JPH0476234B2 - - Google Patents
Info
- Publication number
- JPH0476234B2 JPH0476234B2 JP59222695A JP22269584A JPH0476234B2 JP H0476234 B2 JPH0476234 B2 JP H0476234B2 JP 59222695 A JP59222695 A JP 59222695A JP 22269584 A JP22269584 A JP 22269584A JP H0476234 B2 JPH0476234 B2 JP H0476234B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- electrode
- radiation detector
- crystal
- cdte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F30/00—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors
- H10F30/20—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors
- H10F30/21—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation
- H10F30/22—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation the devices having only one potential barrier, e.g. photodiodes
- H10F30/227—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation the devices having only one potential barrier, e.g. photodiodes the potential barrier being a Schottky barrier
Landscapes
- Measurement Of Radiation (AREA)
- Solid State Image Pick-Up Elements (AREA)
- Light Receiving Elements (AREA)
Description
【発明の詳細な説明】
イ 「発明の目的」
〔産業上の利用分野〕
本発明は、P形カドミウム・テルル(以下、単
にCdTeと記す)結晶基板を用いた多チヤンネル
形の放射線検出器及びその製造方法に関する。更
に詳述すると、各チヤンネル素子間の分離特性の
改善に関するものである。Detailed Description of the Invention A. Object of the Invention [Field of Industrial Application] The present invention relates to a multi-channel radiation detector using a P-type cadmium tellurium (hereinafter simply referred to as CdTe) crystal substrate; It relates to its manufacturing method. More specifically, the present invention relates to improving isolation characteristics between channel elements.
第3図は、従来のアレイ状に形成した多チヤン
ネル形の表面障壁型放射線検出器を示す図であ
る。同図において、
は、各素子を完全に切断分離して並べた例を
示す斜視図とその断面図、
は、同一の半導体基板上に電極3を配列的に
形成した例を示す斜視図とその断面図
である。この第3図において、1は支持台であ
る。2は基板であり、半導体結晶で構成される。
3は電極であり、シヨツトキ・バリア接合特性を
有する。4はオーミツク電極である。5は放射線
有感層であり、電極3によつて生じた空乏層とキ
ヤリア拡散層からなるものである。
FIG. 3 is a diagram showing a conventional multichannel surface barrier radiation detector formed in an array. In the same figure, is a perspective view and a cross-sectional view showing an example in which each element is completely cut and separated and lined up, and is a perspective view and its cross-sectional view showing an example in which electrodes 3 are formed in an array on the same semiconductor substrate. FIG. In this FIG. 3, 1 is a support stand. Reference numeral 2 denotes a substrate, which is made of semiconductor crystal.
Reference numeral 3 represents an electrode, which has shot barrier bonding characteristics. 4 is an ohmic electrode. Reference numeral 5 denotes a radiation sensitive layer, which consists of a depletion layer created by the electrode 3 and a carrier diffusion layer.
このような第3図に示す従来例には、次に記す
欠点がある。
The conventional example shown in FIG. 3 has the following drawbacks.
第3図は、各放射線検出素子の分離特性は
良好であるが、各素子を同図のように形成する
プロセス、又はアレイとして配置する工程等が
繁雑になる欠点がある。 Although the separation characteristics of each radiation detection element in FIG. 3 are good, there is a drawback that the process of forming each element as shown in the figure or the process of arranging them as an array becomes complicated.
第3図は、半導体の基板2を化学エツチン
グ、イオンスパツタクリーニング等の表面処理
を行なつた後、電極3を形成した場合である。
ここで、基板2が高比抵抗結晶になると、放射
線有感層5が隣接する放射線有感層と連結する
ので、放射線検出素子の分離特性が悪くなる。
特に高感度検出器とする場合は、基板結晶の比
抵抗を高くして、有感層5を広げる必要が有る
ため、一層、素子の分離特性は悪くなる。 FIG. 3 shows a case in which electrodes 3 are formed after surface treatment such as chemical etching and ion sputter cleaning has been performed on a semiconductor substrate 2. As shown in FIG.
Here, if the substrate 2 is made of a high resistivity crystal, the radiation-sensitive layer 5 will be connected to the adjacent radiation-sensitive layer, resulting in poor separation characteristics of the radiation detection element.
Particularly in the case of a highly sensitive detector, it is necessary to increase the specific resistance of the substrate crystal and widen the sensitive layer 5, which further deteriorates the separation characteristics of the elements.
第4図は、第3図の構成をそのまま利用し、基
板2をP形CdTe結晶とし、シヨツトキ・バリア
接合電極3をアルミニウムAlとした場合の多チ
ヤンネル形放射線検出器の素子の分離特性を示し
た図である。同図において、縦軸は放射線応答信
号を示し、横軸は電極位置である。また、同図に
おいて、の特性は第3図の構成の検出器の信
号であり、の特性は第3図の構成の検出器の
信号である。この第4図から分るように、第3図
の構成の放射線検出器は、素子の分離特性が悪
い。 Figure 4 shows the element separation characteristics of a multichannel radiation detector when the configuration shown in Figure 3 is used as is, the substrate 2 is a P-type CdTe crystal, and the shot barrier junction electrode 3 is aluminum Al. This is a diagram. In the figure, the vertical axis shows the radiation response signal, and the horizontal axis shows the electrode position. Further, in the figure, the characteristic is the signal of the detector having the configuration shown in FIG. 3, and the characteristic is the signal of the detector having the configuration shown in FIG. 3. As can be seen from FIG. 4, the radiation detector having the configuration shown in FIG. 3 has poor element separation characteristics.
ロ 「発明の構成」
〔問題点を解決するための手段〕
本発明に係る放射線検出器では、CdTe結晶の
表面処理の工程において、化学エツチングの後、
シヨツトキ・バリア接合の電極部分のみイオンス
パツタ・エツチングして化学エツチング層を除去
し、その後、イオンスパツタエツチングで処理し
た表面に、シヨツトキ・バリア接合特性を有した
電極を真空蒸着法で形成して、充分に電気的に独
立し、かつ放射線応答信号が良く分離された構成
とし、各素子間(電極間)には、化学エツチング
したままの表面層が残るようにしたことである。B "Structure of the Invention" [Means for Solving the Problems] In the radiation detector according to the present invention, in the process of surface treatment of the CdTe crystal, after chemical etching,
Only the electrode part of the shot barrier junction is subjected to ion sputter etching to remove the chemical etching layer, and then an electrode having shot barrier bonding characteristics is formed by vacuum evaporation on the surface treated with ion sputter etching. The structure is such that they are sufficiently electrically independent and the radiation response signals are well separated, and a chemically etched surface layer remains between each element (between electrodes).
以下、第1図と第2図を用いて、本発明に係る
放射線検出器を、その製造工程の順序に基づいて
説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The radiation detector according to the present invention will be described below with reference to FIGS. 1 and 2 based on the order of its manufacturing process.
第1図において、aは所定の幅のスリツトを有
するマスクであり、金属で構成されている。bは
結晶基板であり、P形CdTeの高比抵抗の結晶
を、例えば、厚さ0.5〜2mm程度に切断・研磨し、
臭素のメタノール溶液で化学エツチングしたもの
である。cは上記結晶基板bにおいて、化学エツ
チングされた部分(層)である。 In FIG. 1, a is a mask having a slit of a predetermined width, and is made of metal. b is a crystal substrate, in which a high-resistivity P-type CdTe crystal is cut and polished to a thickness of, for example, 0.5 to 2 mm;
Chemically etched with a bromine methanol solution. c is a chemically etched portion (layer) of the crystal substrate b.
このように、化学エツチングされた結晶基板b
の上に、第1図の如く、マスクaを配置し、同図
のような方向AからアルゴンArイオンスパツタ
エツチングを行なう。その結果、マスクaのスリ
ツトの部分に対応する結晶基板bの化学エツチン
グ層cは、第1図に示すように、Arイオンスパ
ツタエツチングにより、除去される。 In this way, the chemically etched crystal substrate b
As shown in FIG. 1, a mask a is placed on top of the film, and argon ion sputter etching is performed from direction A as shown in the same figure. As a result, the chemically etched layer c of the crystal substrate b corresponding to the slit portion of the mask a is removed by Ar ion sputter etching, as shown in FIG.
次に第2図に示すように電極を設ける。第2図
において、b,cは第1図で説明したものと同様
である。dは電極であり、真空蒸着法により、
Al,Pt等の薄膜シヨツトキ・バリア接合のもの
である。そして、この電極dは、マスクaによつ
て、パターニングして形成する。このとき、各素
子間(電極dの間)には、化学エツチングしたま
まの表面層が残つている。 Next, electrodes are provided as shown in FIG. In FIG. 2, b and c are the same as those explained in FIG. d is an electrode, and by vacuum evaporation method,
This is a thin film shot barrier bonding made of Al, Pt, etc. Then, this electrode d is formed by patterning using a mask a. At this time, the chemically etched surface layer remains between each element (between electrodes d).
他方の面には、例えば、Au薄膜を塩化金の無
電界メツキ法によりオーミツク電極eを形成す
る。 On the other side, for example, an ohmic electrode e is formed using a thin Au film by electroless plating with gold chloride.
このように構成された第2図の放射線検出器の
電極dの下にあるP形CdTe結晶基板bには、シ
ヨツトキ・バリア接合によつて生じた空乏層とキ
ヤリア拡散層からなる放射線有感層fが形成され
ている。そこで、電極dの方向から放射線が入射
した場合、放射線有感層f内で生じたキヤリアが
電離電流として、応答信号となる。第5図は、X
線を入射した場合の応答信号の各素子の分離特性
を示している。 The P-type CdTe crystal substrate b under the electrode d of the radiation detector shown in FIG. f is formed. Therefore, when radiation is incident from the direction of the electrode d, carriers generated within the radiation-sensitive layer f become a response signal as an ionization current. Figure 5 shows
It shows the separation characteristics of each element of the response signal when a line is incident.
第5図において、点線は、第3図に示した
構成の場合の応答信号を示し、第4図と同じも
のである。一方、実線イは、本発明に係る放射線
検出器(第2図の構成)の応答信号を示したもの
である。このデータから分るように、本発明の放
射線検出器は、完全に素子を分離した第3図の
もの(点線のデータ)に近く、充分に素子が分
離されていることを示している。 In FIG. 5, the dotted line indicates the response signal for the configuration shown in FIG. 3, which is the same as in FIG. On the other hand, solid line A shows a response signal of the radiation detector (configuration shown in FIG. 2) according to the present invention. As can be seen from this data, the radiation detector of the present invention is close to the one in FIG. 3 (dotted line data) in which the elements are completely separated, indicating that the elements are sufficiently separated.
このように分離特性が向上した理由は、化学エ
ツチング表面(第2図の化学エツチング層c)
が、CdTeの化学量論比から大きく離れた層であ
り、深いトラツプ準位濃度が非常に高く、素子間
に空乏層、キヤリア拡散層が広がるのを防ぎ、一
方、シヨツトキ・バリア接合電極部分では、この
化学エツチング表面層が除去されているので、シ
ヨツトキ・バリア接合特性が良くなるためであ
る。 The reason for this improved separation property is the chemically etched surface (chemically etched layer c in Figure 2).
However, it is a layer that is far away from the stoichiometric ratio of CdTe, and has a very high deep trap level concentration, which prevents the depletion layer and carrier diffusion layer from spreading between the elements. This is because the chemically etched surface layer is removed, so the shot barrier bonding properties are improved.
ハ 「本発明の効果」
以上述べたように、本発明によれば、熱処理や
拡散層の形成の制御が容易でないCdTe結晶にお
いて、P形高抵抗CdTe結晶を用い、化学エツチ
ング後、金属マスクによつてArイオンスパツタ
エツチング表面処理と金属(Al,Pt等)薄膜シ
ヨツトキ・バリア接合の電極の真空蒸着法による
連続的な形成法を使用し、充分に各素子が独立分
離した多チヤンネル形放射線検出器を得ることが
できる。C. ``Effects of the present invention'' As described above, according to the present invention, in a CdTe crystal in which heat treatment and formation of a diffusion layer are not easy to control, a P-type high-resistance CdTe crystal is used, and after chemical etching, a metal mask is etched. Therefore, by using a continuous method of forming Ar ion sputter etching surface treatment and vacuum evaporation of metal (Al, Pt, etc.) thin film shot barrier bonding electrodes, we have created multi-channel radiation with sufficient independent isolation of each element. A detector can be obtained.
第1図は本発明に係る放射線検出器においてア
ルゴンArイオンスパツタエツチングを行ない化
学エツチング層cを除去するところを示す図、第
2図は本発明に係る放射線検出器の構成例を示す
図、第3図は従来のアレイ状に形成した多チヤン
ネル形の表面障壁型放射線検出器を示す図、第4
図は第3図の構成をそのまま利用し基板2をP形
CdTe結晶とし、シヨツトキ・バリア接合電極3
をアルミニウムAlとした場合の放射線検出器の
素子の分離特性を示した図、第5図は本発明に係
る放射線検出器と第3図の検出器との素子の分
離特性の比較を示した図である。
a……マスク、b……結晶基板、c……化学エ
ツチング層、d……電極、e……オーミツク電
極、f……放射線有感層。
FIG. 1 is a diagram showing the removal of the chemical etching layer c by argon ion sputter etching in the radiation detector according to the present invention, and FIG. 2 is a diagram showing an example of the configuration of the radiation detector according to the present invention. Figure 3 is a diagram showing a conventional multi-channel type surface barrier radiation detector formed in an array.
The figure uses the configuration shown in Figure 3 as it is, and the board 2 is P-shaped.
CdTe crystal and shot barrier junction electrode 3
Fig. 5 is a diagram showing a comparison of the element separation characteristics of the radiation detector according to the present invention and the detector shown in Fig. 3. It is. a...mask, b...crystal substrate, c...chemical etching layer, d...electrode, e...ohmic electrode, f...radiation sensitive layer.
Claims (1)
ル形の放射線検出器において、 前記結晶基板bの一方の表面に、長手方向を隣
合わせて配列された複数個のスリツトの領域を残
して、一様に設けられた化学エツチング層cと、 シヨツトキ・バリア接合特性を有した電極であ
つて、前記スリツトの領域上に設けられ、この設
けられた面の下側の結晶基板bに放射線有感層f
を形成させる電極dと、 を備えた構成の放射線検出器。 2 P形CdTe結晶基板を用いた、多チヤンネル
形の放射線検出器において、 表面部を化学エツチングされたCdTe結晶の板
に、スリツトを有したマスクを配置して、このス
リツトに対応する部分のCdTe結晶の表面におけ
る前記化学エツチング層をイオンスパツタ・エツ
チングして除去し、 次に、前記化学エツチング層を除去した各部分
におけるCdTe結晶の表面に、シヨツトキ・バリ
ア接合特性を有した電極をそれぞれ形成し、 前記各電極の間には、化学エツチング層が残る
ようにしたことを特徴とする放射線検出器の製造
方法。[Claims] 1. A multi-channel radiation detector using a P-type CdTe crystal substrate b, including a plurality of slit regions arranged adjacent to each other in the longitudinal direction on one surface of the crystal substrate b. a chemically etched layer (c) uniformly provided on the slit, and an electrode having shot barrier bonding properties, provided on the region of the slit, and a crystal substrate (b) below the surface on which it is provided. radiation sensitive layer f
A radiation detector comprising: an electrode d forming an electrode d; 2 In a multi-channel radiation detector using a P-type CdTe crystal substrate, a mask with slits is placed on a CdTe crystal plate whose surface has been chemically etched, and CdTe is removed in the area corresponding to the slit. The chemical etching layer on the surface of the crystal is removed by ion sputter etching, and then electrodes having shot barrier bonding characteristics are formed on the surface of the CdTe crystal at each portion where the chemical etching layer has been removed, and A method for manufacturing a radiation detector, characterized in that a chemically etched layer remains between each of the electrodes.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP59222695A JPS61100978A (en) | 1984-10-23 | 1984-10-23 | Radiation detector and manufacturing method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP59222695A JPS61100978A (en) | 1984-10-23 | 1984-10-23 | Radiation detector and manufacturing method |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPS61100978A JPS61100978A (en) | 1986-05-19 |
| JPH0476234B2 true JPH0476234B2 (en) | 1992-12-03 |
Family
ID=16786465
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP59222695A Granted JPS61100978A (en) | 1984-10-23 | 1984-10-23 | Radiation detector and manufacturing method |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPS61100978A (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6458254B2 (en) * | 1997-09-25 | 2002-10-01 | Midwest Research Institute | Plasma & reactive ion etching to prepare ohmic contacts |
-
1984
- 1984-10-23 JP JP59222695A patent/JPS61100978A/en active Granted
Also Published As
| Publication number | Publication date |
|---|---|
| JPS61100978A (en) | 1986-05-19 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6215123B1 (en) | Forming contacts on semiconductor substrates, radiation detectors and imaging devices | |
| US4972244A (en) | Photodiode and photodiode array on a II-VI material and processes for the production thereof | |
| US4624045A (en) | Method of making thin film device | |
| US7728304B2 (en) | Method of making segmented contacts for radiation detectors using direct photolithography | |
| US4665609A (en) | Process of manufacturing a photosensitive device having a plurality of detectors separated by zones impervious to the radiation to be detected | |
| US4607270A (en) | Schottky barrier diode with guard ring | |
| US4029962A (en) | Arrays for infrared image detection | |
| US4403397A (en) | Method of making avalanche photodiodes | |
| US6410922B1 (en) | Forming contacts on semiconductor substrates for radiation detectors and imaging devices | |
| EP0061802A2 (en) | Imaging devices and systems | |
| JP2006504257A (en) | Contact formation on a semiconductor substrate | |
| JPS62160776A (en) | Photovoltaic detector and its manufacturing method | |
| US3577631A (en) | Process for fabricating infrared detector arrays and resulting article of manufacture | |
| JPH0476234B2 (en) | ||
| US4859851A (en) | Thermal-radiation imaging devices and systems, and the manufacture of such imaging devices | |
| US20020158207A1 (en) | Forming contacts on semiconductor substrates for radiation detectors and imaging devices | |
| US4060822A (en) | Strip type radiation detector and method of making same | |
| JPS60124879A (en) | Multi-channel radiation detector and its manufacturing method | |
| JPS6070774A (en) | radiation detector | |
| JPH0534610B2 (en) | ||
| JPS6217177B2 (en) | ||
| JPS62120086A (en) | Radiation detection device | |
| JP2687508B2 (en) | Solid-state imaging device | |
| JPS603793B2 (en) | Infrared sensing element | |
| JPS6155938A (en) | Method for isoration of electronic element |