JP2687508B2 - Solid-state imaging device - Google Patents

Solid-state imaging device

Info

Publication number
JP2687508B2
JP2687508B2 JP63295111A JP29511188A JP2687508B2 JP 2687508 B2 JP2687508 B2 JP 2687508B2 JP 63295111 A JP63295111 A JP 63295111A JP 29511188 A JP29511188 A JP 29511188A JP 2687508 B2 JP2687508 B2 JP 2687508B2
Authority
JP
Japan
Prior art keywords
solid
imaging device
state imaging
light receiving
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63295111A
Other languages
Japanese (ja)
Other versions
JPH02140978A (en
Inventor
寛保 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63295111A priority Critical patent/JP2687508B2/en
Publication of JPH02140978A publication Critical patent/JPH02140978A/en
Application granted granted Critical
Publication of JP2687508B2 publication Critical patent/JP2687508B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は一次元及び二次元の固体撮像装置に関し、特
に感度の均一性を図った装置に関する。
The present invention relates to a one-dimensional and two-dimensional solid-state image pickup device, and more particularly to a device with uniform sensitivity.

〔従来の技術〕[Conventional technology]

従来、固体撮像装置では、信号配線を構成するアルミ
ニウム薄膜と、受光面積を規定する遮光膜を構成するア
ルミニウム薄膜とを同一工程で形成している。このた
め、各アルミニウム薄膜の粒径(グレインサイズ)は等
しく、しかも大電流が流れる信号配線におけるエレクト
ロマイグレーションの対策のために、粒径は比較的大き
く(約3.0μm以上)形成されている。
Conventionally, in a solid-state imaging device, an aluminum thin film forming a signal wiring and an aluminum thin film forming a light shielding film that defines a light receiving area are formed in the same process. For this reason, the aluminum thin films have the same grain size (grain size), and the grain size is relatively large (about 3.0 μm or more) in order to prevent electromigration in the signal wiring through which a large current flows.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上述した従来の固体撮像装置では、遮光膜のアルミニ
ウム薄膜の粒径が信号配線のアルミニウム薄膜の粒径と
同じであることから、次のような問題が生じている。
In the above-described conventional solid-state imaging device, since the grain size of the aluminum thin film of the light shielding film is the same as the grain size of the aluminum thin film of the signal wiring, the following problems occur.

即ち、第3図に受光素子領域の平面一部を示すよう
に、固体撮像装置では、交互に配列した受光素子8とチ
ャネルカット領域9を規定するように遮光膜5′を形成
した後、約400〜450℃のアニールを行っている。このと
き、アニールの温度によりアルミニウムが熱的移動を起
こし、同図に斜線で示すように、粒子5bが境界に沿って
受光素子側に飛び出す現象が発生する。
That is, in the solid-state imaging device, as shown in FIG. 3 showing a part of the plan view of the light receiving element region, after forming the light shielding film 5 ′ so as to define the light receiving elements 8 and the channel cut regions 9 which are alternately arranged, It is annealed at 400-450 ℃. At this time, the aluminum causes thermal transfer due to the annealing temperature, and as shown by the slanted lines in the figure, a phenomenon occurs in which the particles 5b jump out along the boundary toward the light receiving element.

このため、この飛び出した粒子5bがこの部分の受光素
子8の受光面積を他の受光素子の受光面積よりも小さく
し、この部分の受光素子の感度が低下されるという問題
が生じている。
Therefore, the protruding particles 5b cause the light receiving area of the light receiving element 8 in this portion to be smaller than the light receiving areas of the other light receiving elements, and the sensitivity of the light receiving element in this portion is lowered.

本発明はこのような感度の低下を防止した固体撮像装
置を提供することを目的とする。
It is an object of the present invention to provide a solid-state imaging device that prevents such a decrease in sensitivity.

〔課題を解決するための手段〕[Means for solving the problem]

本発明の固体撮像装置は、受光素子の受光面積を規定
する遮光膜を構成するアルミニウム薄膜のアルミニウム
粒子を、固体撮像装置内に信号配線として形成するアル
ミニウム薄膜のアルミニウム粒子よりも小さい粒径に形
成している。
In the solid-state imaging device of the present invention, the aluminum particles of the aluminum thin film forming the light-shielding film that defines the light-receiving area of the light-receiving element are formed to have a smaller particle size than the aluminum particles of the aluminum thin film formed as the signal wiring in the solid-state imaging device. doing.

〔作用〕[Action]

上述した構成では信号配線におけるアルミニウム薄膜
のアルミニウム粒径を大きくしてエレクトロマイグレー
ション耐性を確保する一方で、遮光板におけるアルミニ
ウム粒子の飛び出し現象による受光素子の面積低下を抑
制する。
In the above-described configuration, the aluminum grain size of the aluminum thin film in the signal wiring is increased to secure the electromigration resistance, while the reduction of the area of the light receiving element due to the protrusion phenomenon of the aluminum grains on the light shielding plate is suppressed.

〔実施例〕〔Example〕

次に、本発明を図面を参照して説明する。 Next, the present invention will be described with reference to the drawings.

第1図(a)及び(b)は本発明の一実施例を製造工
程順に示す断面図、第2図はその平面図である。
1 (a) and 1 (b) are sectional views showing an embodiment of the present invention in the order of manufacturing steps, and FIG. 2 is a plan view thereof.

即ち、第1図(a)のように、P型シリコン基板1の
一主面にN型拡散層2を形成し、酸化膜を介して多結晶
シリコンによる読出し電極3を形成する。その後、層間
膜4を形成し、この上にアルミニウム薄膜を被着しかつ
これをパターン形成して遮光膜5を形成する。このと
き、アルミニウム薄膜は粒径を約1.0μm以下となるよ
うに形成する。また、膜厚は約0.5μmとしている。
That is, as shown in FIG. 1A, an N-type diffusion layer 2 is formed on one main surface of a P-type silicon substrate 1, and a readout electrode 3 made of polycrystalline silicon is formed via an oxide film. After that, an interlayer film 4 is formed, an aluminum thin film is deposited on this, and this is patterned to form a light-shielding film 5. At this time, the aluminum thin film is formed so that the grain size is about 1.0 μm or less. The film thickness is about 0.5 μm.

次に、第1図(b)のように、約400〜450℃の範囲で
アニールし、CVD法によるシリコン酸化膜からなる層間
膜6を被着する。膜厚は約0.5μmである。
Next, as shown in FIG. 1B, annealing is performed in the range of about 400 to 450 ° C. to deposit the interlayer film 6 made of a silicon oxide film by the CVD method. The film thickness is about 0.5 μm.

しかる後、図示を省略するコンタクトホールを層間膜
に開設し、この上にアルミニウム薄膜を所要パターンに
形成して信号配線7を形成する。この信号配線7は、約
3.0μm以上の大きな粒径に形成し、耐エレクトロマイ
グレーション効果を得る。
Then, a contact hole (not shown) is formed in the interlayer film, and an aluminum thin film is formed in a desired pattern on the contact hole to form the signal wiring 7. This signal wiring 7 is approximately
Formed with a large grain size of 3.0 μm or more to obtain electromigration resistance.

このようにして製造された固体撮像装置では、遮光膜
5のアルミニウム粒径は信号配線7のアルミニウム粒径
よりも極めて小さいものとされている。このため、遮光
膜を形成後のアニールにより粒子の飛び出し現象が生じ
ても、第2図に斜線で示すように、受光素子8とチャネ
ルカット領域9を交互に配設した受光素子部内へ飛び出
す粒子5aは極めて小さいものであり、受光素子8の受光
面積への影響は殆ど無い。したがって、この部分の受光
素子の感度が他の受光素子よりも低下されることはな
く、高感度の固体撮像装置を構成できる。
In the solid-state imaging device manufactured in this manner, the aluminum grain size of the light shielding film 5 is extremely smaller than the aluminum grain size of the signal wiring 7. For this reason, even if a particle pop-out phenomenon occurs due to annealing after the formation of the light-shielding film, the particle pops out into the light-receiving element portion in which the light-receiving elements 8 and the channel cut regions 9 are alternately arranged as shown by the hatched lines in FIG. 5a is extremely small and has almost no effect on the light receiving area of the light receiving element 8. Therefore, the sensitivity of the light receiving element in this portion is not lowered as compared with the other light receiving elements, and a high-sensitivity solid-state imaging device can be configured.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明は、遮光膜を構成するアル
ミニウム薄膜のアルミニウム粒子を、信号配線を構成す
るアルミニウム薄膜の粒子よりも小さい粒径としている
ので、信号配線におけるアルミニウム薄膜のアルミニウ
ム粒径を大きくしてエレクトロマイグレーション耐性を
確保する一方で、遮光板におけるアルミニウム粒子の飛
び出し現象による受光素子の面積低下を抑制し、受光感
度の向上及びその均一性を改善できる効果がある。
As described above, according to the present invention, the aluminum particles of the aluminum thin film forming the light-shielding film have a smaller particle diameter than the particles of the aluminum thin film forming the signal wiring. Thus, the resistance to electromigration is secured, while the reduction of the area of the light receiving element due to the phenomenon of aluminum particles protruding on the light shielding plate is suppressed, and the light receiving sensitivity and the uniformity thereof can be improved.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a)及び(b)は本発明の固体撮像装置の製造
方法の一例を製造工程順に示す断面図、第2図は本発明
の一実施例の要部平面図、第3図は従来の固体撮像装置
の一部の平面図である。 1……P型シリコン基板、2……N型拡散層、3……読
出し電極、4……層間膜、5,5′……遮光膜、5a,5b……
アルミニウム粒子、6……層間膜、7……信号配線、8
……受光素子、9……チャネルカット領域。
1 (a) and 1 (b) are cross-sectional views showing an example of a method of manufacturing a solid-state imaging device according to the present invention in the order of manufacturing steps, FIG. 2 is a plan view of a main portion of an embodiment of the present invention, and FIG. It is a top view of a part of conventional solid-state imaging device. 1 ... P-type silicon substrate, 2 ... N-type diffusion layer, 3 ... readout electrode, 4 ... interlayer film, 5,5 '... light-shielding film, 5a, 5b ...
Aluminum particles, 6 ... Interlayer film, 7 ... Signal wiring, 8
...... Light receiving element, 9 ...... Channel cut area.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】半導体基板に受光素子を配列し、この受光
素子の受光面積をアルミニウム薄膜からなる遮光膜で規
定してなる固体撮像装置において、この遮光膜を構成す
るアルミニウム薄膜のアルミニウム粒子を、固体撮像装
置内に信号配線として形成するアルミニウム薄膜のアル
ミニウム粒子よりも小さい粒径に形成したことを特徴と
する固体撮像装置。
1. In a solid-state imaging device comprising a light receiving element arranged on a semiconductor substrate, and the light receiving area of the light receiving element is defined by a light shielding film made of an aluminum thin film, aluminum particles of the aluminum thin film forming the light shielding film are A solid-state imaging device having a particle size smaller than that of aluminum particles of an aluminum thin film formed as signal wiring in the solid-state imaging device.
JP63295111A 1988-11-22 1988-11-22 Solid-state imaging device Expired - Lifetime JP2687508B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63295111A JP2687508B2 (en) 1988-11-22 1988-11-22 Solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63295111A JP2687508B2 (en) 1988-11-22 1988-11-22 Solid-state imaging device

Publications (2)

Publication Number Publication Date
JPH02140978A JPH02140978A (en) 1990-05-30
JP2687508B2 true JP2687508B2 (en) 1997-12-08

Family

ID=17816436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63295111A Expired - Lifetime JP2687508B2 (en) 1988-11-22 1988-11-22 Solid-state imaging device

Country Status (1)

Country Link
JP (1) JP2687508B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2786076B2 (en) * 1993-04-27 1998-08-13 浜松ホトニクス株式会社 Solid-state imaging device and manufacturing method thereof

Also Published As

Publication number Publication date
JPH02140978A (en) 1990-05-30

Similar Documents

Publication Publication Date Title
US4196508A (en) Durable insulating protective layer for hybrid CCD/mosaic IR detector array
US5120960A (en) Infrared image detecting device and method
JP2001177086A (en) Image pickup element and its manufacturing method
JPH06326293A (en) Photodetector
JP2687508B2 (en) Solid-state imaging device
JPH04196167A (en) Solid state image sensing element
US5561295A (en) Infrared-responsive photoconductive array and method of making
JP3402429B2 (en) Solid-state imaging device and method of manufacturing the same
US4364973A (en) Method for fabricating a solid-state imaging device using photoconductive film
JPH0621423A (en) Infrared detection device and its manufacture
JPH05126643A (en) Infrared sensor
JPS59119980A (en) Solid state image pickup device
JPS5861663A (en) Manufacture of solid-state image pickup device
JPH08250694A (en) Solid-state image sensor and manufacture thereof
US4632728A (en) Method of manufacturing a glass passivation type semiconductor device
JP3611172B2 (en) Manufacturing method of solid-state imaging device
JP2832600B2 (en) Contact image sensor
JPH04315474A (en) Manufacture of solid-state image pickup element
JP2003142676A (en) Solid-state imaging device and method of manufacturing the same
JPS59202777A (en) Solid-state image pickup device and its manufacture
JPS59196667A (en) Solid-state image pickup device
JP2893967B2 (en) Semiconductor device
JPS61212056A (en) Solid state image pickup device
JPH03171770A (en) Solid state image sensing device
JPS63208269A (en) Solid-state image sensing device