JPH02140978A - Solid state image sensor - Google Patents

Solid state image sensor

Info

Publication number
JPH02140978A
JPH02140978A JP63295111A JP29511188A JPH02140978A JP H02140978 A JPH02140978 A JP H02140978A JP 63295111 A JP63295111 A JP 63295111A JP 29511188 A JP29511188 A JP 29511188A JP H02140978 A JPH02140978 A JP H02140978A
Authority
JP
Japan
Prior art keywords
film
light
aluminum
particles
thin aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63295111A
Other languages
Japanese (ja)
Other versions
JP2687508B2 (en
Inventor
Hiroyasu Azuma
東 寛保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63295111A priority Critical patent/JP2687508B2/en
Publication of JPH02140978A publication Critical patent/JPH02140978A/en
Application granted granted Critical
Publication of JP2687508B2 publication Critical patent/JP2687508B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To prevent sensitivity from decreasing by forming the aluminum particles of a thin aluminum film for forming a light shielding film smaller than those of a thin aluminum film formed as signal wirings in a solid state image sensor. CONSTITUTION:An N-type diffused layer 2 is formed on one main face of a P-type silicon substrate 1, a reading electrode 3 of polycrystalline silicon is formed through an oxide film, an interlayer film 4 is then formed, covered with a thin aluminum film thereon, and formed in a pattern to form a light shielding film 5. Further, it is covered with an interlayer film 6 made of a silicon oxide film, and formed with a thin aluminum film in a predetermined pattern, thereby forming signal wirings 7. The aluminum particle size of the film 5 is formed smaller than those of the wirings 7. Accordingly, if particles are emitted during the annealing after the formation, the particles entering a photodetector are small, and thus, the influence on the photodetecting area of the photodetector is substantially eliminated. In this manner, it can prevent its sensitivity from decreasing.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は一次元及び二次元の固体撮像装置に関し、特に
感度の均一性を図った装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to one-dimensional and two-dimensional solid-state imaging devices, and particularly to a device that achieves uniformity of sensitivity.

〔従来の技術〕[Conventional technology]

従来、固体撮像装置では、信号配線を構成するアルミニ
ウム薄膜と、受光面積を規定する遮光膜を構成するアル
ミニウム薄膜とを同一工程で形成している。このため、
各アルミニウム薄膜の粒径(ダレインサイズ)は等しく
、しかも大電流が流れる信号配線におけるエレクトロマ
イグレーションの対策のために、粒径は比較的大きく(
約3.0μm以上)形成されている。
Conventionally, in solid-state imaging devices, an aluminum thin film that constitutes signal wiring and an aluminum thin film that constitutes a light-shielding film that defines a light-receiving area are formed in the same process. For this reason,
The grain size (dalein size) of each aluminum thin film is the same, and in order to prevent electromigration in signal wiring where large currents flow, the grain size is relatively large (
approximately 3.0 μm or more).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の固体撮像装置では、遮光膜のアルミニウ
ム薄膜の粒径が信号配線のアルミニウム薄膜の粒径と同
じであることから、次のような問題が生じている。
In the conventional solid-state imaging device described above, the following problem occurs because the grain size of the aluminum thin film of the light shielding film is the same as the grain size of the aluminum thin film of the signal wiring.

即ち、第3図に受光素子領域の平面一部を示すように、
固体撮像装置では、交互に配列した受光素子8とチャネ
ルカット領域9を規定するように遮光膜5′を形成した
後、約400〜450°Cのアニールを行っている。こ
のとき、アニールの温度によりアルミニウムが熱的移動
を起こし、同図に斜線で示すように、粒子5bが境界に
沿って受光素子側に飛び出す現象が発生する。
That is, as shown in FIG. 3, a part of the plane of the light receiving element area,
In the solid-state imaging device, after forming a light-shielding film 5' to define alternately arranged light receiving elements 8 and channel cut regions 9, annealing is performed at about 400 to 450°C. At this time, the aluminum undergoes thermal movement due to the annealing temperature, and a phenomenon occurs in which the particles 5b fly out along the boundary toward the light receiving element, as shown by diagonal lines in the figure.

このため、この飛び出した粒子5bがこの部分の受光素
子8の受光面積を他の受光素子の受光面積よりも小さく
し、この部分の受光素子の感度が低下されるという問題
が生じている。
For this reason, this flying particle 5b makes the light receiving area of the light receiving element 8 in this part smaller than the light receiving area of other light receiving elements, causing a problem that the sensitivity of the light receiving element in this part is reduced.

本発明はこのような感度の低下を防止した固体撮像装置
を提供することを目的とする。
An object of the present invention is to provide a solid-state imaging device that prevents such a decrease in sensitivity.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の固体撮像装置は、受光素子の受光面積を規定す
る遮光膜を構成するアルミちラム薄膜のアルミニウム粒
子を、固体撮像装置内に信号配線として形成するアルミ
ニウム薄膜のアルミニウム粒子よりも小さい粒径に形成
している。
In the solid-state imaging device of the present invention, the aluminum particles of the aluminum thin film constituting the light-shielding film that defines the light-receiving area of the light-receiving element have a particle size smaller than that of the aluminum particles of the aluminum thin film formed as signal wiring in the solid-state imaging device. is formed.

C作用〕 上述した構成では信号配線におけるアルミニウム薄膜の
アルミニウム粒径を大きくしてエレクトロマイグレーシ
ョン耐性を確保する一方で、遮光板におけるアルミニウ
ム粒子の飛び出し現象による受光素子の面積低下を抑制
する。
C Effect] In the above-described configuration, the aluminum grain size of the aluminum thin film in the signal wiring is increased to ensure electromigration resistance, and at the same time, a decrease in the area of the light receiving element due to the phenomenon of aluminum grains flying out from the light shielding plate is suppressed.

〔実施例〕 次に、本発明を図面を参照して説明する。〔Example〕 Next, the present invention will be explained with reference to the drawings.

第1図(a)及び(b)は本発明の一実施例を製造工程
順に示す断面図、第2図はその平面図である。
FIGS. 1(a) and 1(b) are cross-sectional views showing an embodiment of the present invention in the order of manufacturing steps, and FIG. 2 is a plan view thereof.

即ち、第1図(a)のように、P型シリコン基板1の一
生面にN型拡散層2を形成し、酸化膜を介して多結晶シ
リコンによる読出し電極3を形成する。その後、眉間膜
4を形成し、この上にアルミニウム薄膜を被着しかつこ
れをパターン形成して遮光膜5を形成する。このとき、
アルミニウム薄膜は粒径を約1.0μm以下となるよう
に形成する。また、膜厚は約0.5μmとしている。
That is, as shown in FIG. 1(a), an N-type diffusion layer 2 is formed on the entire surface of a P-type silicon substrate 1, and a readout electrode 3 made of polycrystalline silicon is formed with an oxide film interposed therebetween. Thereafter, a glabellar film 4 is formed, and an aluminum thin film is deposited thereon and patterned to form a light shielding film 5. At this time,
The aluminum thin film is formed so that the grain size is about 1.0 μm or less. Further, the film thickness is approximately 0.5 μm.

次に、第1図(b)のように、約400〜450°Cの
範囲でアニールし、CVD法によるシリコン酸化膜から
なる層間膜6を被着する。膜厚は約0.5μmである。
Next, as shown in FIG. 1(b), annealing is performed in a range of approximately 400 to 450 DEG C., and an interlayer film 6 made of a silicon oxide film is deposited by CVD. The film thickness is approximately 0.5 μm.

しかる後、図示を省略するコンタクトホールを眉間膜に
開設し、この上にアルミニウム薄膜を所要パターンに形
成して信号配線7を形成する。この信号配線7は、約3
.0μm以上の大きな粒径に形成し、耐エレクトロマイ
グレーション効果を得る。
Thereafter, a contact hole (not shown) is opened in the glabellar membrane, and an aluminum thin film is formed in a desired pattern thereon to form the signal wiring 7. This signal wiring 7 is about 3
.. It is formed to have a large particle size of 0 μm or more to obtain an anti-electromigration effect.

このようにして製造された固体撮像装置では、遮光膜5
のアルミニウム粒径は信号配線7のアルミニウム粒径よ
りも極めて小さいものとされている。このため、遮光膜
を形成後のアニールにより粒子の飛び出し現象が生じて
も、第2図に斜線で示すように、受光素子8とチャネル
カット領域9を交互に配設した受光素子部内へ飛び出す
粒子5aは極めて小さいものであり、受光素子8の受光
面積への影響は殆ど無い、したがって、この部分の受光
素子の感度が他の受光素子よりも低下されることはなく
、高感度の固体撮像装置を構成できる。
In the solid-state imaging device manufactured in this way, the light shielding film 5
The aluminum grain size of the signal wiring 7 is considered to be extremely smaller than that of the signal wiring 7. Therefore, even if particles fly out due to annealing after forming the light-shielding film, the particles will fly out into the light-receiving element section where the light-receiving elements 8 and channel cut regions 9 are alternately arranged, as shown by diagonal lines in FIG. 5a is extremely small and has almost no effect on the light-receiving area of the light-receiving element 8. Therefore, the sensitivity of the light-receiving element in this part is not lowered than that of other light-receiving elements, and the solid-state imaging device has high sensitivity. can be configured.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、遮光膜を構成するアルミ
ニウム薄膜のアルミニウム粒子を、信号配線を構成する
アルミニウム薄膜の粒子よりも小さい粒径としているの
で、信号配線におけるアルミニウム薄膜のアルミニウム
粒径を大きくしてエレクトロマイグレーション耐性を確
保する一方で、遮光板におけるアルミニウム粒子の飛び
出し現象による受光素子の面積低下を抑制し、受光感度
の向上及びその均一性を改善できる効果がある。
As explained above, in the present invention, the aluminum particles of the aluminum thin film constituting the light shielding film have a smaller particle size than the particles of the aluminum thin film constituting the signal wiring, so the aluminum grain size of the aluminum thin film in the signal wiring is increased. This has the effect of ensuring electromigration resistance while suppressing a reduction in the area of the light receiving element due to the phenomenon of aluminum particles flying out from the light shielding plate, thereby improving light receiving sensitivity and its uniformity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)及び(b)は本発明の固体撮像装置の製造
方法の一例を製造工程順に示す断面図、第2図は本発明
の一実施例の要部平面図、第3図は従来の固体撮像装置
の一部の平面図である。 1・・・P型シリコン基板、2・・・N型拡散層、3・
・・読出し電極、4・・・層間膜、5.5′・・・遮光
膜、5a、5b・・・アルミニウム粒子、6・・・層間
膜、7・・・信号配線、8・・・受光素子、9・・・チ
ャネルカット領域。 第2 図 第 図
1(a) and 1(b) are cross-sectional views showing an example of the manufacturing method of the solid-state imaging device of the present invention in the order of manufacturing steps, FIG. 2 is a plan view of essential parts of an embodiment of the present invention, and FIG. 1 is a plan view of a portion of a conventional solid-state imaging device. 1... P type silicon substrate, 2... N type diffusion layer, 3...
...Reading electrode, 4...Interlayer film, 5.5'...Light shielding film, 5a, 5b...Aluminum particles, 6...Interlayer film, 7...Signal wiring, 8...Light receiving Element, 9...Channel cut region. Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1、半導体基板に受光素子を配列し、この受光素子の受
光面積をアルミニウム薄膜からなる遮光膜で規定してな
る固体撮像装置において、この遮光膜を構成するアルミ
ニウム薄膜のアルミニウム粒子を、固体撮像装置内に信
号配線として形成するアルミニウム薄膜のアルミニウム
粒子よりも小さい粒径に形成したことを特徴とする固体
撮像装置。
1. In a solid-state imaging device in which light-receiving elements are arranged on a semiconductor substrate and the light-receiving area of the light-receiving elements is defined by a light-shielding film made of an aluminum thin film, the aluminum particles of the aluminum thin film constituting the light-shielding film are A solid-state imaging device characterized in that the aluminum particles are formed to have a smaller particle size than the aluminum particles of the aluminum thin film formed as signal wiring therein.
JP63295111A 1988-11-22 1988-11-22 Solid-state imaging device Expired - Lifetime JP2687508B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63295111A JP2687508B2 (en) 1988-11-22 1988-11-22 Solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63295111A JP2687508B2 (en) 1988-11-22 1988-11-22 Solid-state imaging device

Publications (2)

Publication Number Publication Date
JPH02140978A true JPH02140978A (en) 1990-05-30
JP2687508B2 JP2687508B2 (en) 1997-12-08

Family

ID=17816436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63295111A Expired - Lifetime JP2687508B2 (en) 1988-11-22 1988-11-22 Solid-state imaging device

Country Status (1)

Country Link
JP (1) JP2687508B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06310697A (en) * 1993-04-27 1994-11-04 Hamamatsu Photonics Kk Solid image pickup device and its manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06310697A (en) * 1993-04-27 1994-11-04 Hamamatsu Photonics Kk Solid image pickup device and its manufacture

Also Published As

Publication number Publication date
JP2687508B2 (en) 1997-12-08

Similar Documents

Publication Publication Date Title
US4197633A (en) Hybrid mosaic IR/CCD focal plane
US5336919A (en) Solid-state image pickup device with high melting point metal shield
JPH06326293A (en) Photodetector
US5561295A (en) Infrared-responsive photoconductive array and method of making
JPH02140978A (en) Solid state image sensor
US4364973A (en) Method for fabricating a solid-state imaging device using photoconductive film
JP2832600B2 (en) Contact image sensor
JPS6145862B2 (en)
JPH10107242A (en) Optical semiconductor integrated circuit device and its manufacture
JPH04315474A (en) Manufacture of solid-state image pickup element
JP3364989B2 (en) Avalanche photodiode for split optical sensor
KR840001604B1 (en) Method for fabrication a solid - state imaging device
JPH0513741A (en) Semiconductor photodetector device
JPS5898914A (en) Manufacture of semiconductor device
JP2616707B2 (en) Manufacturing method of infrared detector
JPH02244671A (en) Multi-element type photodetector and manufacture thereof
JPH04158575A (en) Solid-state image sensing device
JPH02134993A (en) Solid-state image pickup device
JPS63285969A (en) Solid-state image pick-up element
JPS6315460A (en) Solid-state image sensor
JPS63208269A (en) Solid-state image sensing device
JPS6324680A (en) Manufacture of thin film of semiconductor element
JPH04116871A (en) Infrared radiation detecting element
JPS63229751A (en) Manufacture of infrared-ray detecting element
JPS60182765A (en) Semiconductor light receiving device