリンダー状Al支持体(シリンダー No.101〜106)を得た。 次に該、Al支持体(シリンダーNo.101〜106)
上に、以下の第1B表に示す条件で、第25図に
示した製造装置により光受容層を形成した。 これらの光受容部材について、第26図に示す
画像露光装置を用い、波長780nm、スポツト径
80μmのレーザー光を照射して画像露光を行な
い、現像、転写を行なつて画像を得た。得られた
画像の干渉縞の発生状況は第1A表下欄に示すと
おりであつた。 なお、第26A図は露光装置の全体を模式的に
示す平面略図であり、第26B図は露光装置の全
体を模式的に示す側面略図である。図中、260
1は光受容部材、2602は半導体レーザー、2
603はfθレンズ、2604はポリゴンミラーを
示している。 次に、比較として、従来のダイヤモンドバイト
により表面処理されたアルミニウム合金製シリン
ダー(No.107)(径60mm、長さ298mm、凹凸ピツチ
100μm、凹凸の深さ3μm)を用いて、前述と同
様にして光受容部材を作製した。得られた光受容
部材を電子顕微鏡で観察したところ、支持体表面
と光受容層の層界面及び光受容層の表面とは平行
をなしていた。この光受容部材を用いて、前述と
同様にして画像形成をおこない、得られた画像に
ついて前述と同様の評価を行なつた。その結果
は、第1A表下欄に示すとおりであつた。
【表】 ×…実用不向 △…実用上可 ○…実用
性良好 ◎…実用性特に良好
【表】 実施例 2 第2B表に示す層形成条件に従つて光受容層を
形成した以外はすべて実施例1と同様にして、
Al支持体(シリンダーNo.101〜107)上に光受容
層を形成した。なお、光受容層形成時における
SiF4ガス及びGeF4ガスのガスん流量は第27図
に示す流量変化線に従つて、マイクロコンピユー
ター制御により、自動的に調整した。 得られた光受容部材について、実施例1と同様
にして画像を形成したところ、得られた画像にお
ける干渉縞の発生状況は、第2A表下欄に示すと
おりであつた。
【表】 ×…実用不向 △…実用上可 ○…実用
性良好 ◎…実用性特に良好
【表】 実施例 3 第3A表上欄に示す表面凹凸の高さ(γmax)の
剛体球を用いた以外はすべて実施例1と同様にし
て、球状痕跡窪み(D=450±50μm)、(D/R= 0.05)を有するAl支持体(シリンダーNo.301〜
306)を得た。 次に該Al支持体(シリンダーNo.301〜306)上
に、以下の第3B表に示す条件で、第25図に示
した製造装置を用いて光受容層を形成した。な
お、光受容層形成時におけるGeH4ガス及びSiH4
ガスのガス流量は、第28図に示すガス流量変化
線に従つて、マイクロコンピユーター制御によ
り、自動的に調整した。 得られた光受容部材について、実施例1と同様
にして画像形成を行なつたところ、得られた画像
における干渉縞の発生状況は、第3A表下欄に示
すとおりであつた。
【表】 ×…実用不向 △…実用上可 ○
…実用性良好 ◎…実用性
特に良好
【表】 実施例 4 第4B表に示す層形成条件に従つて光受容層を
形成した以外は、すべて実施例3と同様にして、
Al支持体(シリンダーNo.301〜306)上に光受容
層を形成した。なお、光受容層形成時における
SiF4ガス及びGeF4ガスのガス流量は第29図に
示す流量変化線に従つて、マイクロコンピユータ
ー制御により、自動的に調整した。 得られた光受容部材について実施例1と同様に
して画像を形成したところ、得られた画像におけ
る干渉縞の発生状況は、第4A表下欄に示すとお
りであつた。
【表】 ×…実用不向 △…実用上可 ○
…実用性良好 ◎…実用性
特に良好
【表】 実施例 5〜11 実施例1のAl支持体(シリンダーNo.103〜106)
上に、第5〜11表に示す層形成条件に従つて光受
容層を形成した以外はすべて実施例1と同様にし
て光受容部材を作製した。なお、実施例5〜11に
おいて、光受容層形成時における使用ガスの流量
は、各々、第30〜36図に示す流量変化線に従
つて、マイクロコンピユーター制御により自動的
に調整した。また、光受容層中に含有せしめる硼
素原子は、B2H6/SiF4+GeF4≒100ppmであつ
て、該層の全層について約200ppmドーピングさ
れているようになるべく導入した。 得られた光受容部材について、実施例1と同様
にして画像形成をおこなつた。 得られた画像は、いずれも干渉縞の発生が観察
されず、そして極めて良質なものであつた。
【表】
【表】
【表】
【表】
【表】
【表】
【表】
【表】
【表】
〔発明の効果の概略〕
本発明の光受容部材は前記のごとき層構成とし
たことにより、前記したアモルフアスシリコンで
構成された光受容層を有する光受容部材の諸問題
の総てを解決でき、特に、可干渉性の単色光であ
るレーザー光を光源として用いた場合にも、干渉
現象による形成画像における干渉縞模様の現出を
顕著に防止し、きわめて良質な可視画像を形成す
ることができる。 また、本発明の光受容部材は、全可視光域に於
いて光感度が高く、また、特に長波長側の光感度
特性に優れているため殊に半導体レーザーとのマ
ツチングに優れ、且つ光応答が速く、さらに極め
て優れた電気的、光学的、光導電的特性、電気的
耐圧性及び使用環境特性を示す。 殊に、電子写真用光受容部材として適用させた
場合には、画像形成への残留電位の影響が全くな
く、その電気的特性が安定しており高感度で、高
SN比を有するものであつて耐光疲労、繰返し使
用特性に長け、濃度が高く、ハーフトーンが鮮明
に出て、且つ解像度の高い高品質の画像を安定し
て繰返し得ることができる。
【図面の簡単な説明】
第1図は本発明の光受容部材の1例を模式的に
示した図であり、第2及び3図は、本発明の光受
容部材における干渉縞の発生の防止の原理を説明
するための部分拡大図であり、第2図は、支持体
表面に球状痕跡窪みによる凹凸が形成された光受
容部材において、干渉縞の発生が防止しうること
を示す図、第3図は、従来の表面を規則的に荒し
た支持体上に光受容層を堆積させた光受容部材に
おいて、干渉縞が発生することを示す図である。
第4及び5図は、本発明の光受容部材の支持体表
面の凹凸形状及び該凹凸形状を作製する方法を説
明するための模式図である。第6図は、本発明の
光受容部材の支持体に設けられた凹凸形状を形成
するのに好適な装置の一構成例を模式的に示す図
であつて、第6A図は正面図、第6B図は縦断面
図である。第7〜15図は、本発明の光受容層に
おけるゲルマニウム原子又はスズ原子の層厚方向
の分布状態を表わす図であり、第16〜24図
は、本発明の光受容層における第族原子又は第
族原子の層厚方向の分布状態を表わす図であ
り、各図において、縦軸は光受容層の層厚を示
し、横軸は各原子の分布濃度を表わしている。第
25図は、本発明の光受容部材の光受容層を製造
するための装置の1例で、グロー放電法により製
造装置の模式的説明図である。第26図はレーザ
ー光による画像露光装置を説明する図である。第
27乃至36図は、本発明の光受容層形成におけ
るガス流量比の変化状態を示す図であり、縦軸は
光受容層の層厚、横軸は使用ガスのガス流量を示
している。 第1乃至第3図について、100……光受容部
材、101……支持体、102……光受容層、1
02′……ゲルマニウム原子またはスズ原子の少
なくともいずれか一方を含有する層、102″…
…ゲルマニウム原子およびスズ原子のいずれも含
有しない層、201,301……第一の層、20
2,302……第二の層、103,203,30
3……自由表面、204,304……第一の層と
第二の層との界面、第4,5図について、40
1,501……支持体、402,502……支持
体表面、403,503……球状痕跡窪み、40
3′,503′……表面に凹凸形状を有する剛体
球、404……球状痕跡窪み内に形成された微小
凹凸形状、404′……剛体球表面に形成された
凹凸形状、第6図について、601………シリン
ダー、602……回転軸(受)、603……駆動
手段、604……回転容器、605……表面に凹
凸形状を有する剛体球、606……容器内壁に設
けられたリブ、607……シヤワー管、第25図
について、2501……反応室、2502〜25
06……ガスボンベ、2506′……SnCl4用密
閉容器、2507〜2511……マスフロコント
ローラ、2512〜2516……流入バルブ、2
517〜2521……流出バルブ、2522〜2
526……バルブ、2527〜2531……圧力
調整器、2532,2533……補助バルブ、2
534……メインバルブ、2535……リークバ
ルブ、2536……真空計、2537……基本シ
リンダー、2538……加熱ヒーター、2539
……モーター、2540……高周波電源、第26
図について、2601……光受容部材、2602
……半導体レーザー、2603……fθレンズ、2
604……ポリゴンミラー。

Claims (1)

  1. 【特許請求の範囲】 1 支持体上に、シリコン原子と、ゲルマニウム
    原子またはスズ原子の少なくともいずれか一方と
    を含有する非晶質材料で構成された層(イ)と、シリ
    コン原子を含有し、ゲルマニウム原子及びスズ原
    子のいずれも含有しない非晶質材料で構成された
    層(ロ)とを支持体側から順に有する多層構成の光受
    容層を備えた光受容部材であつて、前記支持体の
    表面が、窪みの幅Dが500μm以下で窪みの曲率
    半径Rと幅Dとが0.035≦D/Rとされた複数の
    球状痕跡窪みによる凹凸を有し、かつ前記球状痕
    跡窪み内に更に0.5〜20μmの微小な凹凸が形成さ
    れていることを特徴とする光受容部材。 2 前記光受容層が、周期律表第族または第
    族に属する原子を含有している、特許請求の範囲
    第1項に記載の光受容部材。 3 前記光受容層が、周期律表第族または第
    族に属する原子を含有する電荷注入防止層を構成
    層の1つとして有する、特許請求の範囲第1項に
    記載の光受容部材。 4 前記光受容層が、構成層の1つとして障壁層
    を有する、特許請求の範囲第1項に記載の光受容
    部材。 5 前記球状痕跡窪みによる凹凸が同一の曲率半
    径である特許請求の範囲第1項に記載の光受容部
    材。 6 前記球状痕跡窪みによる凹凸がほぼ同一の曲
    率半径及び幅の窪みにより形成されている特許請
    求の範囲第1項に記載の光受容部材。 7 前記支持体が、金属体である特許請求の範囲
    第1項に記載の光受容部材。 8 前記光受容層に含有される周期律表第族ま
    たは第族に属する原子の分布濃度が支持体側で
    比較的高濃度とされ、表面側でかなり低いあるい
    は実質的にゼロに近い濃度で層厚方向に不均一に
    分布されている特許請求の範囲第2項に記載の光
    受容部材。 9 前記層(イ)に含有されるゲルマニウム原子又は
    スズ原子の分布濃度が支持体側で比較的高濃度と
    され、前記ゲルマニウム原子及びスズ原子のいず
    れも含有しない層(ロ)側で支持体側に較べかなり低
    い濃度で層厚方向に不均一に分布されている特許
    請求の範囲第1項に記載の光受容部材。
JP23955285A 1985-10-28 1985-10-28 光受容部材 Granted JPS6299758A (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP23955285A JPS6299758A (ja) 1985-10-28 1985-10-28 光受容部材
CN 86107585 CN1012852B (zh) 1985-10-28 1986-10-23 具有在有微不平整内表面的球形凹痕的基底上的光接收层的光接收元件
US06/923,108 US4834501A (en) 1985-10-28 1986-10-24 Light receiving member having a light receiving layer of a-Si(Ge,Sn)(H,X) and a-Si(H,X) layers on a support having spherical dimples with inside faces having minute irregularities
CA000521521A CA1288271C (en) 1985-10-28 1986-10-27 Light receiving member having a light receiving layer of a-si(ge,sn)(h,x) and a-si(h,x) layers on a support having spherical dimples with inside faces having minute irregularities
AU64419/86A AU581543B2 (en) 1985-10-28 1986-10-27 Light receiving members
DE8686308376T DE3676957D1 (de) 1985-10-28 1986-10-28 Lichtempfindliche elemente.
EP86308376A EP0223448B1 (en) 1985-10-28 1986-10-28 Light receiving members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23955285A JPS6299758A (ja) 1985-10-28 1985-10-28 光受容部材

Publications (2)

Publication Number Publication Date
JPS6299758A JPS6299758A (ja) 1987-05-09
JPH0476472B2 true JPH0476472B2 (ja) 1992-12-03

Family

ID=17046502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23955285A Granted JPS6299758A (ja) 1985-10-28 1985-10-28 光受容部材

Country Status (1)

Country Link
JP (1) JPS6299758A (ja)

Also Published As

Publication number Publication date
JPS6299758A (ja) 1987-05-09

Similar Documents

Publication Publication Date Title
US4834501A (en) Light receiving member having a light receiving layer of a-Si(Ge,Sn)(H,X) and a-Si(H,X) layers on a support having spherical dimples with inside faces having minute irregularities
JPS6290663A (ja) 光受容部材
US4797336A (en) Light receiving member having a-Si(GE,SN) photosensitive layer and multi-layered surface layer containing reflection preventive layer and abrasion resistant layer on a support having spherical dimples with inside faces having minute irregularities
US4808504A (en) Light receiving members with spherically dimpled support
US4797299A (en) Light receiving member having a-Si (Ge,Sn) photosensitive layer and a-Si (O,C,N) surface layer on a support having spherical dimples with inside faces having minute irregularities
JPH0476472B2 (ja)
JPH0476103B2 (ja)
JPH0690532B2 (ja) 光受容部材
JPH0668636B2 (ja) 光受容部材
JPH0690533B2 (ja) 光受容部材
JPH0476476B2 (ja)
JPH0668634B2 (ja) 光受容部材
JPH0690527B2 (ja) 光受容部材
JPH0690531B2 (ja) 光受容部材
JPH0476104B2 (ja)
JPH0690536B2 (ja) 光受容部材
JPH0690534B2 (ja) 光受容部材
JPH0668633B2 (ja) 光受容部材
JPH0668638B2 (ja) 光受容部材
JPS6299757A (ja) 光受容部材
JPH0690535B2 (ja) 光受容部材
JPH0668629B2 (ja) 光受容部材
JPH0690528B2 (ja) 光受容部材
JPS62102249A (ja) 光受容部材
JPH0476474B2 (ja)